& ‘Boss The Professional
Open Source Company

A
JBoss Remoting Guide

JBoss Remoting version 2.2.2.SP8

June 22, 2008

Copyright © 2008 JBoss, a division of Red Hat .

Table of Contents

IO Y= V= SRS 1
1.1 What iS IBOSS REMOLINGccooeeiiiei e 1

D2, FFEBLUIES ...ttt ettt 5555555555555 5555555555555 555555 55555555555 55555555555kt ket ek ke bbnnnnnrnen 1

1.3. HOW tO g€t JBOSS REMOUING ...eeeiiuveeieeiiiiite ettt ettt e e st e e e s s e e e s annne e e e e nees 2

R VAT o= S 1= YRS 2
1AL INTEIEASE 2.2.2.SP7 ..ottt ettt et 2

LA2. INTEIEASE 2.2.2.SP4 ...ttt et et e et a bt e e a e e e e nees 3

LA3 INTEIEASE 2.2.2.SP2 ..ottt ettt e et e et e e e e n e e e et e e e et e e e e naeeeeennees 3

LAA INTEIEASE 2.2.2.GA ...ttt et et e e e et e e e e et e e e et e e e e e naae e e e anraaeeenraeeeaann 3

B AN (o 11 (= o L1 = SRR 4
3. JB0SS REMOLING COMPONENESeeeiiuitiieeiiitiiee e ettt e e e sttt e e et e e e e kbe e e e e aabb e e e e e aabb e e e e ebbe e e e s anbbeeeessnsbeeeeenbneeeeane 8
N 1o 0 Y YO PERRR 10

G T I = oo | £ TP 10

4. Remoting libraries and thirdparty dependanCies ..., 12
T I 0 TH (o o 7= Y L o] = =SSP 13

S O]y 1o 0] = 1o o H TSP PTUPPPP R PPPPPPPPPPRRN 15
5.1. General transport CONFIQUIBLIONueeeeiiiriieeaiieiee e sttt e e e et e e e st e e s s e e e s snbe e e e e s nnseeeennneees 15
5.1.1. Server side CONfIQUIBLIONuuuiieiieeeiiiciiiie e e e e s es e e e e e e s e s ar e e e e e s s et raeeeeaeeessnannraees 15

5.1.1.1. ProgrammatiC CONFIQUIBLION.cceiiiiiiiiieiie e e ettt e e e s e e e e et e e e e e e e e 15

SRR BT= o F= 1 1AV =T 00 1T [0 = 1 o o 17

5.1.1.3. Callback client configurationccuuiiiiiiiriiie e e e e 19

5.1.2. Client Side CONFIQUIBLIONuvrieeiiiiiee ettt e e e e e e et e e e annee s 19

oI o T 00| = SR RPP 21

5.3. DiSCOVENY (DELECIOIS) ...uuuviiiiiiiieeeii ittt et e e e e e e e ettt r e e e e e e e st e e e e aeeesastabaaereeaeeesaasnntbaseeaeeeesaasnrenees 24

5.4. TrangPortS (INVOKEIS)ceiiiiiiiiee e ettt e e e e e s e e e e e e e e s s et e e e e e e e s e s saabeaeeeeaeessanansrees 26
5.4.1. Features introduced in REMOLING VErSION 2.2uuuuuuuuiuiiiniiiiiiierinnnnenrerreennrenrn... 27

5.4.1.1. Binding t0 0.0.0.0ouiiiiiiiiiie et e e e e e e e e nnneeeeans 27

5.4.1.2. SUPPOIT TOr IPVE SUIESSESceeiiiiiiiieiiiie ettt 27

B.4.2. SEIVEN INVOKENS ..ottt eee e e s e ettt e e e e e e et e e e e e e e s s ann et e e et eaeeessnssstaaeeaaeeessannnssnaeneaaeeesanns 27

5.4.3. Configurations affecting the iNVOKEr CHENtcueiiiiiiiiie e 28

5.4.4. How the server bind address and port isdetermingdcccoooeiiiiiieei e, 28

SN T oo (= M 11110 (< SRR 29

5.4.5.1. How the Socket INVOKEr WOTKSuiiiiiiiieei e e e 30

5.4.6. SSL SOCKEL INVOKES ... ee ettt e e e e s e et e e e e e e e e st e e eaeeeseannnnreeeeeaens 32

B5.4.7. RMI TNVOKES ...oiiiii ittt ettt e e e e e s e ettt e e e e e e e eentab e eeeaeeessssnsaaneeeeaeeeannnes 32

5.4.8. SSL RMI INVOKESccciiiiiiiiiiei ettt e ettt e e e e s e e e e e e e e s s st b ba e e e e aaeeessasssrbaeeeaeens 33

5.4.9. HTTP INVOKES ...eeiiiiiiiiiie ettt e e e e e bt e e s e nbb e e e e nbb e e e s snbteeeeaas 33

5.4.10. HTTPS INVOKES .. .eiiiieiiteiie ettt ettt e e et e e e ettt e e e st e e e e nntae e e e anseeeeaannneeeeennnes 34

5.4.11. HTTP(S) Client Invoker - proxy and basic authenticationcccccce e, 34

5.4.12. SEIVIEL INVOKEToeiiiiiiiieeeiitie e ettt ste e e e et e e e s st e e e e ante e e e annaaeeeeenteeeeeansseeeeannnnneens 36

5.4.13. SSL SEIVIEL INVOKESeeiiiiieeiiiiiiiiit e e e sttt e e e e s e s e e e e e e e e s s ssntaaeeeeaeeesannesrneeeaaeeesans 37

5.4.14. Exception handling for web based CHENEScoooiuiiieiiiiiiiee e 38

5.4.15. MUIIPIEX INVOKEY ..vveiiiieee ittt e e e et e e e e e e e st e e e e e e e e s et e a e e e aaeeesannnreees 39

JBoss June 22, 2008 i

JBoss Remoting Guide

5.4.15.1. Setting UPp the SEIVEr ..o 40

5.4.15.2. Setting UP the CHENLveiiiiiiee e e e 41

5.4.15.3. Shutting dOWN iNVOKES QIOUPDS.eeiurrieeiiiieeeeasiieeeeeiteee e s e e s snreeessnnseeeesanneeaes 44

5.4.15.4. EXAMPIES ..ottt 44

5.4.15.5. Configuration PrOPEITIESueeiieeeiiiiiiiiiiee e e e e e e st e e e e e e e s s e e e e e e s s esrrrreeeeaeeseaaans 47

5.4.16. SSL MUIIPIEX TNVOKEY ..eeeiiieieii ittt e e e e s e et e e e e e e e s enaaarraeeeeaeeaans 48
5.4.17. BiSOCKEL INVOKES ...t e e e e e e e et e e e e e e e e e nnnneeeeeaaeens 48

SN O A B O Y = R URRR 48

BuA.17.2. DELAIIS ...ooeeeeiiieieiiieieieieteeeteeeeeteteseeeeesesesesesesesesssesssssssssssssssssssssssesssssssssessssssnnnnennrrnes 49

5.4.18. SSL BiSOCKEL INVOKELcciiiiiiiee e ettt e e e e s e r e e e e e e s s e nn b aaeeeaaeeessnnneeees 54

I = 6 7= 1 1T PRSP 54
5.6, CalDACKSveeieiiiiiie et e e r e e s bb e e e e e b e e e e anaeeeean 56
5.6.1. CallDACK OVEIVIBWooiiiiii e e e e e e e e e e e 56
5.6.1.1. Callback CONNECLIONSooiiiiiiiiiie e e e e 56

5.6.1.2. Transmitting CallDACKScoouriiiiiiiii e 57

5.6.1.3. CallDACK SLOIES. ...eiiiieiiiiiiiieii ettt e e s e e e e e e e e e s et arreeaaeeeaeanes 58

5.6.1.4. Callback aCkNOWIEAGEMENLScciieiiiiiiiiiie e e e 59

5.6.2. Registering callback handlers.c..oveiiiiiiiiii e 60
5.6.2.1. PUll CAIDACKS.cooieieiiee e 60

N A o VL g o= | 7= o P 61

5.6.3. Unregistering callback handlersoooiiiiiiiiii e 64
5.6.4. Callback StOre CONfIQUIBLION.eeiiiiiiieiiiiiie ettt e e e e e e e e e anes 65
5.6.5. Callback EXCeption HandliNgcccciiiiiiiie ettt e e 67

5.7. Socket factories and Server SOCKEL FACIONESuuviiiiiiiiie i 67
5.7.1. Server side programmatiC CONFIQUIALIONceeveeviiriirieieiees 68
5.7.1.1. Server SOCKEt FACLOIES.eeeeiiiiiee et e e e e e e e e e eeeeeeaaeeeens 68

5.7.0.2. SOCKEL TACLOMESeveiiiiieeeei ittt ettt e e e e e e et e e e e e e e s e e et e e e e e e e e s snnnneneeeeaaens 69

5.7.2. Client side programmatiC CONFIQUIBLIONceieiiuriieiiiiiiee et e et e et e e 70
5.7.2.1. Server SOCKEL FACIONES.vveiiiiiiiiie ettt e e e nbaeee e 71

5.7.2.2. SOCKEL FACIOMES.vveiieiiiiiie ettt ettt e e e st e e e et e e e s nnbaeeeeann 72

5.7.3. Server side configuration in the JBoss Applicalion SEIVESeueuveeeereremmmeeerernnerenernnnnnnn. 73
5.7.4. SOCKEL Creation lISIENENSooiiii ittt et e e e e e s et e e e e e e e e e snnneeeeeeaeeeeans 74
5.7.5. SSL rANSPOIS ..eeeiieiiit ittt e et e e e e e e e e s a e e e e e e a e e e e e e e aaan 75
5.7.6. SSLSOCKEIBUITAEYeviiiieeeei ittt e ettt e e e s e e e e e e e st ereaae e s s aesnreaaeeeeeeeseannnnnes 77
5.7.7. SSL Server SOCKEIFACIONYSEIVICE ...vvviie i ettt e e e e e e e r e e e e e e s e eaneees 81
5.7.8. General SECUNLY HOW TO ...uuiiiiiiiiie ettt e e e et e e e e e e s et e e e e e e e e e e sanreaes 81
5.7.9. Troubl@SNOOtING TIPS .uvveeiiieeiiiiiiiiiiiee e e et e e e e e e e et e e e e e e e e s st b re e e e eaeeeeastnrareeeeaeesaannnes 82

EoTE S T T 0= 1S PPRRRR 83
5.8.1. General timeout CONFIGUIALTONeiiiiiiiieeiiiiie ettt e et e e e e e e e s e e e e naa 83
5.8.2. Per iNVOCALION tIMEOULSceiieeiiiiiiiiiiiiiee e e s estiiee e e ee e s s s strereeeeaeeesassssreeeeeeeessssssnssneeeaeessans 83
5.8.3. Transport specCific timeout NandliNgc.ceeiiiiiiiii e 84
5.8.3.1. Socket and biSOCKEL tranSPOITSvvviiiiee it e e 84

R R o I I 1 =101 o S 84

5.8.3.3. Quick Client diSCONNECLcciiiiiiiiiiiii s nnnnnnnnnns 85

5.9. Configuration DY PrOPEITIESceiiiiiiieiiiiie ettt e e e e e e e e s snr e e e e s e e e e s annnneeeaa 85

JBoss June 22, 2008 ii

JBoss Remoting Guide

LS 10 110 T = 1 96
3 B ol 1o 01 7= 1 [0 o TP PPRPP PP 97

LI £ 1= PP 97

S = = L2 (] o SRR 98
8. Network Connection MONITOIINGuuurieieees it et e e e e s et e e e e e s e st e e e e e e e s sastbbeaeeeaeeessansnbrreeeeaeesssanneres 99
8.1. Client SIdE MONITOMING ...eoiiieiiiiiiiiee e e e e e e e e e e e e e e e s st b re e e e e eeeesasanbraeeeeaaeas 99

LTS A V7= G Lo (=3 1.010] 1 0] F 1 100

8.3. Interactions between client side and server side CONNECtioN MONITONNGcccoouvvvveerirereeriiieeee e 102

9. Transporters - DEAMING POJOSooiiiiiiiiiiiiii ettt a e e st e e e e s sbs e e e e anbe e e e e abneeeeaans 103
10. HOW O USE it - SAMPIE COUR ... ettt ettt e e e e e ettt e e s e b e e e s enbeeeeeane 104
10.2. SIMPIE INVOCELION ...eeiiiiiiiiiiiiiie et e e e e e e e e e e s e e e e e e e e e essatbaaeeeeaeeessansebaeeneaaeeananns 104
O o I I T 01V o= (o RSP PRP 105
O A @ o= VT VA 11V 0 o= 1 Lo o PSP 108
10.4. DiSCOVErY AN INVOCAIONeveiiiiiiiieeeiiiee e e et e e et e e e e e e as e e e s asse e e e e e sne e e e e ann e e e e s annn e e e e annneeas 109
O ST O 1o 7= o ¢SSR 110
O S 1= 0 11 0o PP TP OT PP 112
10.7. IBOSS SENTAIZALIONeeeiiiiiiee ettt e et e e e st e e e e b bt e e e eb b e e e e s aabb e e e e e nnbee e e e enbeeeenane 113
O I = oo (= = PSPPI 114
10.8.1. Transporters - DEAMING POJOSuuuiuireririeereererereeeeeeermneeeerrrrememrrerrre. 114

10.8.2. Transporters SAMPIE - SIMPIEoiiiiiiiie e 116

10.8.3. TranspOrter SAMPIE - DASIC ...ccoiuieiieeiiiiie et 117

10.8.4. Transporter sample - JBOSS SENaliZAHONeeveiiiiiiieeiiie e 123

10.8.5. Transporter sample - CIUSLErEdovviiieiieei e e 128

10.8.6. Transporters sample - MUILIPIE ... 135

10.8.7. Transporters SAMPIE = PrOXY ..ccceeeeeeeeeeeee et 138

10.8.8. Transporter SaMPle -COMPIEXuiiiiiiiiee ettt e et e e e e e st e e e e e e e e e e snneneeeeeaaeeeans 143

10.9. MUITIPIEX TNVOKEN'Seeiiiiiiteeiitee ettt ettt e e et e e et e e s e bt e e e aabn e e e e e asnn e e e e anreeeenanns 144

11. Client programming MOE!ccuuiiiiiiiiiie e e et e e e s abb e e e e e anbe e e e e anbreeesanbreeeeans 146
12. Compatibility @and VEISIONINGceeeeiiiiiiiiieiee e e e e e s e e e e e e e e e e e e e e e s sanntbeeeeeeaeeesannnnaaeeeas 147
13. Getting the JBossRemoting source and BUITAINGcocooiiiiiiiiiiie e 148
I N 010 T T PP URRPR 150
T U1 (U N o = PSSR 151
16. REIEASE NOLES ...ttt e e e e e ettt e e e e e e ettt e eeaaeeas s s ebeaeeeeeeessaanssaeaeeeaaeeasansnsssneenaaeeeannes 152

JBoss June 22, 2008 iv

Overview

1.1. What is JBoss Remoting

The purpose of JBoss Remoting isto provideasingle API for most network based invocations and related service that
uses pluggabl e transports and data marshallers. The JBossRemoting API providesthe ability for making synchronous
and asynchronous remote calls, push and pull callbacks, and automatic discovery of remoting servers. The intention
isto allow for the use of different transports to fit different needs, yet till maintain the same API for making the
remote invocations and only requiring configuration changes, not code changes.

JBossRemoting is astandalone project, separate from the JBoss A pplication Server project, but will be the framework
used for many of the JBoss projects and components when making remote calls. JBossRemoting is included in the
recent releases of the JBoss Application Server and can be run as a service within the container as well. Service
configurations are included in the configuration section below.

1.2. Features

The features available with JBoss Remoting are:

* Server identification —asimple url based identifier which allows for remoting serversto beidentified and called
upon.

» Pluggable transports— can use different protocol transports the same remoting API.
Provided transports:
e Socket (SSL Socket)
« RMI (SSL RMI)
« HTTP(S
* Multiplex (SSL Multiplex)
e Servlet (SSL Servlet)
» BiSocket (SSL BiSocket)

* Pluggable data marshallers — can use different data marshallers and unmarshallers to convert the invocation
payloads into desired data format for wire transfer.

* Pluggable serialization - can use different serialization implementations for data streams.

JBoss June 22, 2008 1

Overview

Provided serialization implementations:

e Javaseridization

» JBoss seridization

Automatic discovery — can detect remoting servers as they come on and off line.
Provided detection implementations:

e Multicast

e JINDI

Server grouping—ability to group servershby logical domains, so only communicate with serverswithin specified
domains.

Callbacks — can receive server callbacks via push and pull models. Pull model allows for persistent stores and
memory management.

Asynchronous calls — can make asynchronous, or one way, callsto server.

L ocal invocation —if making an invocation on aremoting server that is within the same process space, remoting
will automatically make this call by reference, to improve performance.

Remote classloading — allowsfor classes, such as custom marshallers, that do not exist within client to be loaded
from server.

Sending of streams — allows for clients to send input streams to server, which can be read on demand on the
server.

Clustering - seamless client failover for remote invocations.
Connection failure notification - notification if client or server has failed

Data Compression - can use compression marshaller and unmarshaller for compresssion of large payloads.

All the features within JBoss Remoting were created with ease of use and extensibility in mind. If you have a
suggestion for anew feature or an improvement to a current feature, please log in our issue tracking system at http://
jirajboss.com

1.3. How to get JBoss Remoting

The JBossRemoting distribution can be downloaded from http://labs.jboss.com/portal/jbossremoting [http://
labs.jboss.com/portal/jbossremoting] . This distribution contains everything needed to run JBossRemoting stand
alone. The distribution includes binaries, source, documentation, javadoc, and sample code.

1.4. What's new?

1.4.1. In release 2.2.2.SP7

JBoss June 22, 2008 2

http://jira.jboss.com
http://jira.jboss.com
http://labs.jboss.com/portal/jbossremoting

Overview

1. Server side and client side connection listeners can be tied together.
1.4.2. In release 2.2.2.S5P4

1. IPv6 addresses are supported;

2. org.jboss.renoting. cal | back. Server ! nvoker Cal | backHandl er can register itself as a lease connection
listener.

1.4.3. In release 2.2.2.SP2

1. Theservlet transport can throw an exception generated on the server side;

2. serverscan bind to 0.0.0.0.
1.4.4. In release 2.2.2.GA

Release 2.2.2.GA includes a number of bug fixes, greater configurability, and a couple of new features, including
1. animproved callback polling method;

2. theahility for the client to discover its | P address as seen by the server side of the connection;

The following changes affect configurability:

1. Theaddress and port of the bisocket transport secondary server socket are configurable;

2. org.jboss.renoting. Connector Val i dat or parameters are configurable;

3. the maximum number of errors before aor g. j boss. renoti ng. cal | back. Cal | backPol | er shuts down can be
specified;

4. thereisa separate timeout parameter for callbacks.

For the JIRA items related to release 2.2.2.GA, see Release Notes.

JBoss June 22, 2008 3

Architecture

The most critical component of the JBoss Remoating architecture is how servers are identified. Thisis done via an
InvokerL ocator, which can be represented by asimple String with a URL based format (e.g., socket://myhost:5400).
Thisis al that is required to either create a remoting server or to make a call on a remoting server. The remoting
framework will then take the information embedded within the InvokerL ocator and construct the underlying remoting
components needed and build the full stack required for either making or receiving remote invocations.

There are several layers to this framework that mirror each other on the client and server side. The outermost layer
is the one which the user interacts with. On the client side, thisis the Client class upon which the user will make its
calls. On the server side, thisisthe InvocationHandler, which isimplemented by the user and is the ultimate receiver
of invocation requests. Next is the transport, which is controlled by the invoker layer. Finally, at the lowest layer is
the marshalling, which converts data type to wire format.

Remating Client Remoting Server
| Marshaller | —— ——| UnMarshaller |—|
Cutput Inpet .
Stream Stream
Client R / j Server
: E : Invocation
=== Client Invoker oa» o o o e SEsSOckeiEe o s oae ese ess Invoker 1
:] : Handler
{transport) : / o (transport)
Input Output :
: Stream Siream -
— UnMarshaller |=t——/ i Marshaller [—

When a user calls on the Client to make an invocation, it will pass this invocation request to the appropriate client
invoker, based on the transport specified by the locator url. The client invoker will then use the marshaller to convert
the invocation reguest object to the proper data format to send over the network. On the server side, an unmarshaller
will receive this data from the network and convert it back into a standard invocation request object and send it on
to the server invoker. The server invoker will then pass this invocation request on to the user’s implementation of
the invocation handler. The response from the invocation handler will pass back through the server invoker and on
to the marshaller, which will then convert the invocation response object to the proper data format and send back to
the client. The unmarshaller on the client will convert the invocation response from wire data format into standard
invocation response object, which will be passed back up through the client invoker and Client to the original caller.

Client

On the client side, there are a few utility class that help in figuring out which client invoker and marshal instances
should be used.

JBoss June 22, 2008 4

Architecture

Remoting Client

Invoker Marshal
:_+ Registry I-* Factory
I
I
I e
1 1
Marshaller :
: Cutput
. Stream
: Client -y
= Client Invoker s oas s o e eS—cOCkeE——
' (transport) :
Input
. Stream
UnMarshaller |--¢—/

For determining which client invoker to use, the Client will pass the InvokerRegistry the locator for the target
server it wishes to make invocations on. The InvokerRegistry will return the appropriate client invoker instance
based on information contained within the locator, such as transport type. The client invoker will then call upon
the Marshal Factory to get the appropriate Marshaller and UnMarshaller for converting the invocation objects to the
proper dataformat for wire transfer. All invokers have a default data type that can be used to get the proper marshal
instances, but can be overridden within the locator specified.

Server

On the server side, there are also a few utility classes for determining the appropriate server invoker and marshal
instancesthat should beused. Thereisalso aserver specific classfor tying theinvocation handler to the server invoker.

JBoss June 22, 2008 5

Architecture

Remoting Server

Marshal Invoker
Factory Registry
A A
1 |
! s
1
I Connector
1
o S

UnMarshaller

Input

Stream :
/ 3 Server
ammsockeinmn o oo o o ey Invoker ln:::::::n
3 {transport)
Cuipul =
Straam -

b~ Marshaller

On the server side, it is the Connector class that is used as the externa point for configuration and control of the
remoting server. The Connector classwill call onthe InvokerRegistry with itslocator to create aserver invoker. Once
the server invoker isreturned, the Connector will then register the invocation handlers on it. The server invoker will
use the MarshalFactory to obtain the proper marshal instances as is done on the client side.

Detection

To add automatic detection, a remoting Detector will need to be added on both the client and the server side as well
as a NetworkRegistry to the client side.

Remoting Server
Remoting Chent Invoker
Detector - Registry
Network
Reglstry = DEREEETEE——— o | | e e e
B e e AR AP el poiel v g bitippeh U s L s TR | Connector
— Marshaller \ = UnMarshaller ——
Cutaul gt
Strwamn Stream
Client X ! Server A
4= Cllent n¥cker fas o oo S e SEECOCkEEED o GES EES S S Inwoker 1" Handar
{transport) / ke (transport)
Fiput Dlutgeal
Stream Siraarm
l—{ UnMarshaller |- 4 . Marshaller |—

JBoss June 22, 2008 6

Architecture

When a Detector on the server side is created and started, it will periodically pull from the InvokerRegistry all the
server invokersthat it has created. The detector will then use theinformation to publish adetection message containing
the locator and subsystems supported by each server invoker. The publishing of this detection message will be either
via a multicast broadcast or a binding into a INDI server. On the client side, the Detector will either receive the
multicast broadcast message or poll the INDI server for detection messages. If the Detector determines a detection
messageisfor aremoting server that just came onlineit will register it in the NetworkRegistry. The NetworkRegistry
houses the detection information for all the discovered remoting servers. The NetworkRegistry will also emit aJM X
notification upon any change to thisregistry of remoting servers. The change to the NetworkRegistry can aso be for
when a Detector has discovered that a remoting server is no longer available and removes it from the registry.

JBoss June 22, 2008 7

JBoss Remoting Components

This section covers afew of the main components exposed within the Remoting APl with a brief overview.

org.jboss.remoting.Client — is the class the user will create and call on from the client side. Thisis the main entry
point for making all invocations and adding a callback listener. The Client class requires only the InvokerL ocator for
the server you wish to call upon and that you call connect before use and disconnect after use (which is technically
only required for stateful transports and when client leasing is turned on, but good to call in either case).

org.jboss.remoting.lnvokerLocator — is a class, which can be described as a string URI, for identifying
a particular JBossRemoting server VM and transport protocol. For example, the InvokerLocator string
socket://192.168.10.1:8080 describes a TCP/IP Socket-based transport, which is listening on port 8080 of the IP
address, 192.168.10.1. Using the string URI, or the InvokerLocator object, JBossRemoting can make a client
connection to the remote server. The format of the locator string is the same as the URI type: [transport]://

[host]: <port >/ pat h/ ?<par anet er =val ue>&<par anet er =val ue>

A few important points to note about the InvokerLocator. The string representation used to construct the
InvokerLocator may be modified after creation. This can occur if the host supplied is 0.0.0.0, in which case the
InvokerL ocator will attempt to replace it with the value of thelocal host name. This can aso occur if the port specified
isless than zero or not specified at all (in which case remoting will select arandom port to use).

The InvokerL ocator will accept host name asis and will not automatically convert to | P address (since 2.0.0 rel ease).
There are two comparison operators for InvocatorL ocators, equal s() and i sSameEndpoi nt (), and neither resolve
a hostname to IP address or vice versa. equal s() compares al components of the InvokerLocator, character by
character, whilei ssameEndpoi nt () usesonly protocol, host, and port. The following examples are just some of the
comparisons that can beseeninorg. j boss. test. renoti ng. | ocat or . | nvoker Locat or Test Case:

new | nvokerLocator("http://1local host: 1234/ services/uri:Test").equal s(new |nvokerLocator("http://
| ocal host: 1234")) returnsfalse

new I nvoker Locator("http://1ocal host: 1234/ services/ uri: Test").equal s(new
I nvoker Locat or ("http://127.0.0. 1: 1234")) returnsfalse

new I nvoker Locator ("http://1ocal host: 1234/ services/ uri: Test").i sSameEndpoi nt (new
I nvoker Locator ("http://1 ocal host:1234")) returnstrue

new I nvoker Locator ("http://1 ocal host: 1234/ servi ces/ uri: Test").i sSameEndpoi nt (new
I nvoker Locat or ("http://127.0.0.1: 1234")) returnsfalse

org.jboss.remoting.transport.Connector - is an MBean that loads a particular Serverlnvoker implementation for
a given transport subsystem and one or more ServerlnvocationHandler implementations that handle Subsystem

JBoss June 22, 2008 8

JBoss Remoting Components

invocations on the remote server VM. The Connector is the main user touch point for configuring and managing
aremoting server.

org.jboss.remoting.Server I nvocationHandler —istheinterfacethat theremote server will call onwith aninvocation
received from the client. Thisinterface must be implemented by the user. This implementation will also be required
to keep track of callback listenersthat have been registered by the client as well.

org.jbossremoting.lnvocationRequest — is the actual remoting payload of an invocation. This class wraps the
caller’ s request and provides extra information about the invocation, such as the caller’s session id and its callback
locator (if one exists). Thiswill be object passed to the ServerlnvocationHandler.

org.jboss.remoting.stream.Streaml nvocationHandler —extendsthe ServerlnvocationHandler interface and should
be implemented if expecting to receive invocations containing an input stream.

org.jboss.remoting.callback.I nvoker CallbackHandler —theinterfacefor any callback listener toimplement. Upon
receiving callbacks, the remoting client will call on thisinterface if registered as alistener.

org.jboss.remoting.callback.Callback — the callback object passed to the InvokerCallbackHandler. It contains
the callback payload supplied by the invocation handler, any handle object specified when callback listener was
registered, and the locator from which the callback came.

org.jboss.remoting.networ k.Networ kRegistry — this is a singleton class that will keep track of remoting servers
as new ones are detected and dead ones are detected. Upon a change in the registry, the NetworkRegistry fires a
NetworkNotification.

org.jboss.remoting.network.NetworkNotification —aJMX Notification containing information about a remoting
server change on the network. The notification contains information in regards to the server’s identity and all its
locators.

org.jboss.remoting.detection.Detection — is the detection message fired by the Detectors. Contains the locator and
subsystems for the server invokers of aremoting server aswell as the remoting server’sidentity.

org.jboss.remoting.ident.ldentity — is one of the main components remoting uses during discovery to identify
remoting server instances (is actually the way it guarantees uniqueness). If have two remoting servers running on the
same server, they can be uniquely identified. The reason the identity is persisted (currently only ableto do thisto the
file system) isso if a server crashes and then restarts, can identify it when it restarts as the one that crashed (instead
of being a completely new instance that is being started). This may be important from a monitoring point as would
want to know that the crashed server is back online.

When creating the identity to be presisted, remoting will first look to see if a system property for ‘jboss.identity’
has been set already. If it has, will use that one. If not, will get the value for the 'ServerDataDir' attribute of the
'jboss.system:type=ServerConfig' mbean. If can retrieve this value, will use this as the directory to write out the
'iboss.identity’ file. If not, will look to seeif a system property has been set for 'jboss.identity.dir'. If it has, will use
this as the directory to write the 'jboss.identity' file to, otherwise, will default to'.". If for some reason the file can not
be written to, will throw a RuntimeException, which will cause the detector to error during startup. For more details
on how and where the identity is persisted, can refer to org.jboss.remoting.ident.ldentity.createl d().

org.jboss.remoting.detection.multicast.MulticastDetector — is the detector implementation that broadcasts its
Detection message to other detectors using multicast.

JBoss June 22, 2008 9

JBoss Remoting Components

org.jboss.remoting.detection.jndi.JNDIDetector — is the detector implementation that registers its Detection
message to other detectors in a specified JINDI server.

There are afew other components that are not represented as a class, but important to understand.

Subsystem —a sub-system is an identifier for what higher level system an invocation handler is associated with. The
sub-system is declared as any String value. The reason for identifying sub-systems is that a remoting Connector’s
server invoker may handle invocations for multiple invocation handlers, which need to be routed based on sub-
system. For example, a particular socket based server invoker may handle invocations for both customer processing
and order processing. The client making the invocation would then need to identify the intended sub-system to handle
theinvocation based on thisidentifier. If only one handler is added to a Connector, the client does not need to specify
a sub-system when making an invocation.

Domain — a logical name for a group to which a remoting server can belong. The detectors can discriminate as
to which detection messages they are interested based on their specified domain. The domain to which a remoting
server belongs is stored within the |dentity of that remoting server, which is included within the detection messages.
Detectors can be configured to accept detection messages from one, many or all domains.

3.1. Discovery

One of the features of JBoss Remoting isto be able to dynamically discover remoting servers. Thisis done through
the use of what remoting calls detectors. These detectors run in same instance as the servers and the clients. The
detectors that run within the server instance automatically gets list of remating servers running locally and emits a
detection message contain information about those servers, such as their locator url and subsystems supported. The
detector running within the client instance will receive these detection messages and update alocal registry, called the
network registry, with thisinformation. The client detector will also monitor the remoting serversit has discoveredin
case one wereto fail, in which case, will notify the network registry of the failure The network registry will then fire
events to registered listeners (via IMX notifications), to include events such as new server added or server failure.

There are currently two types of detector implementations; multicast and INDI. The multicast detectors use multicast
channel to send and receive detection messages. The INDI detectors use awell known INDI server to bind and lookup
detection messages.

The standard approach for detecting remoting servers happensin a passive manner, in that as detection messages are
received by the client detector, they will cause an event to fire. In some cases, will need ability to synchronously
discover the remoting serversthat exist upon startup. This can be done by calling the forceDetection() method on the
detector. Thiswill return an array of Networklnstances which contains the server information. Note, this method can
take afew seconds to return (at least in multicast implementation).

3.2. Transports

Service provider interface

The transport implementations within remoting, called invokers, are responsible for handling the wire protocol to be
used by remoting clientsand servers. Remoting will load client and server invoker (transport) implementations (within
the InvokerRegistry) using factories. The factory class to be loaded will always be either TransportClientFactory
(for loading client invoker) or TransportServerFactory (for loading server invoker). These classes must implement

JBoss June 22, 2008 10

JBoss Remoting Components

org.jboss.remoting.transport.dientFactory andorg.jboss.renoting.transport. ServerFactory interfaces
respectively. The package under which the TransportClientFactory and TransportServerFactory will
aways sart with org.jboss.test.renoting.transport, then the transport protocol type. For example,
the 'socket' transport factories are org.jboss.renoting. transport.socket. TransportCient Factory and
org.jboss. remoting.transport.socket. Transport Server Factory. The API for
org.jboss.remoting.transport.ClientFactory is:

public Cientlnvoker created ientlnvoker(lnvokerLocator |ocator, Map config) throws | OException;
publ i c bool ean supportsSSL();

The API for org.jboss.remating.transport.ServerFactory is.

publ i c Serverlnvoker createServerlnvoker(lnvokerLocator |ocator, Map config) throws | OExcepti on;
publ i c bool ean supportsSSL();

An example of a transport client factory for the socket transport

(org.jboss.remoting. transport.socket. Transportd i ent Factory) is:

public class TransportdientFactory inplenents dientFactory
{
public Cientlnvoker createdientlnvoker(lnvokerLocator |ocator, Mp config)
throws | OException
{
return new Socket dientlnvoker (|l ocator, config);
}
publ i ¢ bool ean supportsSSL()
{
return false;
}
}

The packages used within the factory does not matter as long as they are on the classpath. Note that the transport
factories are only loaded upon request for that protocol. Also, the client and server factories have been separated so
that only the one requested isloaded (and thus the corresponding classes needed for that invoker implementation). So
if only ask for a particular client transport invoker, only those classes are |oaded and the ones needed for the server
are not required to be on the classpath.

The biggest reason for taking this approach is allows users ability to plugin custom transport implementation with
zero config. Remoting comes with the following transports: socket, sslsocket, http, https, multiplex, ssimultiplex,
servlet, sslservlet, rmi, sslrmi.

JBoss June 22, 2008 11

Remoting libraries and thirdparty dependancies

Remoting partitions its functionality into several different libraries to allow the size of the footprint to be controlled
according to the features that will be used. Remoting distribution will include the following remoting binaries (found
inthe lib directory of the distribution).

jboss-remoting.jar - this binary contains all the remoting classes. This is the only remoting jar that is needed to
perform any remoting function within JBoss Remoting.

Since some may want to better control size of the binary footprint needed to use remoting, the remoting classes have
been broken out into multiple remoting binaries based on their function. There are four categories of these binaries;
core, detection, transport, and other.

core

jboss-remoting-core.jar - contains al the core remoting classes needed for remoting to function. If not using jboss-
remoting.jar, then jboss-remoting.core.jar will be required.

detection

jboss-remoting-detection - contains al the remoting classes needed to perform automatic discovery of remoting
servers. It includes both the jndi and multicast detector classes aswell as the network registry classes.

transport

jboss-remoting-socket.jar - contains all the classes needed for the socket and sslsocket transports to function as both
aclient and a server.

jboss-remoting-socket-client.jar - contains al the classes needed for the socket and sslsocket transports to function
asaclient only. This means will not be able to perform any push callbacks or sending of streams using thisjar.

jboss-remoting-http.jar - contains al the classes heeded for the http and https transports to function as a client and
aserver.

jboss-remoting-http-client.jar - containsall the classes needed for the http, https, servlet, and sd servlet transportsto
functionasaclient only. Thismeanswill not be ableto perform any push callbacks or sending of streamsusing thisjar.

jboss-remoting-servlet.jar - contains al the classes needed for the servlet or sslservlet transports to function as a
server only (also requires servlet-invoker.war be deployed within web container as well).

jboss-remoting-rmi.jar - contains all the classes needed for the rmi and ssirmi transports to function as a client and
aserver.

JBoss June 22, 2008 12

Remoting libraries and thirdparty dependancies

jboss-remoting-multiplex.jar - contains all the classes needed for the multiplex and ssimultiplex transports to
function as aclient and a server. Use of thisjar aso requires jboss-remoting-socket.jar be on classpath as well.

jboss-remoting-bisocket.jar - contains al the classes needed for the bisocket and sslbisocket transports to function
as both aclient and a server.

jboss-remoting-bisocket-client.jar - contains all the classes needed for the bisocket and sdlbisocket transports to
functionasaclient only. Thismeanswill not be ableto perform any push callbacks or sending of streamsusing thisjar.

other

jboss-remoting-serialization.jar - contains just the remoting serialization classes (and serialization manager
implementations for java and jboss).

jboss-remoting-samples;jar - all the remoting samples showing example code for different remotng functions.

4.1. Thirdparty libraries

This section covers which thirdparty jars are required based on the feature or transport to be used. Remember,
whenever see jboss-remoting-XXX.jar mentioned, they can all be replaced with just the jboss-remoting.jar.

All remoting servers: jboss-remoting-core.jar, jboss-common.jar, jboss-jmx.jar, logdj.jar
All remoting clients: jboss-remating-core.jar, jboss-common.jar, jboss-jmx.jar, logdj.jar, concurrent.jar

Note: concurrent.jar needed because of org.jboss.util.id.GUID used to create session id within Client (http:/
jira,jboss.com/jira/lbrowse/ IBREM-549)

Remoting requires the use of IMX classes. It does not require the JBoss implementation (jboss-jmx.jar) of IMX in
order to function correctly, so can replace jboss-jmx.jar with another IMX implementation library (or exclude it if
using jdk 1.5 or higher, which has IMX implementation built in).

Multicast detection: jboss-remoting-detection.jar, concurrent.jar, domdj.jar

JNDI detection: jboss-remoting-detection.jar, concurrent.jar, domdj.jar, jnpserver.jar (for jndi api classes)

The domdj.jar for use of detection is required because using jboss-jmx.jar.

Socket server: jboss-remoting-socket.jar

Socket client: jboss-remoting-socket-client.jar

HTTP server: jboss-remoting-http.jar, tomcat-coyote.jar, tomcat-util .jar, commons-logging-api .jar, tomcat-http.jar
Note: need tomcat-apr.jar and tcnative-1.dll/tcnative-1.s0 on system path if want to use APR based tomcat connector
HTTP client: jboss-remoting-http-client.jar

Servlet server: servlet-invoker.war (deployed in web container), jboss-remoting-serviet.jar

Servlet client: jboss-remoting-http-client.jar

JBoss June 22, 2008 13

Remoting libraries and thirdparty dependancies

RMI server and client: jboss-remoting-rmi.jar
Multiplex server and client: jboss-remoting-socket.jar, jboss-remoting-multiplex.jar

JBoss serialization: jboss-seridization.jar, trove.jar

JBoss June 22, 2008

14

Configuration

This covers the configuration for JBoss Remoting discovery, connectors, marshalers, and transports. All the
configuration properties specified can be set either via calls to the object itself, including via IMX (so can be done
viathe IMX or Web console), or viaa JBoss AS service xml file. Examples of service xml configurations can be
seen with each of the sections below. There is also an example-service.xml file included in the remoting distribution
that shows full examples of all the remoting configurations.

5.1. General transport configuration

Remoting offers a variety of ways of configuring transports on the server side and client side. This section presents
an overview, and the rest of the chapter elaborates the material presented here. For easy reference the configuration
parameters discussed throughout the chapter are gathered together at the end of the chapter in section Configuration
by properties

5.1.1. Server side configuration

The heart of the server side is the Connect or, and it is through the Connect or that the server side of atransport is
configured. The central goals of configuration on the server side are to establish a server invoker and supply it with
a set of invocation handlers. Only one invoker can be declared per Connect or . Although declaring an invocation
handler is not required, it should only be omitted in the case of declaring a callback server that will not receive direct
invocations, but only callback messages. Otherwise client invocations can not be processed. The invocation handler
istheonly interface that isrequired by the remoting framework for auser to implement and will be what the remoting
framework calls upon when receiving invocations.

There are two genera approaches to server side configuration: programmatic and declarative. A variety of
programmatic techniques work in any environment, including the JBoss Application Server (JBossAS). Moreover,
JB0ssAS adds the option of declarative configuration. In particular, the SARDeployer (see The JBoss 4 Application
Server Guide on the labs.jboss.org web site) can read information from a *-service.xml file and use it to configure
MBeans such as Connect or S.

5.1.1.1. Programmatic configuration.

The simplest way to configure a Connect or iSto passan | nvoker Locat or t0 aConnect or constructor. For example,
the code fragment

String |locatorURI = "socket://test.sonedonai n.com 8084";
String parans = "/ ?clientLeasePeri od=10000&t i meout =120000";
| ocat or URI += par ans;

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);
Connect or connector = new Connector(locator);

JBoss June 22, 2008 15

Configuration

connector.create();

Sanpl el nvocat i onHandl er i nvocati onHandl er = new Sanpl el nvocati onHandl er () ;
connect or . addl nvocat i onHandl er ("sanpl e", invocationHandl er);
connector.start();

creates a server invoker based on the socket transport, directs it to listen for invocations on port 8084 of host
test.somedomain.com, and passes two configuration parameters, "clientL easePeriod" and "timeout”. It also supplies
the server invoker with an invocation handler.

One limitation of the I nvoker Locat or isthat it can only represent string values. An alternative that overcomes this
limitation isto passsomeor al of the parametersto the Connect or by way of aconfiguration map. Thefollowing code
fragment accomplishesall that the previous fragment does, but it passes one parameter by way of thel nvoker Locat or
and passes the other by way of a configuration map. It also passes in a non-string object, a Ser ver Socket Fact ory:

String |l ocatorURI = "socket://test.sonedonmai n.com 8084";

String parans = "/?clientlLeasePeri 0d=10000";

| ocat or URI += par ans;

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);

HashMap config = new HashMap();

confi g. put (Serverl nvoker. TI MEQUT, 120000);

config. put (Server| nvoker. SERVER_SOCKET_FACTORY, new MyServer Socket Factory());
Connect or connector = new Connector (Il ocator, config);

connector.create();

Sanpl el nvocat i onHandl er i nvocati onHandl er = new Sanpl el nvocati onHandl er () ;
connect or . addl nvocat i onHandl er ("sanpl e", invocati onHandl er);
connector.start();

Note that the value of Serverlnvoker.TIMEQUT is "timeout", and the vaue of
Ser ver | nvoker . SERVER_SOCKET_FACTORY is "serverSocketFactory". These configuration map keys are discussed
throughout the chapter and accumulated in section Configuration by properties. Also, server socket factory
configuration is covered in Socket factories and server socket factories.

A third programmatic option is available for those configurati on properties which happen to be server invoker MBean
properties. In the following fragment, the server invoker is obtained from the Connect or and aSer ver Socket Fact ory
is passed to it by way of a setter method:

String |locatorURI = "socket://test.sonedonai n.com 8084";
String parans = "/?clientLeasePeri 0od=10000";

| ocat or URI += par ans;

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);
HashMap config = new HashMap();

config. put (Serverl nvoker. TI MEQUT, 120000);

Connect or connector = new Connector(locator, config);
connector.create();

Server |l nvoker serverlnvoker = connector.getServerlnvoker();
Server Socket Factory ssf = new MyServer Socket Factory();
server | nvoker. set Ser ver Socket Fact ory(ssf);

Sanpl el nvocat i onHandl er i nvocati onHandl er = new Sanpl el nvocati onHandl er () ;
connect or. addl nvocat i onHandl er ("sanpl e", invocati onHandl er);
connector.start();

JBoss June 22, 2008 16

Configuration

Note. The Connect or creates the server invoker during the call to Connect or. creat e(), S0 this option only works
after that method has been called. Also, depending on the parameter and the transport, this option may or may not be
effective after the call to Connector. start (), which callsstart () onthe server invoker.

A fourth option, which exists primarily to support the declarative mode of configuration presented below, isto passan
XML document to the connect or . The following fragment duplicates the behavior of the first and second examples
above.

HashMap config = new HashMap();
confi g. put (Serverl nvoker. TI MEQUT, 120000);
Connect or connector = new Connector (config);

/1 Set xml configuration el ement.
StringBuffer buf = new StringBuffer();
buf . append("<?xm version=\"1.0\"?>\n");
buf . append(" <confi g>");

buf . append(" <i nvoker transport=\"socket\">");

buf . append(" <attribute name=\"serverBi ndAddr ess\ ">t est. somedonei n. conx/ attri bute>");
buf . append(" <attribute name=\"serverBi ndPort\">8084</attribute>");

buf . append(" <attribute name=\"client LeasePeri od\">10000</attri bute>");

buf . append(" </i nvoker>");

buf . append(" <handl ers>");

buf . append(" <handl er subsystenmr\ "nmock\">");

buf . append(" org.j boss.renoting.transport. nock. Sanpl el nvocat i onHandl er");

buf . append(" </ handl er>");

buf . append(" </ handl ers>");

buf . append(" </ config>");

Byt eArrayl nput Stream bai s = new Byt eArrayl nput Strean(buf.toString().getBytes());
Docunment xm = Docunent Bui | der Fact ory. new nst ance() . newbocunent Bui | der () . par se(baj s);
connect or. set Confi gurati on(xm . get Docunent El emrent ()) ;

connector.create();
connector.start();

Note that there is no I nvoker Locat or in this example. If the Connect or gets an I nvoker Locat or, it ignores the
presence of the xml document. Note also that this method only supports the use of string values, so it is necessary to
include the fully qualified name of the invocation handler, from which the handler is created by calling the default
constructor.

An example of this option in use can be found in

org.j boss.test.renoting. configuration. SocketClientConfigurati onTest Case.
5.1.1.2. Declarative configuration

The configuration option discussed at the end of the previous section, passing an XML document to the Connect or,
works in conjunction with the service archive deployer (SARDeployer) inside the JBoss Application Server to allow
declarative configuration on the server side. In particular, the SARDeployer reads X M| documents containing MBean
descriptors from files whose name has the form "*-service.xml". When it sees a descriptor for a Connect or MBean,
it passes the descriptor's <conf i g> element to anewly created Connect or .

JBoss June 22, 2008 17

Configuration

There are two ways in which to specify the server invoker configuration viaaservice xml file. The first isto specify
just the InvokerL ocator attribute as a sub-element of the Connector MBean. For example, a possible configuration
for a Connector using a socket invoker that islistening on port 8084 on the test.somedomain.com address would be:

<nbean code="org.jboss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- nanme="Socket transport Connector">
<attri bute name="InvokerLocat or">
<! [CDATA| socket://test.sonedonai n. com 8084]] >
</attribute>
<attri bute name="Configuration">
<confi g>
<handl er s>
<handl er subsysten=" nock" >
org. jboss.rennting.transport. nock. MockServer | nvocati onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ mbean>

Note that all the server side socket invoker configurations will be set to their default valuesin this case. Also, itis
important to add CDATA to any locator uri that contains more than one parameter.

The other way to configure the Connector and its server invoker in greater detail isto provideani nvoker sub-element
within the config element of the Configuration attribute. The only attribute of invoker element istransport, which will
specify which transport type to use (e.g.. socket, rmi, http, or multiplex). All the sub-elements of the invoker element
will be attribute elements with a name attribute specifying the configuration property name and then the value. An
i sPar am attribute can also be added to indicate that the attribute should be added to the locator uri, in the case the
attribute needs to be used by the client. An example using this form of configuration is as follows:

<nbean code="org.jboss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">

<attri bute name="Configuration">
<confi g>

<i nvoker transport="socket">
<attribute name="numAccept Threads">1</attri bute>
<attribute name="maxPool Si ze">303</attri bute>
<attribute name="cl i ent MaxPool Si ze" i sParanr"true">304</attri bute>
<attribute name="socket Ti meout " >60000</ attri bute>
<attribute name="serverBi ndAddress">192. 168. 0. 82</attri but e>
<attribute name="serverBi ndPort">6666</attri bute>
<attribute name="client Connect Address">216. 23. 33. 2</attri bute>
<attribute name="client Connect Port">7777</attri bute>
<attribute name="enabl eTcpNoDel ay" isParam="true">fal se</attri bute>
<attribute name="backl og">200</attri bute>

</i nvoker >

JBoss June 22, 2008 18

Configuration

<handl er s>
<handl er subsystenr" nock" >
org.j boss.renoting.transport. nock. MockServer | nvocati onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>

</ mbean>

Also note that ${j boss. bi nd. addr ess} can be used for any of the bind address properties, which will be replaced
with the bind address specified to JBoss when starting (i.e. viathe -b option).

All the attributes set in this configuration could be set directly in thelocator uri of the InvokerL ocator attribute value,
but would be much more difficult to decipher visually and is more prone to editing mistakes.

One of the components of a locator uri that can be expressed within the InvokerLocator attribute is the path. For
example, can express alocator uri path of ‘foo/bar' viathe InvokerL ocator attribute as:

<attribute name="I|nvokerLocat or"><![CDATA[socket://test.sonedomai n. com 8084/ f oo/ bar]]></attr

To include the path using the Configuration attribute, can include a specific 'path’ attribute. So the same
InvokerL ocator can be expressed as follows with the Configuration attribute:

<attribute name="Configuration">
<confi g>
<i nvoker transport="socket">
<attribute name="server Bi ndAddr ess" >t est. sonedomai n. conx/ attri but e>
<attribute name="serverBi ndPort">8084</attri bute>
<attribute name="path">foo/bar</attribute>
</i nvoker >

Note: The value for the 'path’ attribute should NOT start or end with a/ (dash).
5.1.1.3. Callback client configuration

Remoting supports asynchronous computation and delivery of results through a callback mechanism, as described in
Section Callbacks. Callbacks are sent from the server side to the client side on a callback connection which is the
reverse of the usual client to server connection. That is, aclient invoker on the server side communicates with aserver
invoker on the client side (in the case of push callbacks - again, see Section Callbacks). When a callback connection
is created, al of the configuration information passed to the server side Connect or is passed on to the server side
callback client invoker. It follows that callback client invokers are configured by way of the server side Connect or.

5.1.2. Client side configuration

Invoker configuration onthe client side parallelsconfiguration on the server side, with the exception that (1) it operates
in a simpler environment (in particular, it does not assume the presence of an MBeanServer) and (2) it does not

JBoss June 22, 2008 19

Configuration

support a declarative option. However, it does support versions of the first three server side programmatic options,
with the d i ent class playing the central role played by the Connect or class on the server side.

Again, the most straightforward form of configuration isto put the configuration parameters on the nvoker Locat or .
For example, the fragment

String locatorURI = "socket://test.somedomai n. com 8084";
String parans = "/ ?client MaxPool Si ze=10&t i meout =360000" ;
| ocat or URI += par ans;

I nvoker Locat or | ocator = new | nvokerLocator (Il ocatorURI);
Client client = new Cient(locator);

client.connect();

creates a d i ent using the socket transport to connect to a server on host test.somedomain.com, listening on port
8084. It aso passesin two parameters, "clientMaxPool Size" and "timeout”, that will be used by the client invoker.

Itisalso possible to use configuration maps on the client side. The following code fragment accomplishes all that the
previous fragment does, but it passes one parameter by way of the | nvoker Locat or and passes the other by way of
aconfiguration map. It also passes in anon-string object, a Socket Fact ory:

String |l ocatorURI = "socket://test.sonedomai n. com 8084";

String parans = "/?client MaxPool Si ze=10";

| ocator URI += par ars;

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);

HashMap config = new HashMap();

confi g. put (Serverl nvoker. TI MEQUT, 360000);

config. put (Renoti ng. CUSTOM SOCKET_FACTORY, new MySocket Factory());
Client client = new Client(locator, config);

client.connect();

Note that the value of Server I nvoker. TI MEOUT is "timeout”, and the value of Renot i ng. CUSTOM SOCKET_FACTORY
is "customSocketFactory". These configuration map keys are discussed throughout the chapter and accumulated in
section Configuration by properties. Also, socket factory configuration is covered in Socket factories and server
socket factories.

Finally, athird programmatic option is available for those configuration properties which happen to be client invoker
MBean properties. In the following fragment, the client invoker is obtained from the d i ent and a Socket Fact ory
is passed to it by way of a setter method:

String locatorURI = "socket://test.somedomai n.com 8084";
String parans = "/ ?client MaxPool Si ze=10";

| ocat or URI += par ans;

I nvoker Locat or | ocator = new | nvokerLocator (Il ocatorURl);
HashMap config = new HashMap();

config. put (Serverl nvoker. TI MEQUT, 360000);

Client client = new Client(locator, config);
client.connect();

Socket Factory sf = new MySocket Factory();

JBoss June 22, 2008 20

Configuration

Cientlnvoker clientlnvoker = client.getlnvoker();
clientlnvoker. set Socket Fact ory(sf);

Note. The d i ent creates the client invoker during the call to di ent . connect (), S0 this option only works after
that method has been called.

5.2. Handlers

Handlers are classes that the invocation is given to on the server side (the final target for remoting invocations).
To implement a handler, al that is needed is to implement the or g. j boss. renot i ng. Server | nvocat i onHand| er

interface. There are a two ways in which to register a handler with a Connector. The first is to do it
programmatically. The second is via service configuration. For registering programmatically, can either pass the
ServerlnvocationHandler reference itself or an ObjectName for the ServerlnvocationHandler (in the case that it is
an MBean). To pass the handler reference directly, call Connect or: : addl nvocat i onHandl er (String subsystem

Server | nvocat i onHandl er handl er) . For example (fromor g. j boss. renot i ng. sanpl es. si npl e. Si npl eSer ver):

I nvoker Locat or | ocator = new | nvokerLocator(locatorURl);
Connect or connector = new Connector();

connect or. set | nvoker Locat or (| ocat or. get LocatorURI ());
connector.create();

Sanpl el nvocat i onHandl er i nvocati onHandl er = new Sanpl el nvocati onHandl er () ;
[/l first parameter is sub-system nane. can be any String val ue.

connect or . addl nvocat i onHandl er ("sanpl e", invocationHandl er);

connector.start();

To pass the handler by ObjectName, call Connector: : addl nvocat i onHandl er (String subsystem (bj ect Nane
handl er Cbj ect Nare) . For example (fromor g. j boss. t est. renot i ng. handl er. mbean. Ser ver Test):

MBeanServer server = MBeanServerFactory. createMBeanServer();
I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);
Connect or connector = new Connector();

connector . set | nvoker Locat or (| ocat or. get Locator URI ());
connector.start();

server.regi st er MBean(connector, new CObj ect Name("test:type=connector,transport=socket"));
/1 now create Moean handl er and regi ster with nbean server
MBeanHandl er handl er = new MBeanHandl er () ;

(bj ect Nane obj Nane = new Cbj ect Nane("test:type=handler");

server. regi st er MBean(handl er, obj Nane);

connect or. addl nvocati onHandl er ("test", obj Nane);

Isimportant to note that if not starting the Connector via the service configuration, will need to explicitly register it
with the MBeanServer (will throw exception otherwise).

JBoss June 22, 2008 21

Configuration

If using a service configuration for starting the Connector and registering handlers, can either specify the fully
qualified class name for the handler, which will instantiate the handler instance upon startup (which requires there
be avoid parameter constructor), such as:

<handl er s>
<handl er subsyst en¥" nbck" >
org.j boss.renoting.transport. nock. MockServer | nvocati onHandl er
</ handl er >
</ handl er s>

where M ockServerlnvocationHandler will be constructed upon startup and registered with the Connector asahandler.

Can aso use an ObjectName to specify the handler. The configuration is the same, but instead of specifying afully
qualified class name, you specify the ObjectName for the handler, such as (can see nbeanhandl er - servi ce. xni
under remoting tests for full example):

<handl er s>
<handl er subsystenr"nock" >t est:type=handl er </ handl er >
</ handl er s>

The only requirement for this configuration is that the handler MBean must already be created and registered with
the MBeanServer at the point the Connector is started.

Handler implementations

The Connectors will maintain a reference to the handler instances provided (either indirectly via the MBean proxy
or directly viathe instance object reference). For each request to the server invoker, the handler will be called upon.
Sincethe server invokers can be multi-threaded (and in most caseswould be), this meansthat the handler may receive
concurrent callsto handle invocations. Therefore, handler implementations should take care to be thread safein their
implementations.

Stream handler

There is aso an invocation handler interface that extends the ServerlnvocationHandler interface specifically for
handling of input streams as well as normal invocations. See the section on sending streams for further details. As
for Connector configuration, it is the same.

HTTP handlers

Since there is extra information needed when dealing with the http transport, such as headers and response codes,
special consideration is needed by handlers. The handlers receiving http invocations can get and set this extra
information via the InvocationReguest that is passed to the handler.

Server invoker for the http transport will add the following to the InvocationRequest's request payload map:

JBoss June 22, 2008 22

Configuration

MethodType - the http request type (i.e., GET, POST, PUT, HEADER, OPTIONS). Can use the contant value
HTTPMetadataConstants. METHODTY PE, if don't want to use the actual string 'MethodType' as the key to the
request payload map.

Path - the url path. Can use the contant value HTTPMetadataConstants.PATH, if don't want to use the actual string
'Path’ as the key to the request payload map.

HttpVersion - the client's http version. Can use the contant value HT TPM etadataConstants. HTTPVERSION, if don't
want to use the actual string 'HttpVersion' as the key to the request payload map.

Other properties from the original http request will also be included in the request payload map, such as request
headers. Can reference org.jboss.test.remoting.transport.http.method.MethodlnvocationHandler as an example for
pulling request properties from the InvocationRequest.

Theonly timethiswill not be added isaPOST request where an I nvocationRequest is passed and is not binary content
type (application/octet-stream).

The handlers receiving http invocations can also set the response code, response message, and response headers.
To do this, will need to get the return payload map from the InvocationRequest passed (via its getReturnPayload()
method). Then populate this map with whatever properties needed. For response code and message, will need to use
the following keys for the map:

ResponseCode - Can use the constant value HTTPMetaDataConstants. RESPONSE_CODE, if don't want to use the
actual string 'ResponseCode’ as they key. IMPORTANT - The value put into map for this key MUST be of type
javalang.Integer.

ResponseCodeM essage - Can use the constant value HTTPM etadataConstants. RESPONSE CODE_MESSAGE, if
don't want to use the actual string 'ResponseCodeMessage’ as the key. The value put into map for this key should
be of type java.lang.String.

Is also important to note that ALL http requests will be passed to the handler. So even OPTIONS, HEAD, and
PUT method requests will need to be handled. So, for example, if want to accept OPTIONS method requests,
would need to populate response map with key of 'Allow' and value of 'OPTIONS, POST, GET, HEAD, PUT', in
order to tell calling client that all these method types are alowed. Can see an example of how to do this within
org.jboss.test.remoting.transport.http.method.M ethodI nvocationHandl er.

The PUT request will be handled the same as a POST method request and the PUT request payload will be included
within the InvocationRequest passed to the server handler. It is up to the server handler to set the proper resonse
code (or throw proper exception) for the processing of the PUT request. See http://www.ietf.org/rfc/rfc2616.txt?
number=2616 [http://www.ietf.org/rfc/rfc2616.txt?number=2616], section 9.6 for detailson response codes and error
responses).

HTTP Client

The HttpClientInvoker will now put the return from HttpURL Connection getHeaderFi el ds() method into the metadata
map passed to the Client'sinvoke() method (if not null). Thismeansthat if the caller passesanon-null Map, it can then
get the response headers. It isimportant to note that each response header field key in the metadata map is associated
with alist of response header values, so to get a value, would need code similar to:

oj ect response = remotingCient.invoke((Object) null, metadata);

JBoss June 22, 2008 23

http://www.ietf.org/rfc/rfc2616.txt?number=2616
http://www.ietf.org/rfc/rfc2616.txt?number=2616

Configuration

String allowalue = (String) ((List) netadata.get("Allow').get(0);

Can reference org.jboss.test.remoting.transport.http.method. HT TPInvoker TestClient for an example of this.

Note that when making a http request using the OPTIONS method type, the return from the Client's invoke() method
will ALWAY S be null.

Also, if the response code is 400, the response returned will be that of the error stream and not the standard input
stream. So isimportant to check for the response code.

Two values that will always be set within the metadata map passed to the Client's invoke() method (when not null),
is the response code and response message from the server. These can be found using the keys:

ResponseCode - Can use the constant value HTTPMetaDataConstants.RESPONSE _CODE, if don't want to use
the actual string 'ResponseCode’ as the key. IMPORTANT - The value returned for this key will be of type
javalang.Integer.

ResponseCodeM essage - Can use the constant value from
HTTPMetadataConstants. RESPONSE_CODE_MESSAGE, if dont want to use the actua string
'ResponseCodeM essage’ as the key. The value returned for this key will be of type javalang.String.

An example of getting the response code can be found within
org.jboss.test.remoting.transport.http.method. HT TPInvokerTestClient.

5.3. Discovery (Detectors)

Domains

Detectors have the ability to accept multiple domains. What domains that the detector will accept as viewable can
either be set programmatically via the method:

public void setConfiguration(org.w3c.dom El ement xm)

or by adding to jboss-service.xml configuration for the detector. The domains that the detector is currently accepting
can be retrieved from the method:

public org.w3c.dom El enent get Configuration()
The configuration xml is a MBean attribute of the detector, so can be set or retrieved via IMX.

There are three possible options for setting up the domains that a detector will accept. The first is to not call the
set Configuration() method (or just not add the configuration attribute to the service xml). This will cause the
detector to use only its domain and is the default behavior. This enables it to be backwards compatible with earlier
versions of JBoss Remoting (JBoss 4, DR2 and before).

The second is to call the set Confi gurati on() method (or add the configuration attribute to the service xml) with
the following xml element:

<domai ns>
<domai n>donmai nl1</ domai n>

JBoss June 22, 2008 24

Configuration

<donmai n>donai n2</ domai n>
</ domai ns>

where domai n1 and domai n2 are the two domains you would like the detector to accept. Thiswill cause the detector
to accept detections only from the domains specified, and no others.

The third and final option is to call the setConfiguration() method (or add the configuration attribute to the service
xml) with the following xml element:

<donmai ns>
</ domai ns>

Thiswill cause the detector to accept all detections from any domain.

By default, remoting detection will ignore any detection messagetheit receives from a server invoker running within
itsown jvm. To disablethis, add an element called 'local’ to the detector configuration (al ongside the domain element)
to indicate should accept detection messages from local server invokers. This will be false by default, so maintains
the same behavior as previous releases. For example:

<donai ns>
<domai n>domai nl1</ domai n>
<domai n>domai n2</ domai n>
</ domai ns>
<l ocal / >

An example entry of a Multicast detector in the jboss-service.xml that accepts detections only from the roxanne and
sparky domains using port 5555, including serversin the same jvm, is asfollows:

<nbean code="org.jboss.renoting. detection. multicast.MilticastDetector"
nanme="j boss.renoting: servi ce=Det ector, transport=nulticast">
<attribute name="Port">5555</attri bute>
<attribute name="Configuration">
<donmi ns>
<domai n>r oxanne</ domai n>
<donmi n>spar ky</ donmai n>
</ domai ns>

<l ocal / >
</attribute>
</ nbean>

Global Detector Configuration
The following are configuration attributes for all the remoting detectors.

DefaultTimeDelay - amount of time, in milliseconds, which can elapse without receiving a detection event before
suspecting that a server is dead and performing an explicit invocation on it to verify it isalive. If thisinvocation, or
ping, fails, the server will be removed from the network registry. The default is 5000 milliseconds.

JBoss June 22, 2008 25

Configuration

HeartbeatTimeDelay - amount of time to wait between sending (and sometimes receiving) detection messages. The
default is 1000 milliseconds.

JNDIDetector

Port - port to which detector will connect for the INDI server.
Host - host to which the detector will connect for the INDI server.

ContextFactory - context factory string used when connecting to the JINDI server. The default is

org.jnp.interfaces. Nam ngCont ext Factory .

URLPackage - url package string to use when connecting to the JINDI server. The default is

org.j boss.nam ng:org.jnp.interfaces.

CleanDetectionNumber - Sets the number of detection iterations before manually pinging remote server to make
sure il alive. Thisis needed since remote server could crash and yet till have an entry in the INDI server, thus
making it appear that it is still there. The default valueis 5.

Can either set these programmatically using setter method or as attribute within the remoting-servicexml (or
anywhere else the service is defined). For example:

<nbean code="org.jboss.renoting. detection.jndi.JNDI Detector"
nane="j boss. renoti ng: servi ce=Det ector, transport =j ndi ">
<attribute name="Host" >l ocal host</attri bute>
<attribute name="Port">5555</attribute>
</ nbean>

If the INDIDetector is started without the Host attribute being set, it will try to start alocal INP instance (the JBoss
JINDI server implementation) on port 1088.

MulticastDetector

Defaultl P - The IP that is used to broadcast detection messages on via multicast. To be more specific, will be the
ip of the multicast group the detector will join. This attribute is ignored if the Address has already been set when
started. Default is 224.1.9.1.

Port - The port that is used to broadcast detection messages on via multicast. Default is 2410.
BindAddress - The address to bind to for the network interface.

Address - The IP of the multicast group that the detector will join. The default will be that of the DefaultlP if not
explicitly set.

If any of these are set programmatically, need to be done before the detector is started (otherwise will use default
values).

5.4. Transports (Invokers)

JBoss June 22, 2008 26

Configuration

This section covers configuration issues for each of the transports, beginning with a set of properties that apply to
all transports. The material in alater section in this chapter, Socket factories and server socket factories, also applies
to all transports.

5.4.1. Features introduced in Remoting version 2.2

Subsequent to the release of Remoting 2.2.0.GA, some transport independent features have been introduced.
5.4.1.1. Binding to 0.0.0.0

Before release 2.2.2.5P2, a Remoting server could bind to only one specific IP address. In particular, the address
0.0.0.0 wastrandated to the host returned by j ava. net . I net Addr ess. get Local Host () (or itsequivalent IP address).
Asof release 2.2.2.5P2, a server started with the address 0.0.0.0 binds to all available interfaces.

Note. If 0.0.0.0 appearsinthel nvoker Locat or , it needs to be translated to an address that is usable on the client side.
If the system property | nvoker Locat or . Bl ND_BY_HOST (actua value "remoting.bind_by host") is set to "true", the
I nvoker Locat or host will be transformed to the value returned by | net Addr ess. get Local Host () . get Host Narre() .
Otherwise, it will be transformed to the value returned by | net Addr ess. get Local Host () . get Host Addr ess() .

5.4.1.2. Support for IPv6 addresses

Asof release 2.2.2.5P4, or g. j boss. renot i ng. | nvoker Locat or Will accept IPv6 | P addresses. For example,

socket://[::1]:3333/?ti neout =10000

socket://[::]:4444/?ti neout =10000
socket://[::ffff:127.0.0.1]:5555/?ti neout =10000
socket://[fe80::205:9aff: fe3c: 7800%] : 6666/ ?ti neout =10000

5.4.2. Server Invokers

The following configuration properties are common to al the current server invokers.

server BindAddress - The address on which the server binds to listen for requests. The default is an empty value
which indicates the server should be bound to the host provided by the locator url, or if this value is null, the local
host as provided by | net Addr ess. get Local Host () .

server BindPort - The port to listen for requests on. A value of 0 or less indicates that a free anonymous port should
be chosen.

maxNumT hreadsOneway - specifiesthe maximum number of threadsto be used within the thread pool for accepting
one way invocations on the server side. This property will only be used in the case that the default thread pool is
used. If a custom thread pool is set, this property will have no meaning. This property can also be retrieved or set
programmatically viathe MaxNunber Of Oneway Thr eads property.

onewayThreadPool - specifies either the fully qualified class name for a class that implements
the org.jboss. util.threadpool.ThreadPool interface or the JMX ObjectName for an MBean
that implements the org.jboss. util.threadpool. ThreadPool interface. This will replace the default
org.jboss.util.threadpool . Basi cThreadPool used by the server invoker.

JBoss June 22, 2008 27

Configuration

Note that this value will NOT be retrieved until the first one-way (server side) invocation is made. So if the
configuration isinvalid, will not be detected until thisfirst call is made. The thread pool can also be accessed or set
viathe oneway Thr eadPool property programmatically.

Important to note that the default thread pool used for the one-way invocations on the server sidewill block thecalling
thread if al the threadsin the pool are in use until oneis rel eased.

5.4.3. Configurations affecting the invoker client

There are some configurations which will impact theinvoker client. Thesewill be communicated to the client invoker
via parameters in the Locator URI. These configurations can not be changed during runtime, so can only be set up
upon initial configuration of the server invoker on the server side. The following isalist of these and their effects.

clientConnectPort - the port the client will use to connect to the remoting server. This would be needed in the case
that the client will be going through a router that forwards requests made externaly to a different port internally.

clientConnectAddress - the ip or hostname the client will use to connect to the remoting server. This would be
needed in the case that the client will be going through a router that forwards requests made externally to a different
ip or host internally.

If no client connect address or server bind address specified, will use the local host's address (via
InetAddress.getLocaIFbst().getkbstAddress()).

5.4.4. How the server bind address and port is determined

If the serverBindAddress property is set, the server invoker will bind to that address. Otherwise, it will, with
one exception, use the address in the InvokerLocator (if there is one). The exception is the case in which the
clientConnectAddress property is set, which indicates that the adddess in the InvokerL ocator is not the real address
of the server's host. In that case, and in the case that there is no address in the InvokerL ocator, the server will bind
to the address of the local host, as determined by the call

I net Addr ess. get Local Host () . get Host Addr ess() ;

In other words, the logicis

if (serverBindAddress is set)
use it

else if (the host is present in the |InvokerLocator and clientConnect Address is not set)
use host from | nvokerLocat or

el se
use | ocal host address

If the serverBindPort property isset, it will beused. If thisvalueis 0 or anegative number, then the next avail able port
will be found and used. If the serverBindPort property is not set, but the clientConnectPort property is set, then the
next available port will be found and used. If neither the serverBindPort nor the clientConnectPort is set, then the port

JBoss June 22, 2008 28

Configuration

specified in the original InvokerLocator will be used. If thisis O or a negative number, then the next available port
will be found and used. In the case that the next available port is used because either the serverBindPort or the original
InvokerL ocator port value was either O or negative, the InvokerL ocator will be updated to reflect the new port value.

5.4.5. Socket Invoker

The following configuration properties can be set at any time, but will not take effect until the socket invoker, on
the server side, is stopped and restarted.

timeout - The socket timeout value passed to the Socket.setSoTimeout() method. The default on the server side is
60000 (one minute). If the timeout parameter is set, its value will aso be passed to the client side (see below).

backlog - The preferred number of unaccepted incoming connections allowed at a given time. The actual number
may be greater than the specified backlog. When the queueis full, further connection requests are rejected. Must be
a positive value greater than 0. If the value passed if equal or less than O, then the default value will be assumed.
The default value is 200.

numAccept Threads - The number of threads that exist for accepting client connections. The default is 1.
maxPool Size - The number of server threads for processing client. The default is 300.

server SocketClass - specifies the fully qualified class name for the custom SocketWrapper implementation to use
on the server.

socket.check _connection - indicates if the invoker should try to check the connection before re-using it by sending
a single byte ping from the client to the server and then back from the server. This config needs to be set on both
client and server to work. Thisif false by default.

idleTimeout - indicatesthe number of seconds a pooled server thread can beidle (meaning time sincelast invocations
reguest processed) beforeit should be cleaned up and removed from the thread pool. The value for this property must
be greater than zero in order to enable idle timeouts on pooled server threads (otherwise they will not be checked).
Setting to value less than zero will disable idle timeout checks on pooled server threads, in the case was previously
enabled. The default value for this property is-1.

continueAfterTimeout - indicates what a server thread should do after experiencing a
j ava. net . Socket Ti meout Excepti on. If set to "true”, or if JBossSeriadization is being used, the server thread will
continue to wait for an invocation; otherwise, it will return itself to the thread pool.

Configurations affecting the Socket invoker client

There are some configurations which will impact the socket invoker client. These will be communicated to the client
invoker viaparametersin the Locator URI. These configurations can not be changed during runtime, so can only be set
up upon initial configuration of the socket invoker on the server side. The following isalist of these and their effects.

enableT cpNoDelay - can beeither true or falseand will indicateif client socket should have TCP_NODELAY turned
on or off. TCP_NODELAY isfor aspecific purpose; to disable the Nagle buffering algorithm. It should only be set
for applications that send frequent small bursts of information without getting an immediate response; where timely
delivery of datais required (the canonical example is mouse movements). The default isfalse.

JBoss June 22, 2008 29

Configuration

timeout - The socket timeout value passed to the Socket.setSoTimeout() method. The default on the client side is
1800000 (or 30 minutes).

clientM axPool Size - the client side maximum number of active socket connections. This basically equates to the
maximum number of concurrent client calls that can be made from the socket client invoker. The default is 50.

number OfRetries - number of retries to get a socket from the pool. This basically equates to number of seconds
will wait to get client socket connection from pool before timing out. If max retries is reached, will cause a
CannotConnectException to be thrown (whose cause will be SocketException saying how long it waited for socket
connection from pool). The default is30 (MAX_RETRIES)

number Of CallRetries - number of retriesfor making invocation. Thisisunrelated to numberOfRetries in that when
this comes into play is after it has already received a client socket connection from the pool. However, is possible
that the socket connection timed out while waiting within the pool. Since not doing a connection check by defaullt,
will throw away the connection and try to get anew one. Will do this for whatever the numberOf CallRetries (which
defaults to 3) is. However, when reaches numberOfCallsRetries - 2, will flush the entire connection pool under the
assumption that all connections in the pool have timed out and are invalid and will start over by creating a new
connection. If still fails, will throw Marshal Exception with the cause being the original SocketException.

clientSocketClass - specifiesthe fully qualified class name for the custom SocketWrapper implementation to use on
the client. Note, will need to make sure thisis marked as a client parameter (using the 'isParam’ attribute). Making
this change will not affect the marshaller/unmarshaller that is used, which may aso be a requirement.

socket.check _connection - indicates if the invoker should try to check the connection before re-using it by sending
a single byte ping from the client to the server and then back from the server. This config needs to be set on both
client and server to work. Thisif false by default.

An example of locator uri for a socket invoker that has TCP_NODELAY set to false and the client's max pool size
of 30 would be:

socket://test.sonedomai n. com 8084/ ?enabl eTcpNoDel ay=f al se&nmaxPool Si ze=30

Toreiterate, these client configurations can only be set within the server side configuration and will not change during
runtime.

5.4.5.1. How the Socket Invoker works

The Socket Invoker is one of the more complicated invokers mainly because allows the highest degree of
configuration. To better understand how changes to configuration properties for the Socket invoker (both client and
server) will impact performance and scalability, will discuss the implementation and how it worksin detail.

server

When the socket server invoker is started, it will create one, and only one, instance of java.net.ServerSocket. Upon
being started, it will also create and start a number of threads to be used for accepting incoming requests from
the ServerSocket. These threads are called the accept threads and the number of them created is controlled by the
'numAcceptThreads' property. When these accept threads are started, they will call accept() on the ServerSocket and
block until the ServerSocket receives arequest from a client, where it will return a Socket back to the accept thread

JBoss June 22, 2008 30

Configuration

who called the accept() method. As soon as this happens, the accept thread will try to pass off the Socket to another
thread for processing.

The threads that actually process the incoming request, referred to as server threads, are stored in a pool. The accept
thread will try to retreive the first available server thread from the pool and hand off the Socket for processing. If the
pool does not contain any available server threads and the max pool size has not been reached, a new server thread
will be created for processing. Otherwise, if the max pool size has been reached, the accept thread will wait for one
to become available (will wait until socket timeout has been reached). The size of the server thread pooal is defined
by the 'maxPool Size' property. As soon as the accept thread has been able to hand off the Socket to a server thread
for processing, it will loop back to ServerSocket and call accept() on it again. This will continue until the socket
server invoker is stopped.

The server thread processing the request will be the thread of execution through the unmarshalling of the data, calling
on the server invocation handler, and marshalling of response back to the client. After the response has been sent, the
server thread will then hold the socket connection and wait for another request to come from this client. It will wait
until the socket is closed by the client, a socket timeout occurs, or receives another request from the client in which
to process. When the client socket connection session is closed, meaning timeout or client closed socket connection,
then the thread will return itself to the pool.

If all the server threads from the pool are in use, meaning have a client connection established, and the pool has
reached its maximum value, the accept threads (no matter how many there are) will have to wait until one of the
server threads is available for processing. This why having a large number of accept threads does not provide any
real benefit. If all the accept threads are blocked waiting for server thread, new client requests will then be queued
until it can be accepted. The number of requests that can be queued is controlled by the backlog and can be useful
in managing sudden bursts in requests.

If take an example with a socket server invoker that has max pool set to 300, accept threads is 2, and backlog is
200, will be able to make 502 concurrent client calls. The 503rd client request will get an exception immediately.
However, this does not mean all 502 requests will be guaranteed to be processed, only the first 300 (as they have
server threads available to do the processing). If 202 of the server threads finish processing their requests from their
initial client connections and the connection is released before the timeout for the other 202 that are waiting (200 for
backlog and 2 for accept thread), then they will be processed (of course thisisarequest by request determination).

As of JBossRemoting 2.2.0 release, can also add configuration for cleaning up idle server threads using the
'idleTimeout' configuration property. Setting this property to a value of greater than zero will activate idle timeout
checking, which is disabled by default. When enabled, the idle timeout checker will periodically iterate through the
server threads that are active and inactive and if have not processed a request within the designated idle timeout
period, the server thread will be shutdown and removed from corresponding pool. Active server threads are ones
that have a socket connection associated with it and are in a blocked read waiting for data from the client. Inactive
server threads are ones that have finished processing on a particular socket connection and have been returned to the
thread pool for later reuse.

Note. Prior to release 2.2.2.5P7, if a server thread experienced a j ava. net . Socket Ti meout Except i on, it would
return itself to the thread pool and could not be reused until a new socket connection was created for it to use.
In principle, it would be more efficient for the server thread simply to try again to read the next invocation, and,
in release 2.2.2.SP7, that is what it does. Unfortunately, j ava. i 0. Qoj ect | nput St r eam ceases to function once it
experiences a Socket Ti neout Except i on. The good newsisthat or g. j boss. seri al . i 0. JBossQbj ect | nput St r eam
made available by the JBossSeridization project, does not suffer from that problem. Therefore, as of release

JBoss June 22, 2008 31

Configuration

2.2.2.5P8, when it experiences a Socket Ti meout Excepti on, a server thread will check whether it is using a
JBossbj ect | nput St reamor not and act accordingly. Just to allow for the possibility that an application is using
yet another version of vj ect | nput St r eam the parameter Ser ver Thr ead. CONTI NUE_AFTER_TI MEQUT (actual value
"continueAfterTimeout") allows the behavior following a Socket Ti meout Except i on to be configured explicitly.

client

When the socket client invoker makesitsfirstinvocation, it will check to seeif thereis an available socket connection
initspool. Sinceisthefirst invocation, therewill not be and will create anew socket connection and useit for making
the invocation. Then when finished making invocation, will return the still active socket connection to the pool. As
more client invocations are made, is possible for the number of socket connections to reach the maximum allowed
(which is controlled by ‘clientMaxPool Size' property). At this point, when the next client invocation is made, it will
keep trying to get an available connection from the pool, waiting 1 second in between triesfor up to maximum number
of retries (which is controlled by the numberOfRetries property). If runs out of retries, will throw SocketException
saying how long it waited to find available socket connection.

Once the socket client invoker goes get an available socket connection from the pool, are not out of the woods yet.
Thereis still apossibility that the socket connection returned, while still appearing to be valid, has timed out while
sitting in the pool. So if discover thiswhile trying to make invocation, will throw it away and retry the whole process
again. Will do this up to the number set by the numberOfCallRetries before throwing an exception. The trick here
is that when get to numberOfCallRetries -2, will assume that any socket connection gotten from the pool will have
timed out and will flush the pool all together so that the next retry will cause anew socket connection to be recreated.
A typical scenario when this might occur is when have had a burst of client invocations and then a long period of
inactivity.

Note. As of release 2.2.2.GA, the server side of the socket transport can capture the IP address of the client side
of a TCP connection from client to server and make it available to application code on the client side. The address
can beretrieved as follows:

Client client = new Client(locator);

I nvocat i onResponse response = (I nvocati onResponse) client.invoke("$GET_CLI ENT_LOCAL_ADDRESS$") ;
I net Addr ess address = (| net Address) response. getResult();

5.4.6. SSL Socket Invoker

Supports al the configuration attributes as the Socket Invoker. The main difference is that the SSL Socket Invoker
usesan ssLSer ver Socket by default, created by an SSLSer ver Socket Fact or y. See section Socket factoriesand server
socket factories for more information.

5.4.7. RMI Invoker

registryPort - the port on which to create the RMI registry. The default is 3455. This also needsto have the isParam
attribute set to true.

Note. The RMI server invoker creates a socket factory and passesit to a client invoker along with the RMI stub, so
the socket factory must be serializable. Therefore, if a socket factory is passed in to the server invoker by one of the

JBoss June 22, 2008 32

Configuration

methods discussed in section Socket factories and server socket factories, then the user is responsible for supplying
aserializable socket factory.

5.4.8. SSL RMI Invoker

Thisisessentially identical tothe RMI invoker, except that it creates SSL socket and server socket factories by default.

Note. The SSL RMI server invoker creates a socket factory and passesit to aclient invoker along with the RMI stub,
so the socket factory must be serializable. If the SSL RMI server invoker is allowed to create an SSLSocket Fact ory
from SSL parameters, as discussed in section Socket factories and server socket factories, it will take careto create a
serializable socket factory. However, if a socket factory is passed in to the server invoker (also discussed in section
Socket factories and server socket factories), then the user is responsible for supplying a serializable socket factory.
See sdrmi below for more information.

5.4.9. HTTP Invoker

TheHTTP server invoker implementation is based on the Apache Tomcat connector components which support GET,
POST, HEAD, OPTIONS, and HEAD method types and keep-alive. Therefore, most any configuration allowed for
Tomcat can be configured for theremoting HT TP server invoker. For moreinformation on the configuration attributes
available for the Tomcat connectors, please refer to http://tomcat.apache.org/tomcat-5.5-doc/config/http.html. http://
tomcat.apache.org/tomcat-5.5-doc/config/http.html So for example, if wanted to set the maximum number of threads
to be used to accept incoming http requests, would use the 'maxThreads' attribute. The only exception when should
use remoting configuration over the Tomcat configuration is for attribute ‘address’ (use serverBindAddress instead)
and attribute 'port' (use serverBindPort instead).

Note: The http invoker no longer has the configuration attributes 'maxNumThreadsHTTP or 'HTTPThreadPool' as
thread pooling is now handled within the Tomcat connectors, which does not expose external API for setting these.

Since the remoting HTTP server invoker implementation is using Tomcat connectors, is possible
to swap out the Tomcat protocol implementations being used. By default, the protocol being
used iS org. apache. coyote. httpll. HtpllProtocol . However, it is possible to switch to use the
org. apache. coyot e. htt p11. Ht t p11Apr Pr ot ocol protocol, which is based on the Apache Portable Runtime (see
http://tomcat.apache.org/tomcat-5.5-doc/apr.html and http://apr.apache.org/ for more details). If want to usethe APR
implementation, simply put the tcnative-1.dll (or tcnative-1.s0) on the system path so can be loaded. The APR native
binaries can be found at http://tomcat.heanet.ie.

Note: There is a bug with release 1.1.1 of APR where get an error upon shutting down (see JBREM-277 for more
information). This does not impact anything while running, but is still an issue when shutting down (as upon starting
up again, can get major problems). This should befixed in alater release of APR so can just replacethe 1.1.1 version
of tcnative-1.dIl with the new one.

Client request headers

The HTTP Invoker allowsfor some of the propertiesto be passed as request headersfrom client caller. Thefollowing
are possible http headers and what they mean:

sessionld - isthe remoting session id to identify the client caller. If thisis not passed, the HTTP server invoker will
try to create a session id based on information that is passed. Note, this means if the sessionld is not passed as part

JBoss June 22, 2008 33

http://tomcat.apache.org/tomcat-5.5-doc/config/http.html
http://tomcat.apache.org/tomcat-5.5-doc/apr.html
http://apr.apache.org/
http://tomcat.heanet.ie

Configuration

of the header, there is no guarantee that the sessionld supplied to the invocation handler will always indicate the
regquest from the same client.

subsystem - the subsystem to call upon (which invoker handler to call upon). If there is more than one handler per
Connector, thiswill need to be set (otherwise will just use the only one available).

These request headers are set automatically when using aremoting client, but if using another client to send request
to the HTTP server invoker, may want to add these headers.

5.4.10. HTTPS Invoker

Supports all the configuration attributes as the HTTP Invoker, plus the following:

SSLImplementation - Sets the Tomcat SSLImplementation to wuse. This should aways be

org.jboss.renpting.transport. coyote. ssl.Renoti ngSSLI npl enent ati on.

The main difference withthe HTTP invoker isthat the HTTPS Invoker uses an SSLSer ver Socket by default, created
by an ssLsSer ver Socket Fact or y. See section Socket factories and server socket factories for more information.

5.4.11. HTTP(S) Client Invoker - proxy and basic authentication

This section covers configuration specific to the HTTP Client Invoker only and is NOT related to HTTP(S) invoker
configuration on the server side (via service xml).

proxy

There are a few ways in which to enable http proxy using the HTTP client invoker. The first is simply to
add the following properties to the metadata Map passed on the Client's invoke() method: htt p. proxyHost and
http. proxyPort.

An example would be:

Map netadata = new HashMap();

/1 proxy info
nmet adat a. put ("http. proxyHost", "ginger");
nmet adat a. put ("http. proxyPort", "80");

response = client.invoke(payl oad, netadata);

The http.proxyPort property is not required and if not present, will use default of 80. Note: setting the proxy config
inthisway can ONLY be doneif using JDK 1.5 or higher.

The other way to enable use of an http proxy server from the HTTP client invoker is to set the following
system properties (either via System set Property() method call or via JVM arguments): http. proxyHost,
htt p. proxyPort, and pr oxySet .

JBoss June 22, 2008 34

Configuration

An example would be setting the following JVM arguments.

- Dhtt p. proxyHost =gi nger -Dhtt p. proxyPort =80 - DproxySet=true

Note: when testing with Apache 2.0.48 (mod_proxy and mod_proxy_http), all of the properties above were required.

Setting the system properties can be used for JDK 1.4 and higher. However, will not be able to specify proxy server
per remoting client if use system properties..

Basic authentication - direct and via proxy

The HTTP client invoker also has support for BASIC authentication for both proxied and non-proxied invocations.
For proxied invocations, the following properties need to be set: ht t p. proxy. user name and ht t p. pr oxy. passwor d.

For non-proxied invocations, the following properties need to be set: http. basic.usernane and

htt p. basi c. passwor d.

For setting either proxied or non-proxied properties, can be done via the metadata map or system properties (see
setting proxy properties above for how to). However, for authentication properties, values set in the metadata Map
will take precedence over those set within the system properties.

Note: Only the proxy authentication has been tested using A pache 2.0.48; non-proxied authentication has not.

Since there are many different ways to do proxies and authentication in this great world of web, not all possible
configurations have been tested (or even supported). If you find a particular problem or see that a particular
implementation is not supported, please enter an issue in Jira (http://jirajboss.com) under the JBossRemoting
project, as this is where bugs and feature requests belong. If after reading the documentation have unanswered
questions about how to use these features, please post them to the remoting forum (http://www.jboss.org/index.html?
module=bb& op=viewforum&f=222 [http://www.jboss.org/index.html ?modul e=bb& op=viewforumé& f=222]).

Host name verification

During the SSL handshake when making client calls using https transport, if the URL's hostname and the server's
identification hostname mismatch, a javax.net.ssl.HostnameV erifier implementation will be called to determine if
this connection should be allowed. The default implementation will not allow this, but it is possible to override the
default behavior

One option isto use the key HTTPSA i ent | nvoker . HOSTNAVE_VERI FI ER (actual value "hostnameV erifier") to supply
the name of aclassthat implementsthej avax. net . ssl . Host naneVeri fi er interface, passing it either in the metadata
map supplied with an invocation or in the configuration map supplied when the HTTPSA i ent | nvoker was created.
If the key appears in both maps, the value in the metadata map takes precedence.

In the absence of an explicitly declared Host naneVeri fier, another way to configure the hostname verification
behavior is to declare that al host names are acceptable, which can be accomplished by setting the
HTTPSO i ent | nvoker . | GNORE_HTTPS_HOST property (actual value "org.jboss.security.ignoreHttpsHost") to true. In
order of increasing precedence, the property may be set (1) asasystem property, (2) in the configuration map supplied
when the HTTPSA i ent | nvoker was created, or in the metadata map supplied with an invocation.

Findly, in the absence of both an explicitly declared Hostnameverifier and an explicit directive to
ignore host names, an HTTPSC i ent|nvoker Wwill check to see if itS SocketFactory is an instance of
org. j boss.renoting. security. Cust onSSLSocket Fact ory and, if so, if authentication has been turned off. If that is

JBoss June 22, 2008 35

http://jira.jboss.com
http://www.jboss.org/index.html?module=bb&op=viewforum&f=222
http://www.jboss.org/index.html?module=bb&op=viewforum&f=222

Configuration

the case, host names will be ignored. See Section Socket factories and server socket factories for more information
about Socket Fact ory configuration.

5.4.12. Servlet Invoker

The servlet invoker is a server invoker implementation that uses a servlet running within aweb container to accept
initial client invocation requests. The servlet request isthen passed on to the servlet invoker for processing.

The deployment for this particular server invoker is a little different than the other server invokers since a web
deployment is also required. To start, the servlet invoker will need to be configured and deployed. This can be done
by adding the Connector M Bean service to an existing service xml or creating anew one. Thefollowing isan example
of how to declare a Connector that uses the servlet invoker:

<nbean code="org.jboss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, transport=Servl et"
di spl ay- name="Servl et transport Connector">

<attribute nanme="InvokerLocator">
servlet:/ /| ocal host: 8080/ servl et-invoker/ Server | nvoker Ser vl et
</attribute>

<attribute name="Configuration">
<config>
<handl er s>
<handl er subsystenm="test">
org.j boss.test.renoting.transport.web. Wbl nvocat i onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ mbean>

An important point of configuration to note is that the value for the InvokerL ocator attribute is the exact url used to
access the servlet for the servlet invoker (more on how to define this below), with the exception of the protocol being
servlet instead of http. Thisisimportant if using automatic discovery, asthisisthe locator url that will be discovered
and used by clients to connect to this server invoker.

The next step is to configure and deploy the servlet that fronts the servlet invoker. The pre-built deployment file for
this servlet isthe serviet-invoker.war file (which can be found in lib directory of the rel ease distribution or under the
output/lib/ directory if doing a source build). By default, it is actually an exploded war, so the servlet-invoker.war is
actually a directory so that can be more easily configured (feel freeto zip up into an actual war fileif prefer). In the
WEB-INF directory is located the web.xml file. Thisis a standard web configuration file and should look like:

<?xm version="1.0" encodi ng="UTF-8""?>

<! DOCTYPE web-app PUBLI C
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. com dt d/ web-app_2_3.dtd">

<web- app>
<servl et >
<ser vl et - nanme>Ser ver | nvoker Ser vl et </ ser vl et - name>

JBoss June 22, 2008 36

Configuration

<descri pti on>The Serverlnvoker Servl et receives requests via HITP
protocol fromw thin a web contai ner and passes it onto the
Servl et Server | nvoker for processing.
</ descripti on>
<servl et-class>org.jboss.renoting.transport.servl et.web. Serverl nvoker Servl et </ servl etrcl ass>
<i ni t-paranp
<par am nane>i nvoker Name</ par am nane>
<par am val ue>j boss. renoti ng: servi ce=i nvoker, transport =ser vl et </ param val ue>
<descri pti on>The servl et server invoker</description>
<l--
<par am nanme>| ocat or Ur | </ par am nane>
<par am val ue>servl et://| ocal host: 8080/ servl et -i nvoker/ Server | nvoker Ser vl et </ par am val ue>
<descri pti on>The servl et server invoker |ocator url</description>
-->
</init-paranr
<l oad-on- st artup>1</| oad- on- st art up>
</servl et>
<servl et - mappi ng>
<servl et - nane>Ser ver | nvoker Ser vl et </ servl et - nane>
<url - pattern>/ Serverlnvoker Servl et/*</url -pattern>
</ servl et - mappi ng>
</ web- app>

There are two ways in which the servlet can obtain a reference to the servlet server invoker it needs to pass its
request onto. The first is by using the param 'invokerName, as is shown above. The value for this should be the
JMX ObjectName for the servlet server invoker that was deployed as a service mbean (see service xml above). The
other way is to provide a param 'locatorUrl" with a value that matches the locator url of the serviet server invoker
to use. In this case, will use the InvokerRegistry to find the server invoker instead of using JIMX, which is useful if
not deploying server invoker as a mbean service or if want to run in web container other than the JBoss application
server. Note, one or the other param is required. If both are provided, the 'locatorUrl' param take precedence.

This file can be changed to meet any web requirements you might have, such as adding security (see ssserviet) or
changing the actual url context that the servliet maps to. If the url that the servliet maps to is changed, will need to
change the value for the InvokerL ocator in the Connector configuration mentioned above.

Issues

One of the issues of using Servliet invoker is that the invocation handlers (those that implement
ServerlnvocationHandler) can not return very much detail in regards to aweb context. For example, the content type
used for the response is the same as that of the request.

5.4.13. SSL Servlet Invoker

The SSL Servlet Invoker isexactly the same asits parent, Servlet Invoker, with the exception that it uses the protocol
of 'sslserviet’. On the server side it is deployed exactly the same as a servlet invoker would be but requires setting
up ssl within the web container (i.e. enabling the s connector within Tomcat's server.xml). Thiswill usually require
specifing a different port as well.

An example of the mbean service xml for deploying the ssl servlet server invoker would be:

<?xm version="1.0" encodi ng="UTF-8""?>

JBoss June 22, 2008 37

Configuration

<server>
<nbean code="org.jboss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, transport=SSLSer vl et "
di spl ay- name="SSL Servl et transport Connector">

<attribute name="InvokerLocator">
ssl servlet:/ /| ocal host: 8443/ servl et-invoker/ Server | nvoker Ser vl et
</attribute>
<attribute name="Configuration">
<confi g>
<handl er s>
<handl er subsystenr"test">org.jboss.test.renoting.transport.web. Wbl nvocati onHand
</ handl er s>
</ confi g>
</attribute>
</ mbean>
</ server>

An example of servlet-invoker.war/WEB-INF/web.xml for the sd server invoker serviet would be:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE web-app PUBLI C
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. coni dt d/ web-app_2_3. dtd">

<web- app>
<servl et >

<servl et - nane>Ser ver | nvoker Ser vl et </ servl et - nane>

<descri pti on>The Serverlnvoker Servl et receives requests via HITP
protocol fromw thin a web contai ner and passes it onto the
Servl et Server | nvoker for processing.

</ descripti on>

<servl et-class>org.jboss.remoti ng.transport.servl et.web. Serverl nvoker Servl et </ servl et-cl ass>

<i ni t - paranp
<par am nane>| ocat or Ur | </ par am nanme>
<par am val ue>ssl servl et://I| ocal host: 8443/ servl et -i nvoker/ Server | nvoker Ser vl et </ par am val ue>
<descri pti on>The servl et server invoker |ocator url</description>

</init-paranr

<l oad- on- st art up>1</1| oad- on- st art up>

</servlet>
<servl et - mappi ng>
<servl et - name>Ser ver | nvoker Ser vl et </ ser vl et - name>
<url - pattern>/ Serverlnvoker Servl et/ *</url -pattern>
</ servl et - mappi ng>
</ web- app>

5.4.14. Exception handling for web based clients

Web based clients, meaning remoting clients that call on web based remoting servers (i.e. http, https, servlet, and
sdlserviet) have special needs when it comes to handling exceptions that come from the servers they are calling on.
The main reason for this is that depending on what type of server they are caling on, they might receive the error
in different formats.

By default, web based clients will throw an exception when the response code from the server is greater than 400.
The exact exception type thrown will depend on the type of web server the client is interacting with. If it is a

JBoss June 22, 2008 38

Configuration

JBoss Remoting server (http or https server invoker), the exception thrown will be the one originally generated on
the server side. If the server is not a JBoss Remoting server (e.g. JBossAS, Tomcat, Apache Web Server, etc.),
the exception throw will be org. j boss. test. renoting. transport. http. WbSer ver Error . The WebServerError's
message will be the error html returned by the web server. To turn off the throwing of an exception when the web
server responds with an error, can add config to the configuration map passed to the d i ent. i nvoke() method
where they key is HTTPMet adat aConst ant s. NO_THROW ON_ERRCR (actual text value 'NoThrowOnError') and a value
of of typejava.lang.String set to 'true’. Thiswill cause the http client invoker to not throw an exception, but instead
return the data from the web server error stream. In the case that the data returned from this error stream is of type
javalang.String (i.e. is error html), it will be wrapped in a WebServerError and returned as this type. The raw data
from the web server can the be retrieved by getting the WebServerError's message.

Note. Prior to Remoting release 2.2.2.5P2, the servlet transport returned a simple error message in the
event of an error on the server side. As of release 2.2.2.5P2, the exception handling behavior described
above can be requested for the the servlet and sdserviet transports as well by configuring the server with
the parameter org.j boss.renoting.transport. http. HTTPMet adat aConst ant s. RETURN_EXCEPTI ON (actual value
"return-exception™) set to "true”.

5.4.15. Multiplex Invoker

The multiplex invoker is intended to replicate the functionality of the socket invoker with the added feature that it
supports multiple streams of communication over a single pair of sockets. Multiplexing may be motivated by, for
example, adesire to conserve socket resources or by firewall restrictions on port availability. This additional service
is made possible by the Multiplex subproject, which provides "virtual" sockets and "virtual" server sockets. Please
refer to the Multiplex documentation at

http://labs.jboss.com/portal/jbossremoting/docs/index.html [http://labs.jboss.com/portal/jbossremoting/docs/
index.htmi]

for further details.

In a typical multiplexed scenario a d i ent on a client host, through a Mul ti pl exd i ent | nvoker C, could make
synchronous method invocationsto amul ti pl exSer ver | nvoker on aserver host, and at the same time (and over the
same TCP connection) asynchronous push callbacks could be made to a Mul ti pl exSer ver | nvoker Son the client
host. In this, the Prime Scenario, which motivated the creation of the multiplex invoker, C and S use two different
virtual socketsbut sharethe same port and same actual socket. We say that C and Shelong to the sameinvoker group.

One of the primary design goals of the Multiplex subsystem is for virtual sockets and virtual server sockets to
demonstrate behavior as close as possible to their real counterparts, and, indeed, they implement complete socket
and server socket APIs. However, they are necessarily different in some respects, and it follows that the multiplex
invoker is somewhat different than the socket invoker. In particular, there are three areas specific to the multiplex
invoker that must be understood in order to use it effectively:

1. Establishing on the server an environment prerequisite for creating multiplex connections
2. Configuring the client for multiplexed method invocations and callbacks

3. Shutting down invoker groups.

JBoss June 22, 2008 39

http://labs.jboss.com/portal/jbossremoting/docs/index.html

Configuration

5.4.15.1. Setting up the server

There are two kinds of Ml ti pl exServer I nvoker S, master and virtual, corresponding to the two kinds of virtual
server sockets: Mast er Server Socket and Vi rt ual Server Socket . Bri€efly, the difference between the two virtual
server socket classesisthat aMast er Ser ver Socket isderived fromj ava. net . Server Socket anditsaccept () method
isimplemented by way of theinherited method super . accept () . A Mast er Ser ver Socket canaccept connect requests
from multiple machines. A Vi rtual Server Socket , on the other hand, is based on an actual socket connected to
another actual socket on some host H, and consequently a Vi r t ual Ser ver Socket Can accept connect requests only
from H.

Each multiplex connection depends on a pair of connected real sockets, one on the client host and one on the server
host, and this connection is created when an actual socket contacts an actual server socket. It follows that a multiplex
connection begins with a connection regquest to a Mast er Ser ver Socket . Once the connection is established, it is
possible to build up virtual socket groups, consisting of virtual sockets (and at most one Vi rt ual Ser ver Socket)
revolving around the actual socket at each end of the connection. Each virtual socket in a socket group at oneend is
connected to avirtual socket in the socket group at the other end.

Master and virtual Miltipl exServerlnvokersS assume the characteristics of their server sockets:
Mast er Ser ver Socket and Vi rt ual Server Socket , respectively. That is, a master mul ti pl exServer | nvoker can
accept requests from any host, whileavirtual Ml ti pl exSer ver I nvoker can accept requests only from the particular
host to which it has a multiplex connection. Since a multiplex connection begins with a connection request to
a Mast er Ser ver Socket , it follows that the use of the multiplex invoker must begin with a connection request
from the client (made by either a Mul ti pl exd i ent I nvoker Or a virtual Mul ti pl exServer | nvoker : see below)
to a master mul ti pl exSer ver | nvoker on the server. The master Ml ti pl exSer ver | nvoker responds by "cloning"
itself (metaphorically, not necessarily through the use of cl one()) into a virtual Ml ti pl exServer | nvoker with
the same parameters and same set of invocation handlers but with a vi rt ual Server Socket belonging to a new
socket group. In so doing the master Ml ti pl exServer | nvoker builds up a server invoker farm of virtua
Mul ti pl exServer | nvoker S, each in contact with a different Ml ti pl exd i ent I nvoker over a distinct multiplex
connection. The virtual mul ti pl exSer ver | nvoker S do the actual work of responding to method invocation regquests,
sent by their corresponding mul ti pl exd i ent | nvoker Sthrough virtual socketsin a socket group at the client end of a
multiplex connection to virtual sockets created by the vi rt ual Ser ver Socket in the socket group at the server end of
the connection. Note that virtual Ml ti pl exSer ver | nvoker S share data structures with the master, so that registering
invocation handlers with the master makes them available to the members of the farm. The members of a master
Mul ti pl exSer ver | nvoker 'sinvoker farm are accessible by way of the methods

1. MultiplexServerlnvoker. get Serverlnvokers() and

2. Ml tiplexServerlnvoker. get Server | nvoker (1 net Socket Addr ess)

thelatter of whichreturnsavirtual mul ti pl exSer ver I nvoker keyed ontheaddresstowhichitsvi rt ual Ser ver Socket
is connected. When the master Mul ti pl exSer ver I nvoker shutsdown, itsfarm of virtual invokers shuts down aswell

There are two ways of constructing a virtual Ml ti pl exServer | nvoker, one being the cloning method just
discussed. It is aso possible to construct one directly. Once a multiplex connection is established, a virtual
Mul ti pl exServer | nvoker can be created with a Vi rt ual Server Socket belonging to a socket group at one end of
the connection. The mul ti pl exServer | nvoker constructor determines whether to create a virtual or master invoker
according to the presence or absence of certain parameters, discussed bel ow, that may beaddedtoitsi nvoker Locat or .

JBoss June 22, 2008 40

Configuration

Server rules 1 through 3 described below result in the construction of avirtual Ml ti pl exSer ver | nvoker , and server
rule 4 (the absence of these parameters) resultsin the construction of a master Mul ti pl exSer ver I nvoker .

Setting up the server, then, is simply a matter of starting a master Ml ti pl exServer I nvoker with a simple
I nvoker Locat or , unadorned with any parameters specific to the multiplex invoker. As aways, the server invoker is
not created directly but by way of a Connect or, asin the following:

Connect or connector = new Connector();

Connect or. set | nvoker Locator ("mul ti pl ex://deno. jboss. com 8080") ;
Connector. create()

Connector.start()

5.4.15.2. Setting up the client

Before multiplex connections can be established, amaster mul ti pl exSer ver | nvoker must be created as described in
the previous section. For example, the Prime Scenario would begin with starting a master Mul t i pl exSer ver | nvoker

on the server host, followed by starting, on the client host, a Miul tipl exdientinvoker C and a virtua
Mul tipl exServerlnvoker S (in either order). The first to start initiates a multiplex connection to the master
Mul ti pl exServer | nvoker and requeststhe creation of avirtual Ml ti pl exSer ver I nvoker . Notethat it is crucial for
C and Sto know that they are meant to share a multiplex connection, i.e., that they are meant to belong to the same
invoker group. Consider the following attempt to set up a shared connection between hosts bluemonkey.acme.com
and demo.jboss.com. First, C is initialized on host bluemonkey.acme.com with the | nvoker Locat or multiplex://
demo.jboss.com: 8080, and, assuming the absence of an existing multiplex connection to demo.jboss.com:8080, anew
virtual socket group based on areal socket bound to an arbitrary port, say 32000, is created. Then Sisinitialized with
I nvoker Locat or multiplex://bluemonkey.acme.com:4444, but sinceit needsto bind to port 4444, it isunableto share
the existing connection. [Actually, the example is dightly deceptive, since multiplex://bluemonkey.acme.com:4040
would result inthe creation of amaster Mul ti pl exSer ver I nvoker . Butif it were suitably extended with the parameters
discussed below so that avirtual Mul ti pl exSer ver | nvoker werecreated, the virtual invoker would be unableto share
the existing connection.]

So C and S need to agree on the address and port of the real socket underlying the virtual socket group they are
intended to share on the client host and the address and port of the real socket underlying the peer virtual socket group
on the server host. Or, more succintly, they must know that they are meant to belong to the same invoker group. Note
the relationship between an invoker group and the virtual socket group which supportsit: amul ti pl exd i ent | nvoker

uses virtual socketsin its underlying virtual socket group, and amul ti pl exSer ver I nvoker in aninvoker group has
aVirtual Server Socket that creates virtual socketsin the underlying virtual socket group.

C and S each get half of the information necessary to identify their invoker group directly from their respective
I nvoker Locat or S. In particular, C gets the remote address and port, and S gets the binding address and port. The
additional information may be provided through the use of invoker group parameter s, which may be communicated
to C and Sin one of two ways:

1. they may be appended to the InvokerLocator passed to the dient which creates C and/or to the
| nvoker Locat or passed to the Connect or which creates S

2. they may be stored in a configuration Map which is passed to the d i ent and/or Connect or.

JBoss June 22, 2008 41

Configuration

In either case, there are two ways in which the missing information can be suppliedto Cand S
1. Theinformation can be provided explicitly by way of invoker group parameters:
a. multiplexBindHost and multiplexBindPort parameters can be passed to C, and
b. multiplexConnectHost and multiplexConnectPort parameters can be passed to S.
2. Cand Scan betied together by giving them the same multiplexld, supplied by invoker group parameters:
a clientMultiplexid, for the mul ti pl exd i ent | nvoker , and
b. serverMultiplexid, for the Mil ti pl exServer I nvoker .

Giving them matching multiplexlds tells them that they are meant to belong to the same invoker group and that
they should provide the missing information to each other.

The behavior of astarting ul ti pl exd i ent | nvoker Cisgoverned by the following four client rules:

1. If C has aclientMultiplexid parameter, it will use it to attempt to find a mul ti pl exServer | nvoker Swith a
serverMultiplexid parameter with the same value. If it succeeds, it will retrieve binding host and port values,
create or reuse a suitable multiplex connection to the server, and start. Moreover, if Swas unableto start because
of insufficient information (server rule 3), then C will supply the missing information and Swill start. Note that
in this situation C will ignore any multiplexBindHost and multiplexBindPort parameters passed to it.

2. If C does not find a Ml tipl exServerInvoker through a multiplexld (either because it did not get a
clientMultiplexid parameter or because there is no Ml ti pl exSer ver I nvoker with a matching multiplexid),
but it does have multiplexBindHost and multiplexBindPort parameters, then it will create or reuse a suitable
multiplex connection to the server, and start. Also, if it has amultiplexid, it will advertise itself for the benefit
of amul ti pl exServer I nvoker that may come along later (see server rule 1).

3. If C has a multiplexld and neither finds a mul ti pl exServer I nvoker with a matching multiplexid nor has
multiplexBindHost and multiplexBindPort parameters, then it will not start, but it will advertise itself so that it
may be found later by amul ti pl exSer ver I nvoker (seeserver rule1).

4. If C has neither clientMultiplexid nor multiplexBindHost and multiplexBindPort parameters, it will create or
reuse a multiplex connection from an arbitrary local port to the host and port giveninitsi nvoker Locat or, and
Start.

Similarly, the behavior of astarting mul ti pl exSer ver I nvoker Sisgoverned by the following four server rules:

1. If S has a serverMultiplexid parameter, it will use it to attempt to find a multipl exdientlnvoker C
with a matching clientMultiplexid. If it succeeds, it will retrieve server host and port values, create a
Vi rt ual Server Socket , create or reuse a suitable multiplex connection to the server, and start. Moreover, if C
was unable to start due to insufficient information (client rule 3), then Swill supply the missing information and
Cwill start. Notethat in thissituation Swill ignore multiplexConnectHost and multiplexConnectPort parameters,
if any, initsi nvoker Locat or .

2. If S does not find a mul tiplexdientlnvoker through a multiplexld (either because it did not get a
server Multiplexid parameter or because there is no Mul ti pl exd i ent I nvoker with a matching multiplexid),

JBoss June 22, 2008 42

Configuration

but it does have multiplexConnectHost and multiplexConnectPort parameters, then it will create a
Vi rt ual Server Socket , Create or reuse a suitable multiplex connection to the server, and start. Also, if it has
amultiplexId, it will advertise itself for the benefit of amul ti pl exd i ent | nvoker that may come along later
(seeclient rule 1).

3. If Shas amultiplexld and neither finds a mul ti pl exC i ent | nvoker with a matching multiplexid nor has
multiplexConnectHost and multiplexConnectPort parameters, then it will not start, but it will advertise itself so
that it may be found later by amul ti pl exd i ent | nvoker (seeclient rule 1).

4. If Shasneither server Multiplexld nor multiplexConnectHost and multiplexConnectPort parameters, it will create
aMast er Ser ver Socket bound to the host and port in its| nvoker Locat or and start.

5.4.15.2.1. Notes

1. Like server invokers, client invokers are not started directly but are started indirectly through calls to
dient (I nvokerLocator |ocator), suchas:

Client client = new Cient("multiplex://dem.jboss.com 8080/ 2clientMiltiplexld=ido");
client.connect();

N.B. For the multiplex invoker, it is important to cal dient.connect(). Otherwise, the last
Ml tipl exd i ent | nvoker that leaves an invoker group will not get a chance to shut the group down.

2. It should not be inferred that Mul ti pl exd i ent | nvoker S and Ml ti pl exSer ver | nvoker S belong to the same
invoker group only if they arerequired to do so by invoker group parameters. In fact, if two C i ent Sare created
with the I nvoker Locat or multiplex://demo.jboss.com, the second one, lacking any constraints on its binding
address and port, is certainly not prevented from sharing a connection with the first. Rather, the function of
the invoker group parametersisto force mul ti pl exd i ent | nvoker Sand Mul ti pl exSer ver | nvoker Sto share a
connection.

3. Therearesituationsin which the method of passing parameters by way of the configuration map is preferableto
appending them to an | nvoker Locat or . One of the functions of an | nvoker Locat or isto identify a server, and
modifying the content of its1 nvoker Locat or may interferewith the ability tolocate the server. For example, one
of thefeatures of JBoss Remoting isthe substitution of method callsfor remoteinvocationswhenit discoversthat
a server runsin the same JVM as the client. However, appending multiplex parametersto the | nvoker Locat or
by which the server is identified will prevent the Remoting runtime from recognizing the local presence of the
server, and the optimization will not occur.

4. ltispossible, and convenient, to set up a multiplexing scenario using no parameters other than clientMultiplexid
and serverMultiplexid. Note, however, that in this case neither the d i ents nor the Connect or will be fully
initialized until after both have been started. If the d i ent s and the Connect or are to be started independently,
then the other parameters must be used. N.B. If ad i ent depends on Connect or in the same invoker group to
supply binding information, itisan error to call methodssuchasd i ent . connect () andd i ent . i nvoke() until
the Connect or has been started.

5. dients andtheoptiona Connect or may be created (and the Connect or started) in any order.

JBoss June 22, 2008 43

Configuration

5.4.15.3. Shutting down invoker groups.

A virtual socket group will shut down, releasing areal socket and a number of threads, when (1) its last member has
closed and (2) the socket group at the remote end of the multiplex connection agrees to the proposed shut down. The
second condition prevents a situation in which anew virtual socket triesto join what it thinksis aviable socket group
at the same time that the peer socket group is shutting down. So for avirtual socket group to shut down, all members
at both ends of the connection must be closed.

Theimplication of this negotiated shutdown mechanismisthat aslong asthe Vi r t ual Ser ver Socket used by avirtual
Mul ti pl exServer | nvoker remains open, resources at the client end of the connection cannot be freed, and for this
reason it isimportant to understand how to close virtual mul ti pl exSer ver | nvoker S.

There are three ways in which a virtual MiltiplexServerinvoker that belongs to a master
Mul ti pl exServer | nvoker 'sinvoker farm can shut down.

* When a master Mul ti pl exServer | nvoker is closed, it closes all of the virtual Ml tipl exServer | nvokerS it
created.

e A virtua Mul ti pl exSer ver | nvoker can be retrieved by calling either
Mul ti pl exServer | nvoker. get Server | nvokers() or
Ml ti pl exServer | nvoker. get Server | nvoker (| net Socket Address) 0N its master Mul ti pl exSer ver | nvoker
and then closed directly.

¢ Whentheaccept () method of itsvi rt ual Server Socket timesout, and when it detectsthat all multiplex invokers
in the invoker group at the client end of the connection have shut down, avirtual Ml ti pl exSer ver I nvoker Will
shut itself down. Note that when all members leave an invoker group, it is guaranteed not to be revived, i.e., no
new members may join.
The third method insures that without any explicit intervention, closing al multiplex invokers on the client (by
way of caling dient. di sconnect () and Connector. stop()) iS guaranteed to result in the eventua release of
resources. The timeout period may be adjusted by setting the timeout parameter (see below). Alternatively, the
second method, in conjunction with the use of Mul ti pl exSer ver | nvoker . i sSaf eToShut down() , which returnst r ue
on Ml tipl exServer | nvoker Mif and only if (1) mis not virtual, or (2) al of the multiplex invokers in the invoker
group at the client end of Ms connection have shut down. For example, a thread could be dedicated to looking for
useless Mul ti pl exSer ver | nvoker Sand terminating them before their natural expiration through timing out.

5.4.15.4. Examples

The following are examples of setting up a client for multiplexed synchronous and asynchronous communication.
They each assume the existence of amaster Mul ti pl exSer ver | nvoker running on demo.jboss.com:8080.

For compl ete exampl es see the section Multiplex Invoker.

1. AwmiltiplexCientlnvoker Cstartsfirst:

String paraneters = "mnul tipl exBi ndHost =l ocal host &mul ti pl exBi ndPort =7070&cl i entMul ti pl exl
String locatorURl = "multiplex://denmo.jboss. com 8080/ ?" + paraneters;
I nvoker Locat or | ocator = new | nvokerLocator (| ocatorURl);

Client client = new Client(locator);

client.connect();

JBoss June 22, 2008 44

Configuration

2.

3.

and thenitisfound by amul ti pl exSer ver | nvoker with amatching multiplexid, which joins C'sinvoker group

and starts;

Connect or connector = new Connector();

String paraneters = "serverMil ti pl exl d=denol d1";

String locatorURI = "nultiplex://|ocal host: 7070/ ?" + paraneters;
I nvoker Locat or | ocator = new | nvoker Locat or (| ocat or URl) ;

connect or. set | nvoker Locat or (| ocat or. get Locat or URI ()) ;
connector.create();

connector.start();

A Ml tipl exdientlnvoker C starts:

String paraneters = "mul tipl exBi ndHost =l ocal host &rul ti pl exBi ndPort =7070";
String locatorURI = "multiplex://deno.jboss.com 8080/?" + paraneters;

I nvoker Locat or | ocator = new | nvokerLocat or (| ocator URl);

Client client = new Cient(locator);

client.connect();

and amul ti pl exSer ver I nvoker Sstartsindependently, joining C'sinvoker group by virtue of having matching

local and remote addresses and ports:

Connect or connector = new Connector();
String paraneters = "mul tipl exConnect Host =denp. j boss. con&mul ti pl exConnect Port 5
String locatorURI = "nultiplex://I|ocal host: 7070/ ?" + paraneters;
I nvoker Locat or | ocator = new | nvoker Locat or (| ocat or URl) ;

connect or. set | nvoker Locat or (| ocat or. get Locat or URI ()) ;
connector.create();

connector.start();

A Ml tiplexdientlnvoker Ciscreated but does not start:

String paraneters = "clientMiltiplexl d=denol d2";

String locatorURI = "multiplex://deno.jboss.com 8080/?" + paraneters;
I nvoker Locat or | ocator = new | nvokerLocat or (| ocator URl);

Client client = new Client(locator);

and then amul ti pl exServer I nvoker Sis created with a matching multiplexid, allowing both C and Sto start:

Connect or connector = new Connector();

String paraneters = "server Ml ti pl exl d=denol d2";

String locatorURI = "multiplex://|ocal host: 7070/ ?" + paraneters;
I nvoker Locat or | ocator = new | nvokerLocat or (| ocat or URl);

8080";

JBoss June 22, 2008

45

Configuration

connect or. set | nvoker Locat or (| ocat or. get Locat or URI ()) ;
connector.create();

connector.start();

client.connect();

Notethecall tod i ent. connect () after the call to Connector. start ().

4. A Mltiplexdientlnvoker Cstartsinaninvoker group based on areal socket bound to an arbitrary local port:

String locatorURI = "mul tipl ex://deno.jboss.com 8080";

I nvoker Locat or | ocator = new | nvoker Locat or (| ocat or URl) ;
Client client = new Client(locator);

client.connect();

and then amul ti pl exServer I nvoker Sstartsindependently:

Connect or connector = new Connector();

String locatorURI = "mul tiplex://Iocal host:7070";

I nvoker Locat or | ocator = new | nvokerLocator (| ocatorURI);
connect or. set | nvoker Locat or (| ocat or. get Locat or URI ()) ;
connector.create();

connector.start();

Notethat Screatesanast er Ser ver Socket rather thanavi rt ual Ser ver Socket inthiscase and so doesnot share
amultiplex connection and does not belong to an invoker group.

5. Thisis example 1, rewritten so that the invoker group parameters are passed by way of a configuration Map
instead of | nvoker Locat orS. A Miul ti pl exd i ent | nvoker C startsfirst:

String locatorURI = "mnul tipl ex://deno.jboss.com 8080";

I nvoker Locat or | ocator = new | nvoker Locat or (| ocat or URl) ;

Map configurati on = new HashMap();

configuration. put (Ml tipl exl nvoker Const ants. MULTI PLEX_BI ND_HOST_KEY,
configuration. put (Ml tiplexlnvokerConstants. MILTI PLEX_BI ND_PORT_KEY,
configuration. put (Ml tipl exl nvoker Constants. CLI ENT_MJLTI PLEX_| D_KEY,
Client client = new Client(locator, configuration);
client.connect();

"l ocal host");
"7070");
"denol d1") ;

and thenitisfound by amul ti pl exSer ver | nvoker with amatching multiplexld, which joins C'sinvoker group

and starts;

String locatorURI = "nmul tiplex://Iocal host:7070";

I nvoker Locat or | ocator = new | nvokerLocat or (| ocat or URl);

Map configuration = new HashMap();

configuration. put (Ml tipl exl nvoker Const ants. SERVER_MJLTI PLEX_| D_KEY,

Connect or connector = new Connector (| ocator.getLocatorURI (), configuration);

"denol d1") ;

JBoss June 22, 2008

46

Configuration

connector.create();
connector.start();

5.4.15.5. Configuration properties

There are four categories of configuration properties supported by the multiplex invoker, the last three of which
are specific to the multiplex invoker. Properties in categories 2 and 3 may be configured by appending them
to the server's locator URI. Properties in categories 2, 3, and 4 may be configured by putting their values in
a configuration Hashvap and passing the map to a mul ti pl exServer I nvoker and/or Ml tipl exd i ent | nvoker
constructor, according to the category. Constants for the property names in categories 2, 3, and 4 are found
in org.jboss.renoting. transport. mul tiplex. Miltiplex. Note that some of them are aso found in the older
org.jboss.remoting.transport. nul tiplex. Mil tipl exl nvoker Constants, but the use of that class is now
deprecated.

1

Thefollowing propertiesare managed by ancestor classesof Mil ti pl exSer ver | nvoker . Seethe discussion under
Socket Ser ver | nvoker for more information.

socketTimeout - The socket timeout value passed to the Socket. set SoTineout () method and the
Ser ver Socket . set SoTi meout () method. The default is 60000 (or 1 minute).

numAcceptThreads - The number of threads that exist for accepting client connections. The default is 1.

The following properties are intended to be passed to a virtual Ml ti pl exServer I nvoker to configure its
multiplex connection. These properties are specific to the multiplex invoker.

multiplexConnectHost - the name or address of the host to which the multiplex connection should be made.
multiplexConnectPort - the port to which the multiplex connection should be made.

serverMultiplexld - astring that associatesamul ti pl exSer ver | nvoker withamul ti pl exd i ent | nvoker with
which it should share a multiplex connection.

multiplex.maxAcceptErrors - Master and virtual Ml tipl exServerlnvokerS keep a counter of errors
experienced by their server socket, and they terminate when this maximum is exceeded. Note that
SSLHandshakeExcept i onsare excluded from the count, sincethey could indicate aclient rather than server error.

The following properties are intended to be passed to a virtual Ml ti pl exd i ent | nvoker to configure its
multiplex connection. These properties are specific to the multiplex invoker.

multiplexBindHost - the host name or address to which the local end of the multiplex connection should be
bound.

multiplexBindPort - the port to which the local end of the multiplex connection should be bound

clientMultiplexld - astring that associatesaMul ti pl exC i ent | nvoker With amul ti pl exServer | nvoker with
which it should share a multiplex connection.

Thereisalso aset of properties which are specific to the Multiplex subsystem internal classes. See the Multiplex
documentation at

JBoss June 22, 2008 47

Configuration

http://labs.jboss.com/portal/jbossremoting/docs/index.html [http://labs.jboss.com/portal /jbossremating/
docs/index.html]

for more information.
5.4.16. SSL Multiplex Invoker

This transport is essentially identical to the Multiplex transport, except that it will create SSL socket factories and
server socket factories by default.

The twist to be found with the multiplex transport is that virtual Ml tipl exServerlnvokerS use a
Vi rt ual Server Socket , which is based on aclient rather than a server socket, and consequently they act like a client
in some ways. In particular, avirtual Ml ti pl exServer | nvoker will, in some cases, attempt to connect to a remote
master Mul ti pl exServer | nvoker, for which it will need an actual client socket. All of the rules for configuring
socket factories apply to the mul ti pl exSer ver I nvoker , which calls the same method that client invokers use to get
asocket factory. Moreover, if necessary, it will look for aSer ver Socket Fact or yMBean t0 get SSL information when
configuring a socket factory. See section Socket factories and server socket factories for more information.

5.4.17. Bisocket invoker

The bisocket transport, like the multiplex transport, is a bidirectional transport that can function in the presence
of restrictions that would prevent a unidirectional transport like socket or http from creating a server to client push
callback connection. (See Section Callbacksfor moreinformation about callbacksand bidirectional and unidirectional
transports.) For example, security restrictions could prevent the application from opening a Ser ver Socket on the
client, or firewall restrictions could prevent the server from contacting a Ser ver Socket even if it were possible to
Create one.

5.4.17.1. Overview

The bisocket client and server invokersinherit most of their functionality from the socket invokers, with the principal
exception of overriding a method in the client invoker called cr eat eSocket () . If the client invoker is on the client
side, then cr eat eSocket () simply calls the super implementation. The heart of the bisocket transport isin handling
the case of creating a connection from a callback client invoker on the server sideto acallback server invoker on the
client side, which is mandated to occur without the use of a Ser ver Socket on the client side. Whenever the bisocket
transport is informed by an application of its intention to use push callbacks, the client side creates a secondary
"control” connection, and subsequently, whenever the callback client invoker needs to create a connection to the
callback server, it sends arequest over the control connection asking the client side to establish the connection. The
server side of the transport maintains asecondary Ser ver Socket that accepts connection requests from the client side,
and whenever a socket is created it is passed to whichever callback client invoker requested it. The client invoker,
which inherits the socket transport's connection pool management facility, adds the new socket to its connection pool.

Note that if the control connection were to fail, no new connections could be created for the callback client invoker,
and eventually callback transmission could come to a halt. The client and server invokers work together, therefore,
to maintain a heartbeat on the control connection and to recreate the control connection automatically should it fail.
In particular, the server side sends out ping messages on the control connection, and the client side needs to receive
a ping message within some configured window in order to consider the connection to be functional.

JBoss June 22, 2008 48

http://labs.jboss.com/portal/jbossremoting/docs/index.html

Configuration

In addition to the configuration options inherited from the socket transport, the bisocket transport
may be configured with the following parameters, which are defined as constants in the
org.jboss.renmoting. transport. bi socket . Bi socket class. A parameter can be configured on the server side by
appending it to the | nvoker Locat or or by adding it to the configuration map passed to the Connect or 's constructor.
On the client side, where all parameters are used by the callback server invoker, there are several options for setting
parameter values. If the callback connect or is created explicitly, then a parameter can be configured by appending
it to the callback Connector's I nvoker Locat or or by adding it to the configuration map passed to the callback
Connect or 'sconstructor. If the callback Connect or iscreated implicitly by thed i ent . addLi st ener () method, then
its configuration map is the union of the d i ent 's configuration map and the net adat a map passed as a parameter
fodient. addLi stener ().

IS CALLBACK_SERVER (actua vaue is "isCallbackServer"): when a bisocket server invoker receives this
parameter with a value of true, it avoids the creation of a Server Socket . Therefore, IS CALLBACK_SERVER
should be used on the client side for the creation of a callback server. The default value isfalse.

PING_FREQUENCY (actual value is "pingFrequency"): The server side uses this value to determine the interval,
in milliseconds, between pings that it will send on the control connection. The client side uses this value to calculate
the window in which it must receive pings on the control connection. In particular, the window is ping frequency *
ping window factor. See also the definition of PING_WINDOW_FACTOR. The default value is 5000.

PING_WINDOW_FACTOR (actua valueis"pingWindowFactor"): The client side uses this value to calculate the
window in which it must receive pings on the control connection. In particular, the window is ping frequency * ping
window factor. See aso the definition of PING_FREQUENCY . The default valueis 2.

MAX_RETRIES (actua value is "maxRetries'): This parameter is relevant only on the client side, where the
Bi socket O i ent | nvoker USesit to govern the number of attempts it should make to get the address and port of the
secondary Ser ver Socket , and the Bi socket Server | nvoker Usesit to govern the number of attemptsit should make
to create both ordinary and control sockets. The default valueis 10.

5.4.17.2. Details

Using the bisocket transport certainly does not require understanding its implementation details, but some further
information is presented in this section for those who might be interested.

In the following discussion, the client side client invoker and the server side server invoker will be referred to ssimply
as "client invoker" and "server invoker." The callback client invoker and callback server invoker will be explicitly
identified as such.

The following sequence of events occurs in the course of creating a control connection. For simplicity it is assumed
that the d i ent and Connect or have aready been created, and that the callback server is created implicitly by the
dient. Theseeventsareillustrated in Figure 5.1.

1. Theapplicationcallsd i ent. addLi stener ().
2. Thedient createsacallback connect or and the callback server invoker registersitself in a static map.

3. Thedient sendsan "addListener" message to the server invoker by way of the client invoker.

JBoss June 22, 2008 49

Configuration

4. The client invoker intercepts the "addListener"” message, which tells it that a callback server is being created.
It retrieves the callback server invoker from the static map and tells it to create a control connection for the
callback connection that is being constructed.

5. The callback server invoker sends an internal message to the server invoker requesting the address and port of
the secondary Ser ver Socket

6. The callback server invoker connects to the secondary Server Socket to create a Socket for the control
connection. If it has not already done so, the callback server invoker creates a Ti mer Task which will monitor
the state of all of its control connections. (Notethat if the callback Connect or is created explicitly, it could have
multiple | nvoker Cal | backHandl er Sregistered with it.)

7. On the server side, the Socket just created by the secondary Ser ver Socket is stored in a static map, awaiting
the creation of the callback client invoker.

8. Theclient invoker transmits the "addListener" message to the server invoker.
9. Theserver invoker creates a callback client invoker.
10. Thecallback client invoker retrieves the waiting socket and usesit for the control connection.

11. The callback client invoker begins pinging on the control connection.

JBoss June 22, 2008 50

Configuration

— ™ 8."addListener"
(client invoker) : SBrver inve
1.addListener() 7.store
: socket
5.get secondary
Client 3."addListener" ServerSocket
4.create address g
control :
connection
: 10.retrieve
2.create 6.connect socket
h 4 Y
server invoker , (client invoke
11.ping ~ -
client side server s

Figureb5.1. Creating a control connection.

The following sequence of events occursin the course of creating a connection for the callback client invoker to use
for sending callbacks. It isillustrated in Figure 5.2.

1. ThesServerlnvocationHandl er cals! nvoker Cal | backHandl er . handl eCal | back() .
2. ThelnvocationCal | backHandl er calsinvoke() onthecalback dient.
3. Thedient calsinvoke() onthecallback client invoker.

4. If there are no connections in its connection pool, the callback client invoker sends a message on the control
connection asking the callback server invoker to connect to the server side secondary Ser ver Socket . It then
waits for the Socket to appear in astatic map.

JBoss June 22, 2008 51

Configuration

5. Thecalback server invoker receives the request and calls upon either asocket constructor or aSocket Fact ory
to create anew Socket . It passesthe new Socket to aworker thread to process subsequent callback invocations.

6. Thesecondary Server Socket createsanew Socket , which is placed in a static map.
7. The callback client invoker retrieves the new Socket

8. Thecalback client uses the new Socket to transmit a callback, and adds the new connection to its connection
pool for later use.

ServerlnvocationHa

' " - 1.handle
r invoker Jq 4. create socket E client invoker j
' 8.callback
7.retrieve Envn kerCallbackhant
socket
3.invoke() > invak:
S.connect
Client
6.store
socket
| \ 4
invoker J server involker J
side server side

Figure5.2. Creating a callback connection.

The following sequence of events occurs when a control connection fails. It isillustrated in Figure 5.3.

JBoss June 22, 2008 52

Configuration

1. The callback server invoker notices that a ping has not been received during the control connection's current
window.

2. The callback server invoker reacquires the host and port of the secondary Ser ver Socket, just in case it has
changed.

3. Thecallback server invoker callson a Socket constructor or Socket Fact ory t0 create a new Socket .

4. Thecallback server invoker sends an internal message on the new connection directing the server to replace the
current control connection with the new connection.

5. After the secondary Server Socket createsanew Socket , the Socket is passed directly to the client invoker in
amethod that replaces the old control connection with a new one.

' : :
_ client invoker J

[- server invoker jq X

1.control A
cn@nnectiﬂn
fails
2.get :
secondary 5.replace
server socket control
address _ connection
E,E:}nnectg
E4."replace
[client invoker) . control server invoker j
. connection”
client side server side

Figure 5.3. Replacing a failed control connection.

JBoss June 22, 2008 53

Configuration

5.4.18. SSL Bisocket invoker

The SSL bisocket transport has the same rel ation to the bisocket transport asthe SSL socket transport hasto the socket
transport. That is, it uses an SSLSer ver Socket and creates SSLSocket S by default. See Section Socket factories and
server socket factories for more information.

SSL bisocket transport supports all the configuration attributes supported by the bisocket transport.

5.5. Marshalling

Marshalling of data can range from extremely simple to somewhat complex, depending on how much customization
is needed. Thefollowing explains how marshallers/Tunmarshallers can be configured. Note that this appliesfor all the
different transports, but will use the socket transport for examples.

The easiest way to configure marshalling is to specify nothing at all. This will prompt the remoting invokers to
use their default marshaller/unmarshallers. For example, the socket invoker will use the SerializableMarshaller/
SerializableUnMarshaller and the http invoker will use the HTTPMarshaller/HTTPUnMarshaller, on both the client
and server side.

The next easiest way isto specify the data type of the marshaller/unmarshaller as a parameter to the locator url. This
can be done by simply adding the key word ‘datatype’ to the url, such as:

socket : // myhost : 5400/ ?dat at ype=seri al i zabl e

Thiscan bedonefor typesthat are statically bound withinthemar shal Fact or y, Serializable and http, without requiring
any extra coding, since they will be available to any user of remoting. However, is more likely this will be used
for custom marshallers (since could just use the default data type from the invokers if using the statically defined
types). If using custom marshaller/unmarshaller, will need to make sure both are added programmatically to the
Mar shal Fact or y during runtime (on both the client and server side). This can be done by the following method call
within the Marshal Factory:

public static void addMarshal l er (String dataType, Marshaller marshaller, UnMarshaller unMarshaller)

The dataType passed can be any String value desired. For example, could add custom InvocationMarshaller and
InvocationUnMarshaller with the data type of ‘invocation'. An example using this data type would then be:

socket : // myhost : 5400/ ?dat at ype=i nvocati on

One of the prablems with using a data type for a custom Marshaller/UnMarshaller is having to explicitly code the
addition of these within the MarshalFactory on both the client and the server. So another approach that is alittle
more flexible is to specify the fully qualified class name for both the Marshaller and UnMarshaller on the locator
url. For example:

socket : // myhost : 5400/ ?dat at ype=i nvocat i on&
mar shal | er =org. j boss. i nvocation. uni fied. marshal | . | nvocati onMarshal | er &
unmar shal | er =or g. j boss. i nvocati on. uni fi ed. marshal | . | nvocati onUnMar shal | er

JBoss June 22, 2008 54

Configuration

This will prompt remoting to try to load and instantiate the Marshaller and UnMarshaller classes. If both are found
and |loaded, they will automatically be added to the Marshal Factory by datatype, so will remainin memory. Now the
only requirement isthat the custom Marshaller and UnMarshaller classes be available on both the client and server's

classpath.

Another requirement of the actual Marshaller and UnMarshaller classesisthat they have avoid constructor. Otherwise
loading of these will fail.

This configuration can a so be applied using the service xml. If using declaration of invoker using the InvokerL ocator
attribute, can simply add the datatype, marshaller, and unmarshaller parameters to the defined InvokerLocator
attribute value. For example:

<attri bute name="InvokerLocat or">

<! [CDATA[socket : // ${j boss. bi nd. addr ess} : 8084/ ?dat at ype=i nvocati on&

mar shal | er =org. j boss. i nvocation. uni fi ed. marshal | . | nvocati onMarshal | er &

unmar shal | er =or g. j boss. i nvocati on. uni fied. marshal | . I nvocati onUnMarshal |l er]]>
</attribute>

If were using config element to declare the invoker, will need to add an attribute for each and include the isParam
attribute set to true. For example:

<i nvoker transport="socket">
<attribute name="dataType" isParam="true">i nvocation</attribute>
<attribute name="narshal |l er" isParam="true">
org.j boss.invocation. unified. marshall.|nvocati onMarshall er
</attribute>
<attribute name="unmarshal |l er" isParans"true">
org.j boss.invocation. unified. marshall .| nvocati onUnMarshal | er
</attribute>
</i nvoker >

This configuration is fine if the classes are present within the client's classpath. If they are not, can provide
configuration for allowing clients to dynamically load the classes from the server. To do this, can use the parameter
'loaderport’ with the value of the port you would like your marshal loader to run on. For example:

<i nvoker transport="socket">
<attribute name="dat aType" isParan¥"true">i nvocation</attribute>
<attribute name="narshal | er" isParam="true">
org. j boss.invocation. unified. marshall.|nvocati onMarshall er
</attribute>
<attribute name="unmarshall er" isParan"true">
org. jboss.invocation.unified. marshall.|nvocati onUnMarshal |l er
</attribute>
<attribute name="| oaderport" isParam="true">5401</attri bute>
</i nvoker >

JBoss June 22, 2008 55

Configuration

When this parameter is supplied, the Connector will recognize this at startup and create a marshal |oader connector
automatically, which will run on the port specified. The locator url will be exactly the same as the original invoker
locator, except will be using the socket transport protocol and will have al marshalling parameters removed (except
the dataType). When the remoting client can not load the marshaller/unmarshaller for the specified data type, it will
try to load them from the marshal loader service running on the loader port, including any classes they depend on.
This will happen automatically and no coding is required (only the ability for the client to access the server on the
specified loader port, so must provide access if running through firewall).

Compression marshalling

A compression marshaller/unmarshaller is available as well which uses
gzip to compress and uncompress large payloads for wire transfer.
The implementation classes are org.jboss.renoting. narshal . conpress. Conpressi nghMar shal | er
and org. j boss. remoti ng. mar shal . conpr ess. Conpr essi ngUnMar shal | er . They extend the
org.j boss.renoting. marshal . seri al i zabl e. Seri al i zabl eMar shal | er and

org.jboss.renoting. marshal . serializabl e. Seri al i zabl eUnMarshal | er interfaces and maintain the same
behavior with the addition of compression.

5.6. Callbacks

5.6.1. Callback overview

Although this section covers callback configuration, it will be useful to begin with a little general information
about callbacks within Remoting. In addition to the ordinary remote method invocation model, in which invocation
results are returned synchronously, Remoting also supports an invocation model in which the server asynchronously
generates information to be returned to the client.

Therearetwo modelsfor callbacks, push callbacksand pull callbacks. In the push model, the client registersaclient
side callback server with the target server. When the target server has acallback to deliver, it will call on the callback
server directly and send the callback message. The other model, pull callbacks, alows the client to call on the target
server to collect the callback messages waiting for it.

5.6.1.1. Callback connections

A callback connection is initiated by the invocation of one of the overloaded addLi st ener () methods in the
org.jboss.remoting. dient class, asdescribed below in Section Registering callback handlers. The creation of a
callback connection resultsin a server side call to the

public voi d addLi stener (I nvoker Cal | backHandl er cal | backHandl er) ;

method of the application's org. j boss. renoting. Serverl| nvocationHandl er. The
org.j boss. renoting. cal | back. | nvoker Cal | backHandl er parameter (actual type
org. j boss. remoting. cal | back. Server | nvoker Cal | backHandl er) isthe server side representation of the callback
connection, essentially a proxy for the client side | nvoker Cal | backHandl er passed to the addLi st ener () method.
The Server I nvocati onHandl er is free to do whatever it wants with the | nvoker Cal | backHandl er, but a typical
practice would be to keep alist of them and transmit each generated callback to some or all of them.

JBoss June 22, 2008 56

Configuration

The client side of a callback connection is identified in one of two ways, according to whether there is a callback
Connect or associated with the connection. If the connection has a callback Connect or, then it is identifed by the
combination of the Connect or and the I nvoker Cal | backHandl er . It follows that if an | nvoker Cal | backHandl er
is registered twice with the same Connect or (through a call to dient. addLi stener()), only a single callback
connectioniscreated. That is, the second call hasno effect. If thereisno callback Connect or , whichisthe casefor pull
callbacks and simulated push callbacks (see Section Registering callback handlers), then the callback connection is
identified by the combination of thed i ent onwhichaddLi st ener () wasinvoked andthel nvoker Cal | backHandl er .
It follows that if an | nvoker Cal | backHandl er is registered twice with the same d i ent for pull or simulated push
callbacks, only asingle callback connection is created. That is, the second call has no effect.

Each callback connection is tagged with a unique identifier, which can be retrieved from the
I nvoker Cal | backHandl er passed tO ServerlnvocationHandl er. addListener() by casting it to type
org. j boss. renoting. cal | back. Server | nvoker Cal | backHandl er and calling get Cal | backSessi onl d(). Itisaso
possible to retrieve the unique identifier of the c i ent upon which addLi st ener () was invoked by casting the
I nvoker Cal | backHandl er t0 type Server | nvoker Cal | backHandl er and calling get d i ent Sessi onl d() .

5.6.1.2. Transmitting callbacks

Once the server I nvocat i onHandl er has generated information to be sent to the client, it can be packaged in an
org. j boss. renoting. cal | back. Cal | back and transmitted on one or more callback connectionsin one of two ways.
One way to transmit a callback is by invoking the

public void handl eCal | back(Cal | back cal | back) throws Handl eCal | backExcepti on;

method of | nvoker Cal | backHandl er . The subsequent disposition of the callback depends on whether the callback
connection is configured for push or pull callbacks. For a pull callback connection, the cal | back is simply stored
on the server, and for a push callback connection, handl eCal | back() is analogous to (and is implemented by) an
ordinary di ent . i nvoke() invocation.

An dternative method of transmitting a calback is by casting an |nvokerCallbackHandl er to
type org. | boss. renoting. cal | back. Asynchl nvoker Cal | backHandl er and invoking one of the overloaded
handl eCal | backOneway() methods

public void handl eCal | backOneway(Cal | back cal | back) throws Handl eCal | backExcepti on;

public voi d handl eCal | backOneway(Cal | back cal | back, bool ean serverSide)) throws Handl eCal | backE

of Asynchlnvoker Cal | backHandler. (Note that al InvokercCallbackHandlers passed in to
Server | nvocat i onHandl er . addLi st ener () implement Asynchl nvoker Cal | backHandl er.) For a pull callback
connection handl eCal | backOneway() has the same behavior as handl ecal | back(), but for a push callback
connectionitisanaogousto (andimplemented by) ac i ent . i nvokeOneway () invocation. Theser ver Si de parameter
isanalogousto thecl i ent Si de parameter in the

public void i nvokeOneway(final Object param final Map sendPayl oad, bool ean client Ji de) throws

JBoss June 22, 2008 57

Configuration

method of org. j boss. renoting. dient. Thatis, if server Si de istrue, then the oneway invocation is handed off to
a separate thread on the server side and the call to handl eCal | backOneway() returnsimmediately. If server Si de is
false, then callback a i ent makes an invocation on the callback server, which hands the invocation off to a separate
thread on the client side and returns, after which the call to handl eCal | backOneway() returns.

5.6.1.3. Callback stores.

For pull callbacks (and also simulated push callbacks - see Section Registering callback handlers), the server hasto
manage callback messages until the client callsto collect them. Sincethe server has no control of when the client will
call to get the callbacks, it has to be aware of memory constraints as it manages a growing number of callbacks. The
way the callback server does thisisthrough use of a persistence policy.

The persistence policy indicates at what point the server hastoo little free memory available and therefore the callback
message should be put into a persistent store. This policy can be configured via the menPer cent Cei | i ng attribute
(see more on configuring this below).

By default, the persistent store used by the invokers is the org.jboss. renoting. Nul | Cal | backStore. The
NullCallbackStore will simply throw away the callback to help avoid running out of memory. When the persistence
policy istriggered and the NullCallbackStore is called upon to store the callback, the invocation handler making the
call will be thrown an 1OException with the message:

and there will be an error in the log stating which object was lost. In this same scenario, the client will get aninstance
of theorg. j boss. renoti ng. Nul | Cal | backSt or e. Fai | edCal | back class when they call to get their callbacks. This
class will throw a RuntimeException with the following message when get Cal | backvj ect () iscalled:

Also, the payload of the callback will be the same string. The client will also get any valid callbacks that were kept
in memory before the persistence policy was triggered.

An exampl e case when using the Null Callback Store might be when callback objects A, B, and C are stored in memory
because there is enough free memory. Then when callback D comes, the persistence policy is triggered and the
NullCallbackStore is asked to persist callback D. The NullCallbackStore will throw away callback D and create a
FailedCallback object to take its place. Then calback E comes, and there is ill too little free memory, so that is
thrown away by the NullCallbackStore.

Then the client calls to get its callbacks. It will receive a List containing callbacks A, B, C and the FailedCallback.
When the client asks the FailedCallback for its callback payload, it will throw the aforementioned exception.

Besides the default NullCallbackStore, thereisatruly persistent CallbackStore, which will persist callback messages
to disk so they will not be lost. The description of the CallbackStore is as follows:

Callback store configuration

CallbackStore is a'so a service mbean, so can be run as a service within JBoss AS or stand alone.

Remoting also offers the Bl ocki ngCal | backSt or e, which is described as follows.

JBoss June 22, 2008 58

Configuration

Custom callback stores can also be implemented and defined within configuration. The only requirement is that it
implements the org.jboss.remoting.SerializableStore interface and has a void constructor (only in the case of using
afully qualified classname in configuration).

Once a callback client has been removed as alistener, al persisted callbacks will be removed from disk.
5.6.1.4. Callback acknowledgements

Unlikethed i ent . i nvoke() method, | nvoker Cal | backHandl er . handl eCal | back() hasavoidreturntype, soit does
not provide away of knowing if the callback has been received by the client. In fact, avoid return type is appropriate
since the immediate effect of a call to | nvoker Cal | backHand! er . handl eCal | back() may be no more than storing
the callback for later retrieval. However, it may be useful for the application to be informed when the callback has
made its way to the client, and Remoting has a listener mechanism that can provide callback acknowledgements.

An object that implementsthe or g. j boss. renot i ng. cal | back. Cal | backLi st ener interface

public interface CallbackLi stener
{
/**
* @aram cal | backHandl er | nvoker Cal | backHandl er that handl ed this call back
* @aram cal | backld id of callback bei ng acknow edged
* @aram response either (1) response sent with acknow edgenent or (2) null
*/
voi d acknow edgeCal | back(| nvoker Cal | backHandl er cal | backHandl er, Cbject call backld,| Obj ect res

may be registered to receive an acknowledgement for a particular
callback by adding it to the callback's r et ur nPayl oad map with the
key org.jboss.renoting. cal | back. Serverl nvoker Cal | backHandl er . CALLBACK_LI STENER (actual value
"callbackListener"). It is also necessary to assign an identifier to the callback by adding some
unique object, recognizable by the application, to the calback's returnPayl oad map with the key
Ser ver | nvoker Cal | backHandl er. CALLBACK_I D (actual value "callbackld"). This identifier will be passed as the
cal | back!l d parameter of the Cal | backLi st ener. acknow edgeCal | back() method.

There are two waysin which callbacks can be acknowledged:
1. explicit acknowledgements, and
2. automatic acknowledgements.

Note that automatic acknowledgements are available only for push callbacks and simulated push callbacks (see
Section Registering callback handlers) transmitted by the | nvoker Cal | backHandl er . handl eCal | back() method.

Callbacks may be acknowledged explicitly by the client side application code by calling one of the overloaded
acknow edgeCal | back() and acknow edgeCal | backs() methods

public int acknow edgeCal | back(| nvoker Cal | backHandl er cal | backHandl er, Call back call back) thrc

JBoss June 22, 2008 59

Configuration

public int acknow edgeCal | back(|l nvoker Cal | backHandl er cal | backHandl er, Cal | back cal | back, Obje

public int acknow edgeCal | backs(| nvoker Cal | backHandl er cal | backHandl er, List call backs) throws

public int acknow edgeCal | backs(| nvoker Cal | backHandl er cal | backHandl er, List call backs,

of thed i ent class. In each casethecal | backHandl er parameter isthe client side | nvoker Cal | backHandl er which
received the callback. Thefirst two and the latter two methods acknowledge asingle callback and alist of callbacks,
respectively. In the latter case, each of the callbacks must have the same registered cal | backLi st ener . The second
and fourth methods also allow a response value to be associated with each callback acknowledgement, which
will passed as the r esponse parameter of the Cal | backLi st ener. acknow edgeCal | back() method. For the fourth
method, the lengths of the cal | backs list and ther esponses list must be the same.

It isalso possibleto request that Remoting automatically supply acknowledgements for push callbacks and simulated
push callbacks by adding the key Server! nvoker Cal | backHandl er . REMOTI NG_ACKNOALEDGES_PUSH_CALLBACKS
(actua value "remotingAcknowledgesPushCallbacks') to the callback's returnPayload map with
the vaue of true, aong with the Serverlnvoker Cal | backHandl er. CALLBACK_LI STENER and
Server | nvoker Cal | backHandl er. CALLBACK_| D entries. The acknowledgement is generated after the callback has
been delivered by acall to handl eCal | back() ontheclient side | nvoker Cal | backHandl er .

For an example of code that uses callback acknowledgements, see the classes in the package

org.j boss. renoting. sanpl es. cal | back. acknow edgenent .
5.6.2. Registering callback handlers.

There are several ways in which callback handlers can be configured. The main distinction in type of callback setup
iswhether the callbacks will be push (asynchronous) or pull (synchronous) callbacks.

5.6.2.1. Pull callbacks.

A pull callback connection is implemented by an object (an
org. j boss. renoting. cal | back. Server | nvoker Cal | backHandl er) on the server side which storesinformation that
is generated asynchronously on the server and subsequently retrieved by the client. It is set up by invoking one of the
following overloaded addLi st ener () methodsinthed i ent class:

public voi d addLi stener (I nvoker Cal | backHandl er) throws Throwabl e;

List r

publ i c voi d addLi stener (I nvokerCal | backHandl er cal | backHandl er, |nvokerLocator clientlLocator) t

publ i c voi d addLi st ener (Il nvoker Cal | backHandl er cal | backHandl er, | nvokerLocator clientLocator,

where, in the latter two cases, thecl i ent Locat or parameter is set to null.

The callbacks stored for a pull callback connection may be retrieved by calling the

public List getCallbacks(IlnvokerCallbackHandl er cal | backHandl er) throws Throwabl e

JBoss June 22, 2008 60

Configuration

method of the d i ent class. Note that for pull callbacks, the | nvoker Cal | backHandl er registered on the client side
doesn't really participate in the handling of callbacks. However, whencl i ent . get Cal | backs(cal | backHandl er) is
called for aparticular d i ent and I nvoker Cal | backHand! er, the two objects together identify a particular callback
connection.

Note. As of Remoting release 2.2.2.GA, there are two versions of pull callbacks: non-blocking (original) and
blocking (new). In the original, non-blocking mode, a call to i ent . get Cal | backs() will return more or less
immediately, whether or not any callbacks are waiting on the server side. In the new, blocking mode, the call
will block on the server side until either it times out or a calback becomes available. The blocking mode
eliminates the overhead of busy polling. Blocking and non-blocking mode are configured on a per-invocation
basis by setting org.j boss. renoting. Server | nvoker. BLOCKI NG MODE (actual value "blockingMode") to either
Ser ver | nvoker . BLOCKI NG (actual value "blocking") or Ser ver I nvoker . NONBLOCKI NG (actual value "nonblocking")
in the metadata map passed to

public List getCallbacks(lnvokerCall backHandl er cal | backHandl er, Map netadata) thro

inorg.jboss. remoting. dient. The default value is Server I nvoker . NONBLOCKI NG. The blocking timeout value
may be configured in two ways:

1. theconnect or can be configured with a default value; and

2. a per-invocation timeout value can be configured with the key Server I nvoker. BLOCKI NG _TI MEQUT in the
metadata map passed to d i ent . get Cal | backs() .

In the absence of any configured timeout, the default value is 5000 ms.
5.6.2.2. Push callbacks.

A push callback connection is implemented by a pair of objects, one on the server side and one on the client side,
which facilitate transmitting to the client some information which has been generated asynchronously on the server.
There are two versions of push callbacks: true push callbacks and simulated push callbacks, also known as polled
callbacks.

In the case of true push calbacks, there is a Remoting object on the server side (an
org. j boss. renoting. cal | back. Server | nvoker Cal | backHandl er) which uses a dient to make invocations
to the client side. On the client side there is a Connector and an implementation of the
org. j boss. renoting. cal | back. | nvoker Cal | backHandl er interface which functions as an invocation handler
for callbacks. Like implementations of org.jboss. renoting. ServerlnvocationHandl er 0On the server side,
implementations of I nvoker Cal | backHandl er are supplied by the application. When a Ser ver I nvocat i onHand| er
generates a callback object, it will be sent to the callback Connector, which will, in turn, deliver it to the
I nvoker Cal | backHandl er

For simulated push calbacks, the server side Remoting object stores calbacks for later retrieval
by the client, exactly as in the case of pull calbacks. However, there is a Remoting poller (an
org. j boss. renoting. cal | back. Cal | backPol | er) on the client side which periodically retrieves the callbacks and,
asin the case of true push callbacks, deliversthem to the | nvoker Cal | backHandl er .

JBoss June 22, 2008 61

Thr owabl €

Configuration

There are two ways to set up push calback handling, each of which entails the use of one of the overloaded
addLi st ener () methodsinthed i ent class.

1. explicit creation of a Connect or
2. implicit configuration.
In the first case, the application creates a Connect or and passes its | nvoker Locat or , along with an implementation

of I nvoker Cal | backHand! er , to one of the following versions of addLi st ener () :

publ i c void addLi stener (I nvokerCal | backHandl er cal | backHandl er, |nvokerLocator clientlLocator) t

public voi d addLi st ener (I nvoker Cal | backHandl er cal | backHandl er, | nvoker Locator clientlLocator, O

Because thereis a Connect or , explicit configuration always results in true push callbacks.

In the case of implicit configuration, only the I nvoker Cal | backHandl er is passed and Remoting takes care of the
rest. One of the following versions of addLi st ener () isused:

public voi d addLi stener (I nvoker Cal | backHandl er cal | backhandl er, Map met adata) throws| Throwabl e;
publ i c voi d addLi stener (Il nvokerCal | backHandl er cal | backhandl er, Map netadata, Object| cal |l backHe

public voi d addLi stener (I nvoker Cal | backHandl er cal | backhandl er, Map met adata, Object| cal |l backHe

Note that the latter three methods are distinguished from the first two by the presence of the net adat a parameter,
which can be used to configure the callback connection. Depending on the transport being used and the parameters
supplied to addLi st ener (), Remoting will set up either true or simulated push callbacks. If the client is in an
environment where the server will be allowed to establish a connection to the client, then the fina version of
addLl st ener () could beused withtheserver Tod i ent parameter set to true. In this case, regardless of the transport,
Remoting will automatically create acallback Connect or on behalf of the user, which behaves just as though the user
had created it and passed the | nvoker Locat or as a parameter to addLi st ener () .

If the client isin an environment where the server is not allowed to establish a network connection to the client (e.g.
firewall rules disallow it or security rules prohibit the creation of a ser ver Socket), then there are two options. One
is to use one of the bidirectional transports, each of which has a strategy for the creation of a connection from the
server to the client without connecting a client Socket to a Server Socket . There are currently three bidirectional
transports: locd (i.e., the client and server reside in the same JV M), bisocket, and multiplex. When one of the second
set of addLi st ener () methods isinvoked for a bidirectional transport, it will create a callback Connect or, even if
server Tod i ent issettofalse. The other optionisto use any of the unidirectional transports (socket, http, rmi) with
server Tod i ent Set to false (which is the default value if it is not an explicit parameter), in which case, Remoting
will configure polled callbacks.

The implicitly created callback Connectors are available for reuse. Each d i ent maintains a set of all callback
Connect or S it has implicitly created for each I nvoker Cal | backHandl er that is passed in by way of one of the
addLi st ener () methods. For example,

JBoss June 22, 2008 62

Configuration

I nvoker Cal | backHandl er cal | backHandl er = new Sanpl eCal | backHandl er () ;
client. addLi st ener (cal | backHandl er, new HashMap(), null, true);
client. addLi stener(cal | backHandl er, new HashMap(), null, true);

would result in aset of two callback Connect or sassociated withcal | backHandl er . These setsof callback Connect or s
are accessible by way of thed i ent method

public Set getCall backConnectors(I|nvoker Cal | backHandl er cal | backHandl er) ;

A callback connect or could be reused as in the following code:

I nvoker Cal | backHandl er cal | backHandl er1 = new Sanpl eCal | backHandl er () ;

client. addLi st ener(cal | backHandl er 1, new HashMap(), null, true);

Set cal | backConnectors = client. getCal |l backConnect ors(cal | backHandl er 1) ;
Connector cal |l backConnector = (Connector) call backConnectors.iterator().next();
I nvoker Cal | backHandl er cal | backHandl er2 = new Sanpl eCal | backHandl er () ;

client. addLi stener(cal | backHandl er2, cal | backConnect or. getLocator());

which would result in the implicitly created callback Connect or having two registered | nvoker Cal | backHandl er S.
Note, by the way, that if the | nvoker Cal | backHandl er were reused asin the following:

I nvoker Cal | backHandl er cal | backHandl er1 = new Sanpl eCal | backHandl er () ;

client. addLi stener (cal | backHandl er 1, new HashMap(), null, true);

Set cal | backConnectors = client. getCal | backConnect ors(cal | backHandl er 1) ;
Connector cal |l backConnector = (Connector) call backConnectors.iterator().next();
client. addLi stener(cal | backHandl er 1, cal | backConnect or. getlLocator());

then only one callback connection would be created, because a single (Connect or, | nvoker Cal | backHandl er) pair
can be associated with only one callback connection.

Note. Asof Remoting release 2.2.2.GA, therearetwo versions of pull callbacks: non-blocking (original) and blocking
(new). For more information, see Pull callbacks. Since the cal | backPol | er uses pull callbacks, this distinction is
relevant to polled callbacks as well. The default behavior of cal | backPol | er is to use non-blocking mode, but
blocking mode can be requested by using the key Ser ver | nvoker . BLOCKI NG_MODE Set t0 Ser ver | nvoker . BLOCKI NG
in the metadata map passed to C i ent . addLi st ener ().

There are nine parameters that can be passed to addLi st ener () in the met adat a map which are specific to push
callback configuration. The first three apply to push callbacks and the latter six apply to polled callbacks. For
convenience, thekeysrelated to push callbacksare defined asconstantsintheor g. j boss. renot i ng. d i ent class, and
the keys related to polled callbacks are defined in the or g. j boss. renot i ng. cal | back. Cal | backPol | er class(with
the exception of Server | nvoker . BLOCKI NG_MODE and Ser ver | nvoker . BLOCKI NG_TI MEQUT).

CALLBACK_SERVER_PROTOCOL (actua vaueis"calbackServerProtocoal): the transport protocol to be used
for callbacks. By default it will be the protocol used by the d i ent upon which addLi st ener () isinvoked.

JBoss June 22, 2008 63

Configuration

CALLBACK_SERVER_HOST (actual value is "callbackServerHost"): the host name to be used by the callback
server. By default it will be the result of calling | net Addr ess. get Local Host () . get Host Addr ess() .

CALLBACK_SERVER_PORT (actual valueis "calbackServerPort"): the port to be used by the callback server.
By default it will be arandomly chosen unused port.

CALLBACK_POLL_PERIOD (actua vaueis"calbackPollPeriod"): theinterval in milliseconds between attempts
to download callbacks from the server.

CALLBACK_SCHEDULE_MODE (actual value is "scheduleMode"): may be set
to either Cal | backPol | er. SCHEDULE_FI XED_RATE (actua value "schedul eFixedRate™") or
Cal | backPol | er. SCHEDULE_FI XED _DELAY (actual vaue "scheduleFixedDelay"). In either case, polling will take
place at approximately regular intervals, but in the former case the scheduler will attempt to perform each poll
CALLBACK_POLL_PERIOD milliseconds after the previous attempt, and in the latter case the scheduler will
attempt to schedule polling so that the average interval will be approximately CALLBACK_POLL_PERIOD
milliseconds. Cal | backPol | er . SCHEDULE_FI XED_RATE is the default.

REPORT_STATISTICS (actual valueis"reportStatistics'): The presence of thiskey in net adat a, regardless of its
value, will cause the cal | backPol | er to print statistics that might be useful for configuring the other parameters..

MAX_ERROR_COUNT (actual value is"maxErrorCount"): determines the maximum number of errors that may
be experienced during polling before cal | backPol | er will shut itself down. The default valueis"5".

SYNCHRONIZED_SHUTDOWN (actua value is "doSynchronizedShutdown"): if set to "true",
Cal | backPol | er. st op() Will wait for d i ent. get Cal | backs() to return, and if set to "false" it will not wait. For
blocking polled callbacks, thedefault valueis"false" and for non-blocking polled callbacks, thedefault valueis"true”.

BLOCKING_MODE (actua vaue is "blockingMode"): if set to Serverlnvoker. BLOCKI NG (actua value
"blocking"), cal I backPol | er will do blocking polled callbacks, and if set to Server | nvoker . NONBLOCKI NG (actual
value "nonblocking"), cal | backPol | er will do non-blocking polled callbacks.

Note that al of the elements in netadata will be passed to the callback Connector and appended to its

| nvoker Locat or.

Note. As of Remoting release 2.2.2.GA, it is possble to configure a server side timeout
value for sending push calbacks that is distinct from the timeout value used by the server.
The parameter is org. | boss. renoting. cal | back. Server | nvoker Cal | backHandl er . CALLBACK_TI MEQUT (actual
value "calbackTimeout"), and it should be used to configure the Connector. In the absence of
Ser ver | nvoker Cal | backHandl er . CALLBACK_TI MEQUT, the timeout value configured for the Connect or will be used.

5.6.3. Unregistering callback handlers

Callback connections are torn down through a call to the method

public void renoveli st ener (I nvoker Cal | backHandl er cal | backHandl er) throws Throwabl e;

in the org. j boss. remoting. dient class. A dient can unregister only those I nvoker Cal | backHandl er S that it
originally registered.

JBoss June 22, 2008 64

Configuration

It is good practice to eliminate callback connections when they are no longer needed. For example, callback
Connect or S can, depending on the transport, occupy TCP ports, and Cal | backPol | er Swill continue to poll aslong
as a connection exists.

5.6.4. Callback store configuration.

All callback store configuration will need to be defined within the server invoker configuration, since the server
invoker is the parent that creates the callback stores as needed (when client registers for pull callbacks). Example
service xml files are included below.

The following general callback store parameters may be configured. They are defined as constants in the
org.j boss. cal | back. Server | nvoker Cal | backHandl er class.

CALLBACK_MEM_CEILING (actua vaueis"calbackMemCeiling"): the percentage of free memory available
before callbacks will be persisted. If the memory heap allocated has reached its maximum value and the percent of
free memory available is|ess than the callbackMemCeiling, this will trigger persisting of the callback message. The
default valueis 20.

Note: The calculations for thisis not always accurate. The reason is that total memory used is usualy less than the
max allowed. Thus, the amount of free memory is relative to the total amount allocated at that point in time. It is not
until the total amount of memory allocated is equal to the max it will be allowed to allocate. At this point, the amount
of free memory becomesrelevant. Therefore, if the memory percentage ceiling is high, it might not trigger until after
free memory percentage is well below the celling.

CALLBACK_STORE_KEY (actua valueis"calbackStore"): specifiesthe callback storeto be used. Thevaluecan
beeither an MBean ObjectName or afully qualified classname. If using class name, the callback storeimplementation
must have avoid constructor. The default isto use the NullCallbackStore.

The following parameters specific to Cal | backSt or e can be configured via the invoker configuration as well. They
are defined as constants in the cal | backSt or e class.

FILE_PATH_KEY (actual valueis"StoreFilePath"): indicates to which directory to write the callback objects. The
default value is the property value of 'jboss.server.data.dir' and if thisis not set, then will be 'data. Will then append
'remoting’ and the callback client's session id. An example would be 'data\remoting\5c4005!-9jijyx-e5b6xyph-1-
e5bbxyph-2'.

FILE_SUFFIX_KEY (actua value is "StoreFileSuffix"): indicates the file suffix to use for the callback objects
written to disk. The default valueis 'ser'.

Sample service configuration

Socket transport with callback store specified by class name and memory ceiling set to 30%:

<nmbean code="org.jboss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- nane="Socket transport Connector">

<attribute name="Configuration">
<confi g>

JBoss June 22, 2008 65

Configuration

<i nvoker transport="socket">
<attribute name="cal | backSt ore">org.jboss. renoting. cal | back. Cal | backStore</attri bt
<attribute name="cal | backMenCei |l i ng">30</attri but e>
</i nvoker >
<handl er s>
<handl er subsysten"test">
org.j boss. renoting. cal | back. pul | . nenory. Cal | backl nvocat i onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ mbean>

Socket transport with callback store specified by MBean ObjectName and declaration of CallbackStore as service:

<nbean code="org.jboss.renoting. cal |l back. Cal | backSt or e"
nanme="j boss. renoting: servi ce=Cal | backSt ore, t ype=Seri al i zabl e"
di spl ay- name="Per si sted Cal | back Store">

<I-- the directory to store the persisted call backs into -->
<attribute name="StoreFil ePat h">cal | back_store</attri bute>
<I-- the file suffix to use for each call back persisted to disk -->
<attribute name="StoreFil eSuffix">cbk</attribute>

</ mbean>

<nbean code="org.j boss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, t ransport =Socket "
di spl ay- nane="Socket transport Connector">

<attribute name="Configuration">
<config>
<i nvoker transport="socket">
<attribute name="cal | backStore">
j boss. renoting: servi ce=Cal | backSt ore, t ype=Seri al i zabl e
</attribute>
</i nvoker >
<handl er s>
<handl er subsystenr"test">
org.j boss. renoting. cal | back. pul | . nenory. Cal | backl nvocat i onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ nbean>

Socket transport with callback store specified by class name and the callback store's file path and file suffix defined:

<nbean code="org.jboss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">

<attribute name="Configuration">

JBoss June 22, 2008 66

Configuration

<confi g>
<i nvoker transport="socket">
<attribute name="cal | backSt ore">org.jboss. renoting. cal | back. Cal | backSt or e</attri bt
<attribute name="StoreFil ePat h">cal | back</attri bute>
<attribute name="StoreFil eSuffix">cst</attribute>
</i nvoker >
<handl er s>
<handl er subsystenr"test">
org.j boss. renoting. cal | back. pul | . nenory. Cal | backl nvocat i onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ nbean>

5.6.5. Callback Exception Handling

Since performing callbacks can sometimes fail, due to network errors or errors produced by the client callback
handler, there needs to be a mechanism for managing exceptions when delivering callbacks. Thisis handled via use
of the org. j boss. renot i ng. cal | back. Cal | backErr or Handl er interface. Implementations of this interface can be
registered with the Connector to control the behavior when callback exceptions occur.

The implementation of the CallbackErrorHandler interface can be specified by setting the 'callbackErrorHandler'
attribute to either the ObjectName of an MBean instance of the CallbackErrorHandler which is already running and
registered with the MBeanServer, or can just specify the fully qualified class name of the CallbackErrorHandler
implementation (which will be constructed on the fly and must have a void parameter constructor). The full server
invoker configuration will be passed along to the CallbackErrorHandler, so if want to add extra configuration
information in the invoker's configuration for the callback error handler, it will be available. If no callback
error handler is specified via configuration, or g. j boss. renot i ng. cal | back. Def aul t Cal | backEr r or Handl er Will
be used by default. This implementation will allow up to 5 exceptions to occur when trying to deliver a
callback message from the server to the registered callback listener client (regardless of what the cause of
the exception is, so could be because could not connect or could be because the client actually threw a valid
exception). After the DefaultCallbackErrorHandler receives its fifth exception, it will remove the callback listener
from the server invoker handler and shut down the callback listener proxy on the server side. The number of
exceptions the DefaultCallbackErrorHandler will allow before removing the listener can by configured by the
‘callbackErrorsAllowed' attribute.

Note. As of Remoting release 2.2.2.5P4, an org. j boss. remoti ng. cal | back. Server | nvoker Cal | backHandl er ,
which manages both push and pull calbacks on the server side, can register to be informed of
a failure on the connection to the client that it is servicing. In particular, if there is a lease
registered for the connection for that particular client, then the Serverlnvoker Cal | backHandl er can be
registered as a org. j boss. renoting. Connecti onLi stener for that lease. The default behavior is to do the
registration, but the parameter or g. j boss. renot i ng. Ser ver | nvoker . REG STER CALLBACK_LI STENER (actual value
"registerCallbackListener") may be set to "false" to prevent registration. If leasing is enabled and registration isturned
on, aServer | nvoker Cal | backHandl er will shut itself down upon being informed of a connection failure. For more
information about leasing, see Network Connection Monitoring.

5.7. Socket factories and server socket factories

JBoss June 22, 2008 67

Configuration

All current transports depend on sockets and server sockets, and the ability to specify their implementation classes
provides considerable power in configuring Remoting. Notably, SSL socketsand server sockets are the basis of secure
communications in Remoting. This section covers the configuration of socket factories and server socket factories
on both the server side and the client side, and then focuses on SSL configuration.

5.7.1. Server side programmatic configuration

All server invokers use server sockets, and it makes sense, therefore, to be able to configure server invokers with
server socket factories. It is also true, though less obvious. that server invokers create sockets (other than by way of
server sockets). When a server invoker makes a push callback to a client, it creates a client invoker, which creates a
socket. Moreover, some server invokers, e.g., the RMI server invoker, have their own idiosyncratic uses for socket
factories. Remoting offers a number of ways of configuring socket factories and server socket factories, and these
apply to al transports (except for the servlet invokers).

5.7.1.1. Server socket factories.
For ser ver Socket Fact or yS, there are ten options for programmatic configuration:

1. Get the Server | nvoker by caling Connect or . get Server | nvoker () and call

Server | nvoker. set Server Socket Factory().
2. Call connector. set Ser ver Socket Fact ory().

3. Put a constructed Ser ver Socket Fact ory in a configuration map, using key
Renot i ng. CUSTOM SERVER_SOCKET_FACTCRY, and pass the map to one of the Connect or constructors.

4. Create an xml document with root element <conf i g>, Setting the <ser ver Socket Fact or y> attribute to the name
of aServer Socket Fact or yMBean and pass the document to Connect or . set Conf i gur ati on() . For example:

StringBuffer buf = new StringBuffer();
buf . append("<?xm version=\"1.0\"?>\n");
buf . append(" <confi g>");

buf . append(" <i nvoker transport=\"ssl socket\">");

buf . append(" <attribute nanme=\"serverBi ndAddress\">" + get Host Name() + '
buf . append(” <attribute nanme=\"serverBi ndPort\">" + freeport + "</attril
buf . append(" <attribute name=\"server Socket Factory\">" + socket Fact oryCQ
buf . append(" </invoker>");

buf . append(" </ confi g>");

connect or . set Confi gurati on(xm . get Docunent El ement ()) ;

5. Create an xml document with root element <config>, Setting the <server Socket Fact ory> attribute to
the class name of a Server Socket Factory and pass the document to Connect or. set Confi guration().
The <server Socket Factory> class must have a default constructor, which will be used to create a

Ser ver Socket Fact ory.

6. Put the bjectNane oOf a ServerSocketFactoryMBean in a configuration map, using key
Ser ver | nvoker . SERVER_SOCKET_FACTORY, and pass the map to one of the Connect or constructors.

JBoss June 22, 2008 68

Byt eArrayl nput Stream bai s = new Byt eArrayl nput Strean(buf.toString().getBytes|
Docunent xm = Docunent Bui | der Fact ory. newl nst ance() . newDocunent Bui |l der (). par

Configuration

7. Put the class name of a ServerSocketFactory in a configuration map, using key
Ser ver | nvoker . SERVER_SOCKET_FACTORY, and pass the map to one of the Connector constructors.
The <server Socket Factory> class must have a default constructor, which will be used to create a

Server Socket Fact ory.

8. Put a set of SSL parameters, using the keys in org.jboss.renoting. security. SSLSocket Bui | der, in
a configuration map and pass the map to one of the Connector constructors. These will be used by
SSLSocket Bui | der (See below) to create a Cust onSSLSer ver Socket Fact ory.

9. Configure an appropriate set of SSL system properties and use one of the SSL transports (https, ssmultiplex,
sslrmi, or sslsocket). The propertieswill be used to create somekind of SSLSer ver Socket Fact or y, asdetermined
by the transport.

10. Useone of the non-SSL transports and do nothing. A default Ser ver Socket Fact ory will be constructed.

These options are essentially in descending order of precedence. If options 3 and 6, for example, are both used, the
factory passed in option 3 will prevail. Options 4 and 5 are mutually exclusive, asare options 6 and 7. Options 1, 2, 3,
5,and 7 areillustrated in Fact or yConf i gSanpl e and options4, 6, 8, and 9 areillustrated in Fact or yConf i gSSLSanpl e,
both of which are in package or g. j boss. renoti ng. sanpl es. confi g. factori es.

Timing considerations. The Server | nvoker, for any transport, is created during the call to Connector. create(),
before which option 1 is unavailable. Option 2, on the other hand, is only available before the call to
Connect or . creat e() . Once the Server | nvoker has been created, it selects a Ser ver Socket Fact ory, according to
the rules enumerated above, during thecr eat e() phase. For al current transports, the actual Ser ver Socket iscreated
during the call to Connector. start (), S0 that acall to Server | nvoker. set Ser ver Socket Fact ory() (option 1) can
override the selected Ser ver Socket Fact ory until Connector. start () iscalled.

5.7.1.2. Socket factories

For socket Fact or yS, there are also ten options for programmatic configuration, and they are essentially the same as
the previous ten. Note, however, that options 5 and 6 are reversed. Thisis because an Ser ver Socket Fact or yMBean,
if it exists, is given precedence over class names:

1. Call connector. set Socket Fact ory().

2. Get the Server | nvoker by caling Connect or . get Server | nvoker () and call
Server | nvoker . set Socket Fact ory() .

3. Put aconstructed Socket Fact ory in a configuration map, using key Renot i ng. CUSTOM SOCKET_FACTORY, and
pass the map to one of the Connect or constructors.

4. Create an xml document with root element <confi g>, Setting the <ser ver Socket Fact ory> attribute to the
name of a Server Socket Fact oryMBean and pass the document to Connect or. set Confi guration(). If the
MBean has type SSLSer ver Socket Fact or ySer vi ceMBean, its configuration information will be gathered and
used to construct a Cust onSSLSocket Fact ory. Note. This method is guaranteed to work only for callback client
invokers. For other, transport specific, socket factory uses, the transport may or may not use this information.

5. Put the bjectNane oOf a ServerSocketFactoryMBean in a configuration map, using key
Ser ver | nvoker . SERVER_SOCKET_FACTORY, and pass the map to one of the Connect or constructors. If the MBean

JBoss June 22, 2008 69

Configuration

has type SsLSer ver Socket Fact or ySer vi ceMBean, its configuration information will be gathered and used
to construct a cust onSSLSocket Fact ory. Note. This method is guaranteed to work only for callback client
invokers. For other, transport specific, socket factory uses, the transport may or may not use this information.

6. Create an xml document with root element <confi g>, setting the <socket Fact or y> attribute to the class name

of aSocket Fact ory and pass the document to Connect or . set Conf i gur at

i on() . For example:

StringBuffer buf = new StringBuffer(
buf . append(" <?xm version=\"1.0\"?>\
buf . append(" <confi g>");

buf . append(" <i nvoker transport=\"
buf . append(" <attribute name=\"
buf . append(" <attribute name=\"

buf . append(" <attribute nane=\"
buf . append(” </invoker>");
buf . append(" </ config>");

Docunent xm = Docunent Bui | der Fact or

connect or. set Confi gurati on(xml . get Docunent El enent ()) ;

)

n");

ssl socket\">");
server Bi ndAddr ess\ ">" + get Host Nane() + '
serverBi ndPort\">" + freeport |+ "</attril
socket Factory\">" + socket Factjoryd assnal

Byt eArrayl nput St ream bai s = new Byt eArrayl nput Strean(buf.toString(]).getBytes(

y. newl nst ance() . newbDocumnent Bui|l der (). par:

The Socket Fact ory class must have a default constructor, which will be used to create a Socket Fact ory.

7. Puttheclassnameof aSocket Fact ory in aconfiguration map, using key Renot i ng. SOCKET_FACTORY_NANE, and
pass the map to one of the Connect or constructors. The Socket Fact ory class must have a default constructor.

8. Put a set of SSL parameters, using the keys in org.jboss.renoting. security. SSLSocket Bui | der, in
a configuration map and pass the map to one of the Connector constructors. These will be used by

SSLSocket Bui | der (See below) to create a Cust onSSLSocket Fact ory.

9. Configure an appropriate set of SSL system properties and use one of the SSL transports (https, ssimultiplex,
sslrmi, or sslsocket). The properties will be used to create some kind of SSLSocket Fact ory, as determined by

the transport.

10. Useoneof the non-SSL transports and do nothing. Ordinary Socket s will

be used.

Again, these are essentially in descending order of precedence. Options 1, 2, 3, 6, and 7 are illustrated in
Fact or yConf i gSanpl e and options 4, 5, 8, and 9 are illustrated in Fact or yConf i gSSLSanpl e, both of which arein

packageorg.j boss. renoti ng. sanpl es. config.factories.

Timing considerations. A new d i ent, with a client invoker, is created on
listener is registered by acall to di ent. addLi st ener () . If a Socket Fact ory

the server side whenever a callback
is supplied by any of options 1 to 5,

it will be passed to the d i ent . Otherwise, any information from options 6 to 9 will be passed to the client invoker,
which will create a Socket Fact ory according to the rules given below in the section on client side socket factory
configuration. Once Connect or . creat e() has been called, Server | nvoker . set Socket Fact ory(), may be called at
any time to determine the Socket Fact or y used by the next callback client invoker.

5.7.2. Client side programmatic configuration

Ontheclient sideit ispossibleto configure socket factoriesfor client invokersand to configure server socket factories
for callback server invokers. Configuration on the client side is largely the same as configuration on the server side,

JBoss June 22, 2008

70

Configuration

with the exception that no MBeanSer ver is assumed to be present, and the d i ent has no facilities for parsing xml
documents.

5.7.2.1. Server socket factories.

For ser ver Socket Fact or ysin callback server invokers, there are eight optionsfor programmeatic configuration, which
are identical to options 1-3, 5 and 7-10 on the server side (we don't assume the existence of an MBeanSer ver on the
client side:

1

Get the Ser ver | nvoker by caling Connect or . get Ser ver | nvoker () and call

Server | nvoker. set Server Socket Factory().
Call connect or. set Server Socket Fact ory().

Putt a constructed ServerSocket Factory in a configuration map, using key
Renot i ng. CUSTOM SERVER_SOCKET_FACTORY, and pass the map to one of the Connect or constructors.

Create an xml document with root element <conf i g>, setting the <ser ver Socket Fact or y> attribute to the class
name of a Ser ver Socket Fact ory and pass the document to Connect or . set Conf i gur ati on() . For example:

StringBuffer buf = new StringBuffer();
buf . append("<?xm version=\"1.0\"?>\n");
buf . append(" <confi g>");

buf . append(" <i nvoker transport=\"ssl socket\">");

buf . append(" <attribute name=\"serverBi ndAddress\">" + get Host Name() + '
buf . append(” <attribute name=\"serverBi ndPort\">" + freeport |+ "</attril
buf . append(" <attribute name=\"server Socket Factory\">" + server Socket Fac
buf . append(" </i nvoker>");

buf . append("</config>");

connect or. set Confi gurati on(xml . get Docunent El ement ()) ;

The ServerSocket Factory class must have a default constructor, which will be used to create a

Ser ver Socket Factory.

Put the class name of a ServerSocketFactory in a configuration map, using key
Ser ver | nvoker . SERVER_SOCKET_FACTORY, and pass the map to one of the Connector constructors.
The ServerSocket Factory class must have a default constructor, which will be used to create a

Server Socket Fact ory.

Put a set of SSL parameters, using the keys in org. | boss.renoting. security. SSLSocket Bui | der, in
a configuration map and pass the map to one of the Connector constructors. These will be used by
SSLSocket Bui | der (See below) to create a Cust onSSLSer ver Socket Fact ory.

Configure an appropriate set of SSL system properties and use one of the SSL transports (https, ssimultiplex,
sslrmi, or sslsocket). The propertieswill be used to create somekind of SSLSer ver Socket Fact or y, asdetermined
by the transport.

Use one of the non-SSL transports and do nothing. A default Ser ver Socket Fact ory will be constructed.

JBoss June 22, 2008 71

Byt eArrayl nput Stream bai s = new Byt eArrayl nput Strean(buf.toString().getBytes|
Docurment xm = Docunent Bui | der Fact ory. newl nst ance() . newDocumnent Bui|l der () . par ¢

Configuration

These options are essentially in descending order of precedence. For example, if options 3 and 5, for example,
are both used, the factory passed in options 3 will prevail. Options 1, 2, 3, 4, and 5 are illustrated in
Fact or yConf i gSanpl e and options 6 and 7 areillustrated in Fact or yConf i gSSLSanpl e, both of which arein package

org.j boss.renoting. sanpl es. config.factories.
Timing consider ations. See the discussion in the section on the creation of server socket factories on the server side.
5.7.2.2. Socket factories.

For socket Fact orys in client invokers, there are seven options for programmatic configuration, and they are
essentially the same as 1-3 and 5-8 in the previous section (i ent has no facility for parsing xml documents:

1. Getthedientlnvoker by calingdient.getlnvoker() andcall dientlnvoker. set Socket Fact ory().
2. Cdldient.setSocket Factory().

3. Put aconstructed Socket Fact ory in a configuration map, using key Renot i ng. CUSTOM SOCKET_FACTORY, and
pass the map to one of the d i ent constructors.

4. Put the class name of a Socket Fact ory in a configuration map, using key Renot i ng. SOCKET_FACTORY_NAME,
and pass the map to one of the d i ent constructors. The Socket Fact ory class must have a default constructor,
which will be used to create a Socket Fact ory.

5. Put a set of SSL parameters, using the keys in org. j boss. renmoting. security. SSLSocket Bui | der, in a
configuration map and passthe map to one of thed i ent constructors. Thesewill be used by SSLSocket Bui | der
(see below) to create a cust onBSLSocket Fact ory.

6. Configure an appropriate set of SSL system properties and use one of the SSL transports (https, ssmultiplex,
sslrmi, or sslsocket). The properties will be used to create some kind of SSLSocket Fact ory, as determined by
the transport.

7. Useone of the non-SSL transports and do nothing. Ordinary Socket swill be used.

Again, these are essentially in descending order of precedence. Options 1, 2, 3, and 4 are illustrated in
Fact or yConf i gSanpl e and options 5 and 6 areillustrated in Fact or yConf i gSSLSanpl e, both of which arein package

org.j boss.renoting. sanpl es. config.factories.

Timing considerations. A Socket Fact ory is created in the constructor for Renot ed i ent | nvoker , the ancestor of
al current remote client invokers (that is, al client invokers except Local d i ent I nvoker, which can make a call
by reference on a server invoker in the same JVM), but it is currently used only by SSL transports, for which the
timing considerations vary.

1. https. HTTPSO i ent | nvoker Setsthe socket factory onitsHtt psURLConnect i on eachtimed i ent. i nvoke() is
called. Option 1 may be used to reset the socket Fact ory for future invocations at any time.

2. sdmultiplex: Whichever of ssLMil ti pl exd i ent | nvoker Or SSLMil ti pl exServer | nvoker first getssufficient
bind and connect information to create a priming socket (see the section on the multiplex invoker for adiscussion
of priming sockets) passes the current Socket Fact ory to be used to create the actual socket that supports the
multiplexed connection. Thishappensduring thecall toeither d i ent . connect () Or Connect or. creat e() . Once
the actual socket is created, no further configuration is possible

JBoss June 22, 2008 72

Configuration

3. sdrmi: A Socket Fact ory iseither created or configured for futurecreationduringd i ent . cr eat e() . Nofurther
configuration is possible.

4, sdsocket: SSLSocket dient | nvoker USESthe current Socket Fact ory to create a new socket whenever it runs
out of available pooled connections. Option 1 may be used to reset the Socket Fact ory for future connections
at any time.

5.7.3. Server side configuration in the JBoss Application Server

Everything in the previous two sections applies to configuring socket and server socket factoriesin any environment,
including inside the JBoss Application Server (JBossAS), but JBossAS adds some new options. In particular, the
SARDepl oyer (see The JBoss 4 Application Server Guide on the labs.jboss.org web site) can read information from
a*-service. xm file, asdiscussed above in the section "General Connector and Invoker configuration,” and use it
to configure MBeans such as Connect or S.

An example of aservice xml that coversall the different transport and service configurations can be found within the
example-service.xml file under the etc directory of the JBoss Remoting distribution.

The server socket factory to be used by a server invoker can be set via configuration within the service xml. To do
this, the serverSocketFactory attribute will need to be set as a sub-element of theinvoker element (this cannot be done
if just specifying the invoker configuration using the InvokerL ocator attribute). The attribute value must be either

1. the IJMX ObjectName of an MBean that implements the
org. jboss. renoting. security. Server Socket Fact or yMBean interface, or

2. theclass name of aServer Socket Fact or y with a default constructor.

An example of the first case would be:

<nbean code="org.jboss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">

<attribute name="Configuration">
<confi g>
<i nvoker transport="ssl socket">
<attribute name="server Socket Fact ory" >
j boss. renoting: servi ce=Ser ver Socket Fact ory, t ype=SSL
</attribute>
<attri bute name="numAccept Threads">1</attri bute>

Theserver Socket Fact ory attribute is processed as follows:

1. TakeitsString value, create an tbj ect Name fromit, and look up an M Bean with that name from the MBeanSer ver
that the invoker has been registered with (by way of the Connect or). If an MBean with that name is found,
create a proxy to it of typeor g. j boss. renoti ng. securi ty. Server Socket Fact or yMBean. (Technically, a user
could set the ser ver Socket Fact ory property with the locator url, but the preferred method is to use the explicit
configuration viathe invoker el ement's attribute, as discussed above.)

JBoss June 22, 2008 73

Configuration

2. If no MBean is found with a matching bj ect Nane, treat the ser ver Socket Fact ory attribute as a class name
and try to create an instance using the default constructor.

The JBossRemoting project provides an implementation of the ServerSocketFactoryMBean that can be used and
should provide most of the customization features that would be needed. More on thisimplementation later.

Note that these two options correspond exactly to options 4 and 5 in section Server socket factories (on the server
side), which is how these two new options are implemented.

Timing considerations. If a Connector is accessed by way of the MBeanServer, then most of the options for
configuring the server socket factory discussed in Server socket factories are irrelevant since Connect or MBean does
not expose methods for using them. However, when a Connect or that is registered with an MBeanSer ver creates a
server invoker during acall to Connect or . creat e() , it also registers the server invoker with the same MBeanSer ver ,
which means that the server invoker is accessible by way of its avj ect Name, which has the form

j boss. renoting: servi ce=i nvoker, transport =socket, host =ww. j boss. com port =8765

for example, followed by additional parameter=value pairs. (See the jmx-console for arunning instance of JBossAS
at http://localhost:8080/jmx-console/ to see examples of server invoker oj ect Nanes.) Now, if another MBean is
configured in a*- servi ce. xni file to be dependent on the server invoker MBean, e.g.

<nmbean code="org.j boss. Bl ueMonkey" nanme="j boss. renoti ng: bl uenonkey, nanme=di anond" >
<depends optional -attribute-nane="serverl nvoker">
j boss. renoti ng: servi ce=i nvoker, transport =socket, host =ww. j boss. com port =8765
</ depends>
</ mbean>

then org. j boss. Bl ueMbnkey. creat e() Will have access to the designated server invoker after the invoker has
been created but before it has been started, which means that Ser ver I nvoker . set Ser ver Socket Fact ory() will be
effective. (See the The JBoss 4 Application Server Guide, Chapter 2, for more information about the life cycle of
JBoss MBeans.)

5.7.4. Socket creation listeners

Every Remoting transport uses Socket s, but the creation and management of the Socket sis generally inaccessible
from the application code. Remoting has a hook that can provide accessto Socket s, intheform of alistener interface
intheor g. j boss. renot i ng. socket f act ory package:

public interface Socket CreationLi stener

{

/**

* Call ed when a socket has been created.

* @aram socket socket that has been created
* @aram source Socket Factory or Server Socket that created the socket
* @hrows | OException

JBoss June 22, 2008 74

Configuration

*/
voi d socket Creat ed(Socket socket, bject source) throws | OException;

Socket creation listeners can be registered to be informed every time a socket is created by a Socket Factory or
Ser ver Socket . The mechanisms for registering listeners are the usua ones, e.g., by putting them in configuration
maps passed to client and server invokers. (See Section General transport configuration for a general discussion of
parameter configuration in Remoting.) In any case they should be associated with one of the following keys from

org. j boss.renpting. Renoti ng:

/**
* Key for the configuration map passed to a Cient or Connector to indicate

* a socket creation |listener for sockets created by a SocketFactory.
*/

public static final String SOCKET CREATI ON_CLI ENT_ LI STENER = "socket Creati ond ientlListener";

/**
* Key for the configuration map passed to a Cient or Connector to indicate

* a socket creation |listener for sockets created by a Server Socket.
*/

public static final String SOCKET CREATI ON_SERVER LI STENER = "socket Creati onServerLi stener";

The value associated with either of these keys can be an actual object, or, to facilitate configuration by
I nvoker Locat or or xml, it can be the name of a class that implements Socket Cr eat i onLi st ener and has a default
constructor

Note that client and server invokers always use the respective keys SOCKET_CREATION_CLIENT _LISTENER
and SOCKET_CREATION_SERVER_LISTENER, whether they are on the client side or server side.
For example, a callback client invoker would be configured by putting a listener with the key
SOCKET_CREATION_CLIENT_LISTENER in the configuration map passed to the server side Connect or , which
will find its way to the callback client invoker when a callback handler is registered.

The creation listener facility currently is supported by the following transports: bisocket, sslbisocket, https, multiplex,
sslmultiplex, rmi, sslrmi, socket, and sslsocket. It is not supported by http because Ht t pURLConnect i on does not
expose its socket factory (though Ht t psURLConnect i on does). It is not supported by the servlet transport because
invocations with the servlet transport go through a servlet container, which is outside the scope of Remoting.

5.7.5. SSL transports

There are now four transports that support SSL: https, ssimultiplex, sslrmi, and sslsocket (plus sslservlet, which is
not relevant here). All of the preceding discussion applies to each of these, and, moreover, they are al extensions of
their non-ssl counterparts, so only some ssl specific information will be added here.

https

Configuration of the https transport is a bit different from that of the other transports since
the implementation is based off the Tomcat connectors. One difference is that, in order to use

JBoss June 22, 2008 75

Configuration

SSL connections, the SSLinplenentation attribute must be set and must aways have the vaue
org.jboss.renmoting. transport.coyote. ssl. Renoti ngSSLI npl enent ati on. The SSLI npl enent ati on iS used by
the Tomcat connector to create Ser ver Socket Fact or yS, and Rerot i ngSSLI npl enent at i on presents Tomcat with the
Ser ver Socket Fact ory configured according to the options described above.

An example of setting up https via service.xml configuration would be:

<nbean code="org.j boss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, t ranspor t =HTTPS"
di spl ay- nanme="HTTPS transport Connector">

<attribute name="Configuration">
<confi g>
<i nvoker transport="https">
<attribute name="server Socket Fact ory">j boss. renoti ng: servi ce=Ser ver Socket Fact ory, t ype=S
<attribute name="SSLI npl enent ati on">org. j boss. renoting.transport.coyote. ssl.Renpti ngSSl
<attribute name="server Bi ndAddr ess" >${j boss. bi nd. addr ess} </ attri but e>
<attribute name="serverBi ndPort">6669</attri bute>
</i nvoker >
<handl er s>
<handl er subsyst en¥"nock">org.j boss.test.renoting.transport.nock. MockServer|nvocati onHe
</ handl er s>

</ confi g>
</attribute>
<l-- This depends is included because need to make sure this nbean is running before configure
<depends>j boss. renpt i ng: servi ce=Ser ver Socket Fact ory, t ype=SSL</ depends>
</ mbean>

See section SSL ServerSocketFactoryService below for a discussion of the
"Jboss.remoting:service=ServerSocketFactory,type=SSL" MBean that appears in this configuration element.

Note that the configuration for SSL support only works when using the java based http processor and not with the
APR based transport. See section HTTP Invoker for more information on using the APR based transport.

ssimultiplex

The ssimultiplex server invoker inherits from the socket server invoker a method with signature

public void set NewServer Socket Fact ory(Server Socket Fact ory server Socket Fact ory)

which supports dynamic replacement of server socket factories. The principal motivation for thisfacility isto be able
to swap in anew SSLSer ver Socket Fact ory configured with an updated keystore.

sslrmi

The extra twist in the sdrmi invoker is that the server invoker creates the (client) socket factory and
packages it with its own stub, from which it follows that the socket factory must be serializable.
If the sslrmi server invoker is alowed to creste an SSLSocket Factory from SSL parameters, it will
take care to create a serializable socket factory. In particular, the server invoker creates a copy of

JBoss June 22, 2008 76

Configuration

org.jboss.renoting.transport.rm.ssl.Serializabl eSSLA i ent Socket Factory, which is essentidly just a
holder for the configuration map passed to the server invoker, with any parameters removed which concern trust
store and key store configuration. On the client side, when an sslrmi client invoker is created, it stores its own
configuration map in a static variable which the transferred Seri al i zabl eSSLO i ent Socket Fact ory can retrieve
and merge with the configuration information it brought with it from the server. In particular, if a socket factory
is explicitly passed to the client invoker, then Seri al i zabl eSSLd i ent Socket Fact ory Will use it. If not, then
Seri al i zabl eSSLd i ent Socket Fact ory Will use any key store and trust store information passed to the client to
create and configure a socket factory.

Note. If instead of using Seri al i zabl eSSLO i ent Socket Fact ory, aSocket factory is passed in to the server invoker
by one of the methods discussed above, then the user is responsible for supplying a serializable socket factory.

sslsocket
In addition to the various configuration options discussed above, the sslsocket transport exposes the

publ i c void set Server Socket Fact ory(Server Socket Fact ory server Socket Fact ory)

method as a IMX operation.

Also, the sslsocket server invoker inherits from the socket server invoker a method with signature

public void set NewServer Socket Fact or y(Ser ver Socket Fact ory server Socket Fact ory)

which supports dynamic replacement of server socket factories. The principal motivation for thisfacility isto be able
to swap in anew SsLSer ver Socket Fact ory configured with an updated keystore.

5.7.6. SSLSocketBuilder

Throughout this section reference has been made to SSL socket factory and server socket factory
configuration parameters. This subsection will introduce these parameters in the context of configuring
org.jboss.renoting. security. SSLSocket Bui | der, Remoting's flexible, highly customizable master factory for
creating socket and server socket factories. It can be used programmatically on both the client and server side, and it
isalso aservice MBean, so it can be configured and started from within a service xml in a JBossAS environment.

Once a sSLSocketBuilder has been constructed and configured, a cal to its method
creat eSSLSer ver Socket Fact ory() Will return a custom instance of a SSLSer ver Socket Factory, and a call to
creat eSSLSocket Fact or y() will return acustom instance of SSLSocket Fact ory.

There are two modes in which the ssLSocket Bui | der can be run. The first is the default mode where all
that is needed is to declare the SSLSocket Bui | der and set the system properties j avax. net . ssl . keyStore and
j avax. net . ssl . keySt or ePasswor d. Thiswill usethe VM vendor's default configuration for creating the SSL server
socket factory.

In order to customize any of the SSL properties, the first requirement is that the default mode is turned off.
This is IMPORTANT because otherwise, if the default mode is not explicitly turned off, al other settings

JBoss June 22, 2008 77

Configuration

will be IGNORED, even if they are explicitly set. To turn off the default mode via service xml configuration,
set the UseSSLSer ver Socket Fact ory attribute to false. This can aso be done programmaticaly by caling the
set UseSSLSer ver Socket Fact ory() and passing false as the parameter value.

There are two ways to configure a SSLSocket Bui | der
1. setitsbean attributes, either programmatically or by xml configuration, or
2. passtoassLSocket Bui | der constructor a configuration map with keys defined in the SSLSocket Bui | der class.

The configuration properties for SSLSocket Bui | der are as follows:

JBoss June 22, 2008 78

HTIPITHTIT ALl UL W

Configuration use.
SecureRandom none _ javia.security.SecureRandom new Random number
Table5.1. ssLSocket Bui | der configuration parameters. SecureRandon() | generator to use.
SecureSocketProtocol REMOTING_SSL_PROTOCSIting TLS The protocol for the
SSLCont ext. Some
acceptable values
are TLS, SSL, and
SSLv3
ServerAuthMode REMOTING_SERVER_BddlddniBiODd- true Determines if a
client should attempt
to authenticate a
server certificate as
oneit trusts.
ServerSocketUseClienBREMIOTING SERVIER BGMSHTBtH®E CLIENT KABBE Determines if the
server sockets will
bein client or server
mode.
SocketUseClientModeREMOTING_SOCKET _htitiedV g MODE true Determines if the
sockets will be in
client or server
mode.
TrustStoreAlgorithm| REMOTING_TRUST_STORE&ridgGORITHM value of trust store key
KeySt or eAl gori t hm | management
or Sunx509 if algorithm
KeySt or eAl gori t hm
is not set
TrustStorePassword | REMOTING_TRUST_STORE iy SSWORD trust store password
TrustStoreType REMOTING_TRUST_STORSHrihygPE value of type of trust store
KeySt or eType,
or KSif
Key St or eType
isnot set
TrustStoreURL REMOTING_TRUST_STOREHriFid.E PATH location of trust
store
UseSSL ServerSocketHaatary boolean true Determines if
default
SSLSer ver Socket Faclt ory
should be created.
UseSSL SocketFactorynone boolean true Determines if
default
SSLSocket Fact ory
should be created.

JBoss June 22, 2008

79

Configuration

Note. If any of the attributes KeySt or eURL, KeySt or ePasswor d, KeySt or eType,
Tr ust St or eURL, Tr ust St or ePasswor d, or Trust St or eType are |eft unconfigured,
SSLSocket Bui l der will also examine the corresponding standard SSL system properties

"Javax.net.sdl.keyStore", "javax.net.ssl.keyStorePassword"”, "javax.net.ssl.keyStoreType", "javax.net.ssl.trustStore”,
"Javax.net.sdl.trustStorePassword”, "javax.net.sdl.trustStoreType'. In the cases of KeyStoreType and
Trust St or eType, SSLSocket Bui | der will then go on to use default values after checking the system properties.

Thefollowing isan example of configuring a ssLSocket Bui | der and using it to create a custom SSLSocket Fact ory:

prot ect ed SSLSocket Factory get Socket Factory() throws Exception
{
HashMap config = new HashMap();
confi g. put (SSLSocket Bui | der. REMOTI NG_KEY_STORE_TYPE, "JKS");
String keyStoreFil ePath = get KeystoreFil ePath();
confi g. put (SSLSocket Bui | der . REMOTI NG_KEY_STORE_FI LE_PATH, keySt or eFi | ePat h) ;
confi g. put (SSLSocket Bui | der. REMOTI NG_KEY_STORE_PASSWORD, "unit-tests-server");
confi g. put (SSLSocket Bui | der . REMOTI NG_SSL_PROTOCOL, "SSL");
SSLSocket Bui | der bui |l der = new SSLSocket Bui | der (confi g);
bui | der. set UseSSLSocket Fact ory(fal se);
return buil der.createSSLSocket Factory();

More examples of configuring SSLSocket Bui | der can befound inthe classFact or yConf i gSSLSanpl e inthe package

org.j boss. renoting. sanpl es. config.factories.

The following is an example of configuring SSLSocket Bui | der in a*-service.xml file:

<l-- This service is used to build the SSL Server socket factory -->

<I-- This will be where all the store/trust information will be set. -->

<lI-- If do not need to nake any custom configurations, no extra attributes -->
<l-- need to be set for the SSLSocketBuilder and just need to set the -->

<I-- javax.net.ssl.keyStore and javax. net.ssl.keyStorePassword system properties. -r->
<l-- This can be done by just adding sonething |ike the following to the run -->
<l-- script for JBoss -->

<I-- (this one is for run.bat): -->

<I-- set JAVA OPTS=-D avax.net.ssl.keyStore=. keystore -->

<I-- -D avax. net.ssl . keySt or ePasswor d=opensour ce %JAVA OPTS% - - >

<Il-- Oherwise, if want to custonize the attributes for SSLSocketBuil der, -->
<I-- will need to unconmment them bel ow. -->

<nbean code="org.jboss.renoting. security. SSLSocket Bui | der"
nanme="j boss. renoti ng: servi ce=Socket Bui | der, t ype=SSL"
di spl ay- nanme="SSL Server Socket Factory Buil der">

<l-- | MPORTANT - |f making ANY custom zations, this MJST be set to false. -->

<I-- Gherwise, will used default settings and the following attributes will be|ignored.
<attribute name="UseSSLServer Socket Factory">fal se</attri bute>

<l-- This is the url string to the key store to use -->

<attribute name="KeyStoreURL">. keystore</attri bute>

<l-- The password for the key store -->

<attri bute name="KeySt or ePasswor d" >opensource</attri bute>

<I-- The password for the keys (will use KeystorePassword if this is not set explicitly.

<attribute name="KeyPassword">opensource</attri bute>
<I-- The protocol for the SSLContext. Default is TLS. -->

JBoss June 22, 2008 80

Configuration

<attri bute name="SecureSocket Protocol ">TLS</attri bute>

<l-- The algorithmfor the key nmanager factory. Default is SunX509. -->
<attri bute name="KeyManagenent Al gorit hm' >SunX509</ attri but e>

<I-- The type to be used for the key store. -->

<l-- Defaults to JKS. Sone acceptable values are JKS (Java Keystore - Sun's keystore forme
<I-- JCEKS (Java Cryptography Extension keystore - Mre secure version of JKS),| and -->
<I-- PKCS12 (Public-Key Cryptography Standards #12 keystore - RSA's Personal |nfornmation E

<l-- These are not case sensitive. -->
<attribute name="KeyStoreType">JKS</attribute>
</ mbean>

It is adso possible to set the default socket factory to be used when not using customized settings (meaning
UseSSL SocketFactory property value is true, which is the default). This can be done by setting system property
of org.jboss.remoting.defaultSocketFactory to the fully qualified class name of the javax.net.SocketFactory
implementation to use. Will then call the getDefault() method on that implementation to get the SocketFactory
instance to use.

5.7.7. SSLServerSocketFactoryService

Although any server socket factory can be set for the various transports, there
is a customizable server socket factory service provided within JBossRemoting that
supports SSL. This is the org.jboss.renoting. security. SSLServer Socket Fact oryService class. The
SSLSer ver Socket Fact or ySer vi ce class extends the j avax. net. Server Socket Fact ory class and also implements
the SSLSer ver Socket Fact or ySer vi ceMBean interface (so that it can be set using the socket Ser ver Fact or y attribute
described previously). Other than providing the proper interfaces, this class is a simple wrapper around the
org.jboss.renoting. security. SSLSocket Bui | der class.

The following is an example of configuring SSLSer ver Socket Fact oryServi ce in a*-servicexml file. Note that it
depends on the SsLSocket Bui | der MBean defined in the xml fragment above:

<l-- This service provides the exact sanme APl as the Server Socket Factory, so -->
<l-- can be set as an attribute of that type on any MBean requiring an Server Socket Factory. -->
<nbean code="org.jboss.renoting. security. SSLServer Socket Fact oryServi ce"
nane="j boss. renoti ng: servi ce=Ser ver Socket Fact ory, t ype=SSL"
di spl ay- nane="SSL Server Socket Factory">
<depends optional -attri bute-nane="SSLSocket Bui | der"
proxy-type="attribute">j boss. renoting: servi ce=Socket Bui | der, t ype=SSL</ depends>
</ nbean>

5.7.8. General Security How To

Since we are talking about keystores and truststores, this section will quickly go over how to quickly generate a
test keystore and truststore for testing. This is not intended to be a full security overview, just an example of how
| originally created mine for testing.

To get started, will need to create key store and trust store.

Generating key entry into keystore:

JBoss June 22, 2008 81

Configuration

C:\tnmp\ ssl >keyt ool -genkey -alias renoting -keyal g RSA
Ent er keystore password: opensource

VWhat is your first and | ast nanme?

[Unknown] : Tom El r od

What is the name of your organizational unit?

[Unknown] : Devel oprent

VWhat is the nane of your organization?

[Unknown] : JBoss I nc

What is the name of your City or Locality?

[Unknown] : Atl anta

What is the name of your State or Province?

[Unknown] : GA

What is the two-letter country code for this unit?

[Unknown] : US

I's CN=Tom El rod, OU=Devel opnent, O=JBoss Inc, L=Atlanta, ST=GA, C=US correct?
[no]: yes

Enter key password for <renoting>
(RETURN i f sane as keystore password):

Since did not specify the -keystore filename parameter, created the keystore in $SHOME/.keystore (or C:\Documents

and Settings\Tom\.keystore).

Export the RSA certificate (without the private key)

C:\tnp\ ssl >keyt ool -export -alias remoting -file renoting.cer
Ent er keystore password: opensource
Certificate stored in file <renoting.cer>

Import the RSE certificate into a new truststore file.

C:\tnp\ssl >keytool -inmport -alias renoting -keystore .truststore -file renoting
Ent er keystore password: opensource

Owner: CN=Tom El rod, OU=Devel oprment, O=JBoss |nc, L=Atlanta, ST=GA, C=US

| ssuer: CN=Tom El rod, OU=Devel opnent, O=JBoss Inc, L=Atlanta, ST=GA, C=US
Serial nunber: 426f lee3

Valid from Wed Apr 27 01:10:59 EDT 2005 until: Tue Jul 26 01:10:59 EDT 2005
Certificate fingerprints:

MD5: CF: DO: A8: 7D: 20: 49: 30: 67: 44: 03: 98: 5F: 8E: 01: 4A: 6A

SHA1: C6: 76: 3B: 6C: 79: 3B: 8D: FD: FB: 4F: 33: 3B: 25: C9: 01: 9D: 50: BF: 9F: 8A

Trust this certificate? [no]: yes

Certificate was added to keystore

Now have two files, .keystore for the server and .truststore for the client.
5.7.9. Troubleshooting Tips

Common errors when using server socket factory:

JBoss June 22, 2008 82

cer

Configuration

j avax. net.ssl . SSLException: No available certificate corresponds to the SSL ci pher suites which are enabl

The 'javax.net.ssl.keyStore' system property has not been set and are using the default SSL Server SocketFactory.

j ava. net. Socket Exception: Default SSL context init failed: Cannot recover key ‘

The ‘javax.net.sd.keyStorePassword’ system property has not been set and are using the default
SSL ServerSocketFactory.

java.io.| Oexception: Can not create SSL Server Socket Factory due to the url to the key store

not being s

The default SSL ServerSocketFactory is NOT being used (so custom configuration for the server socket factory) and
the key store url has not been set.

java.lang. |11 egal Argunent Exception: password can't be null ‘

The default SSL ServerSocketFactory isNOT being used (so custom configuration for the server socket factory) and
the key store password has not been set.

5.8. Timeouts

The handling of timeouts in Remoting is surveyed in this section. On the whole, timing out network connectionsis
handled differently by each transport, but there are some transport independent methods for timeout configuration,
extended by some transport specific methods.

5.8.1. General timeout configuration

Aswith all configuration parameters, there are several avenues for specifying parameter values. See Section General
transport configuration for a general discussion of parameter configuration in Remoting. The transport independent
key for setting timeouts is "timeout”, also available as or g. j boss. renot i ng. Server | nvoker. TI MEQUT. All server
invokers also have the getter/setter methods

public int getTineout();

public void setTineout(int timeout);

where the values are given in milliseconds. The default timeout value is 60000 for server invokers.
5.8.2. Per invocation timeouts

Beginning with release 2.2.0, some Remoting transports offer a per invocation transport facility, which allows a
timeout value to be set for a particular invocation, overriding the client invoker's previously configured timeout
value. The per invocation timeout is set by passing the st ri ng representation of the timeout value in the invocation's
metadata map, using the key "timeout". For example,

HashMap netadata = new HashMap();

JBoss June 22, 2008 83

Configuration

met adat a. put ("tineout", "2000");
client.invoke("testlnvocation", netadata);

will allow approximately 2 seconds for this particular invocation, after which the timeout value will be reset to its
previously configured value.

Each transport that supports per invocation timeouts handles them alittle differently. More details are given below.
5.8.3. Transport specific timeout handling

5.8.3.1. Socket and bisocket transports

These two transports are handled together because bisocket inherits most of its timeout handling from socket. The
discussion also appliesto their SSL versions, sslbisocket and sslsocket. On the server side, thetimeout value, whatever
the source of itsvalue, is used to set thetimeout value of all Socket s managed by the server invoker's worker threads.
On the client side, the configured timeout value is used to limit the time required by Socket . connect () when anew
Socket iscreated, aswell asto set the Socket timeout value for all connectionsin its connection pool.

The socket and bisocket transports support per invocation timeouts. The processing subject to the timeout period
starts when the client invoker begins to acquire a network connection and extends to the point at which it begins
reading the reponse to the invocation. Note that the acquisition of the network connection might involve multiple
attempts to connect to the server.

5.8.3.2. HTTP transport

The http server invoker looks for a configured timeout value at initialization time, which it uses to set the
"connectionTimeout" property onits Tomcat connector. (See Section HT TP Invoker for moreinformation.) Note that
subsequent callsto set Ti meout () will have no effect.

The http client invoker treats timeouts configured for the connection and per invocation timeouts the same, since it
opens anew Ht t pURLConnect i on With each invocation. Any nonnegative per invocation timeout value will override
atimeout value configured at client invoker creation time.

If the application is using a jdk of generation 1.5 or later, then the client invoker will use the
j ava. net . Ht t pURLConnect i on methods set Connect Ti meout () and set ReadTi neout () methods. Note that in this
case the timeout value will be allowed twice, once to create the connection and once to read the invocation result.

If an earlier jdk is being used, the client invoker will simulate atimeout by making the connection and executing the
invocation in a separate thread, which it waits on for the specified timeout. The threads are drawn from athread pool,
which is configurable. A custom thread pool may be set by calling the HTTPC i ent | nvoker method

public void setTi meout Thr eadPool (org.j boss. util.threadpool . Thr eadPool pool);

where the ThreadPool interface is available from the anonomous JBoOss svn repository
a http://anonsvn.jboss.org/repos/common/common-core/trunk/src/main/javal - [http://anonsvn.jboss.org/repos/
common/common-core/trunk/src/main/javal. If a thread pool is not set, it will default to an instance of

JBoss June 22, 2008 84

http://anonsvn.jboss.org/repos/common/common-core/trunk/src/main/java

Configuration

org.jboss. util.threadpool . Basi cThreadPool , which may be configured with the following parameters, defined
asconstantsinorg. j boss. renoting. transport. http. HTTPC i ent | nvoker :

MAX_NUM_TIMEOUT_THREADS (actua value "maxNumTimeoutThreads"): the number of threads in the
threadpool. The default valueis 10.

MAX_TIMEOUT_QUEUE_SIZE (actual value"maxTimeoutQueueSize"): the size of thethread pool queue, which
holds execution requests when all of the threads are in use. The default value is 1024.

5.8.3.3. Quick client disconnect

org.jboss.renoting. dient appliesper invocation timeoutsin itsrenoveli st ener () and di sconnect () methods
to createa " quick disconnect" facility. If, for example, anor g. j boss. renot i ng. Connect i onVal i dat or (See Network
Connection Monitoring) reports its suspicion that a connection is failing, the application might want to restrict, or
even eliminate, the time spent trying to access the network while unregistering callback handlers and disconnecting.
The quick disconnect facility isinvoked by calling the c i ent method

public void setDi sconnect Ti neout (i nt di sconnect Ti neout) ;

to set the disconnect timeout value to a nonnegative value. If the disconnect timeout valueis set, it will be applied as
the per invocation timeout value for all network activity in the methodsr emoveli st ener () and di sconnect (). Asa
special casg, if the disconnect timeout valueisset to 0, a i ent will simply skip any network i/o in these two methods.

5.9. Configuration by properties

This section covers configuration properties by constant values and bean properties for individual classes. This
will duplicate some of the configuration properties already covered and is just another view to some of the same
information.

org.jboss.remoting.InvokerLocator

SERVER_BIND_ADDRESS (actual value is 'jboss.bind.address) - indicates the system property key for bind
address that should be used.

BIND_BY_HOST (actua value is 'remoting.bind_by host") - indicates the system property key for if the local
bind address should be by host name (e.g. InetAddress.getl ocalHost().getHostName()) or if should be by IP (e.g.
InetAddress.getL ocal Host().getHostAddress()). The default is 'True', meaning will will use local host name. This
configuration only applies when the initial bind addressis 0.0.0.0 (or InvokerLocator. ANY).

DATATYPE (actua vaue is 'datatype’) - indicates the marshaling datatype that should be used for a
particular invoker. Each invoker has its own default marshaler and unmarshaller based on default datatype.
For examle, the socket transport has a default datatype of 'serializable', which is automatically registered with
the MarshalFactory and associated by default with org.jboss.remoting.marshal.serializable.SerializableMarshaller
and org.jboss.remoting.marshal .serializable. SerializableUnMarshaller. The marshaller and unmarshaller used by an
invoker can be overriden by setting the 'datatype’ parameter within the LocatorInvoker. For example, could use a
locator url of:

JBoss June 22, 2008 85

Configuration

socket : // myhost : 6500/ ?dat at ype=t est

which would cause the socket invoker to use the marshaller and unmarshaller registered with the Marshal Factory
under the datatype 'test'. Of course, this requires that the marshaller and unmarshaller implementations to be used
have already been registered with the Marshal Factory (otherwise will get an exception).

SERIALIZATIONTYPE (actua value is 'seridizationtype’) - indicates the serialization implementation to use.
Currently, the only possible values are ‘java and 'jboss. Java seridization is the default. Setting to ‘jboss’ will
cause JBoss Seridization to be used. In implementation, this equates to the parameter that will be passed to the
SerializationStreamFactory.getM anagerinstance() method. This configuration can be set as an invoker locator url
parameter (e.g. socket://myhost:5400/ ?seriali zationtype=jboss) or as an entry to the configuration Map passed when
constructing aremoting client or server.

MARSHALLER (actual value is 'marshaler) - used to indicate which marshaler implementation
should be used by the invoker. This is an override for whatever the invoker's default implementation
is. This can be set as a parameter of the invoker locator url (eg. socket://myhost:6500/?
marshaller=org.jboss.test.remoting.marshall.dynamic.remote.http. TestMarshaller). Using this configuration requires
that thevalue bethefully qualified classname of the marshaller implementation to use (which must be on the classpath,
have avoid constructor, and implement the org.jboss.remoting.marshal.Marshaller interface).

UNMARSHALLER (actua vaue is 'unmarshaller’) - used to indicate which unmarshaller implementation
should be used by the invoker. This is an override for whatever the invoker's default implementation
is. This can be set as a parameter of the invoker locator url (eg. socket://myhost:6500/?
unmarshaller=org.jboss.test.remoting.marshall.dynamic.remote.http. TestUnMarshaller). Using this configuration
requires that the value be the fully qualified classname of the unmarshaller implementation to use (which must be on
the classpath, have avoid constructor, and implement the org.jboss.remotng.marshal.UnMarshaller interface).

LOADER_PORT (actual valueis'loaderport’) - indicates the port number where the class|oader server resides. This
can be used when is possible that aclient may not have particular classeslocally and would want to load them from the
server dynamically. This property can be set as a parameter to the invoker locator url. A clasic example of when this
might be used would be in conjunction with using custom marshalling. For example, if have configured a server to
use custom marshaller and unmarshaller that the client will not have accessto, could create ainvoker locator such as:

socket : // nyhost : 6500/ ?dat at ype=t est & oader port =6501&
mar shal | er=org. j boss.test.renoting. marshal | . dynami c.renote. http. Test Marshal | er &
unmar shal | er=or g. j boss. test.renoting. marshal | . dynami c. renot e. htt p. Test UnMar shal | er

When the client invoker begins to make an invocation, will try to look up marshaller and unmarshaller based
on type (‘test' in this case) and when can not find a registry entry for it, will try to load the TestMarshaller and
TestUnMarshaller from the classpath. When the classes can not be found locally, will make a call to the loader server
(on port 6501) to load the classes locally. Once they are retrieved from the server, will be registered locally, so isa
onetime only event (as next time will be found in the registry).

This can work for loading any remote server classes, but requiresthe loaderport be included in theinvoker locator url.

BYVALUE (actua value is 'byvalue’) - indicates if when making local invocations (meaning client and
server invoker exists within same jvm), the marshalling will be done by value, instead of the default, by
reference. Using this configuration, the marshalling will actually perform a clone of the object instance (see
org.jboss.remoting.serialization.SerializationM anager.createM arshalledV alueForClone()). Value for this property

JBoss June 22, 2008 86

Configuration

should be of type String and be either 'true’ or 'false’. In releases prior to 2.0.0, using this configuration setting would
have forced invokers to be remote, which can now be done via FORCE_REMOTE config (see below).

FORCE_REMOTE (actua value is ‘force_remote') - indicates if when making local invocations (meaning client
and server invoker existswithin samejvm), the remote invokers should be used instead of local invoker. |'s equivalent
to making invocations as though client and server were in different jvms). Vaue for this property should be of type
String and be either 'true’ or 'false'.

CLIENT_LEASE (actua valueis'leasing) - indicatesif client should try to automatically establish alease with the
server. Isfalse by default. Value for this property should be of type String and be either 'true’ or 'false'.

CLIENT_LEASE_PERIOD (actual valueis'lease _period') - defines what the client lease period should be in the
case that server side leasing is turned on. Value for this parameter key should be the number of milliseconds to wait
before each client lease renewa and must be greater than zero in order to be recognized. If this property is not set
(and CLIENT_LEASE is), will use the lease period as specified by the server.

org.jboss.remoting.Client

RAW (actual value is 'rawPayload’) - key to use for the metadata Map passed when making an invoke() call and
wish for the invocation payload to be sent as is and not wrapped within a remoting invocation request object. This
should be used when want to make direct calls on systems outside of remoting (e.g. making an http POST request
to aweb service).

ENABLE_LEASE (actua value is 'enablelease’) - key for the configuration map passed to the Client constructor
to indicate that client should make initial request to establish lease with server. The value for this should be either a
String that java.lang.Boolean can evaluate or ajava.lang.Boolean. By default, leasing is turned off, so this property
would be used to turn on leasing for the client.

HANDSHAKE_COMPLETED_LISTENER (actua vaue is 'handshakeCompletedListener’) - key for the
configuration map passed to the Client constructor providing a ssl javax.net.ssl.HandshakeCompletedListener
implementation, which will be called on when ssl handshake completed with server.

The following three configuration properties are only useful when using one of the following Client methods:

public void addLi stener (I nvokerCal | backHandl er cal | backhandl er, Map netadata, Object cal |l backHandl er Obj ec
publ i c voi d addLi stener (I nvokerCal | backHandl er cal | backhandl er, Map netadata, Object call backHandl er Obj ec

CALLBACK_SERVER_PROTOCOL (actua valueis 'callbackServerProtocol’) - key for the configuration when
adding a callback handler and internal callback server connector is created. The value should be the transport protocol
to be used. By default will use the same protocol as being used by this client (e.g. http, socket, rmi, multiplex, etc.).

CALLBACK_SERVER_HOST (actua value is 'callbackServerHost") - key for the configuration when adding a
callback handler and internal callback server connector is created. The value should be the host name to be used. By
default will use the result of calling InetAddress.getL ocalHost().getHostAddress().

CALLBACK_SERVER_PORT (actual value is 'callbackServerPort") - key for the configuration when adding a
callback handler and internal callback server connector is created. The value should be the port to be used. By default
will find arandom unused port.

JBoss June 22, 2008 87

Configuration

Bean properties (meaning have getter/setter):

Sessionld - session id used when making invocations on server invokers. There is a default unique id automatically
generated for each Client instance, so unless you have a good reason to set this, do not set this.

Subsystem - the subsystem being used when routing invocation requests on the server side. Specifing a subsystem
is only needed when server has multiple handlers registered (which will each have their own associated subsystem).
Best if specified using Client constructor.

MaxNumber OfT hr eads - the maximum number of threads to use within client pool for one way invocations on the
client side (meaning oneway invocation is handled by thread in this pool and user's call returnsimmediately) Default
valueisMAX_NUM_ONEWAY_THREADS (whose valueis 10).

OnewayThreadPool - the thread pool being used for making one way invocations on the client side.
If one has not been specifically set via configuration or call to set it, will always return instance of
org.jboss.util.threadpool .BasicT hreadPool .

SocketFactory - instance of javax.net. SocketFactory, which can only be set on the Client before the connect() method
has been called. Otherwise, a runtime exception will be thrown.

Marshaller - the marshaller implementation that should be used by the client invoker (transport). This overrides the
client's default marshaller (or any set within configuration).

UnMarshaller - theunmarshaller implementation that should be used by the client invoker (transport). Thisoverrides
the client's default unmarshaller (or any set within configuration).

org.jboss.remoting.Remoting

CUSTOM_SERVER SOCKET_FACTORY (actua vaue is 'customServerSocketFactory) - key for the
configuration map passed to a Connector to indicate the server socket factory to be used. This will override the
creation of any other socket factory. Value must be an instance of javax.net.ServerSocketFactory.

CUSTOM_SOCKET_FACTORY (actual value is 'customSocketFactory") - key for the configuration map passed
to aClient to indicate the socket factory to be used. Vaue must be instance of javax.net.SocketFactory.

SOCKET_FACTORY_NAME (actual value is 'socketFactory') - key for the configuration map passed to a
Client to indicate the classname of the socket factory to be used. Value should be fully qualified classname of
class that is an instance of javax.net.SocketFactory and has a void constructor. This property will not be used if
CUSTOM_SOCKET_FACTORY isalso set.

org.jboss.remoting.Serverinvoker

MAX_NUM_ONEWAY_THREADS KEY (actua vaue is 'maxNumThreadsOneway") - key for the maximum
number of threads to be used in the thread pool for one way invocations (server side). This property is only used
when the default oneway thread pool is used.

ONEWAY_THREAD_POOL_CLASS KEY (actual value is ‘onewayThreadPool’) - key for setting the setting
the oneway thread pool to use. The value used with this key will first be checked to see if is a JMX

JBoss June 22, 2008 88

Configuration

ObjectName and if so, try to look up associated mbean for the ObjectName given and cast to type
org.jboss.util.threadpool . ThreadPool M Bean (via M BeanServerInvocationHandler.newProxylInstance()). If the value
isnot aJMX ObjectName, will assume is a fully qualified classname and load the coresponding class and create a
new instance of it (which will require it to have avoid constructor). The newly created instance will then be cast to
type of org.jboss.util.threadpool . ThreadPool.

SERVER_BIND_ADDRESS KEY (actua value is 'serverBindAddress) - key for setting the address the server
invoker should bind to. The value can be either host name or IP.

CLIENT_CONNECT_ADDRESS KEY (actua vaueis 'clientConnectAddress) - key for setting the address the
client invoker should connecto to. This should be used when client will be connecting to server from outside the
server's network and the external address is different from that of the internal address the server invoker will bind to
(e.g. using NAT to expose different external address). Thiswill mostly be useful when client uses remoting detection
to discover remoting servers. The value can be either host name or IP.

SERVER_BIND_PORT_KEY (actua valueis'serverBindPort') - key for setting the port the server invoker should
bind to. If the value supplied is less than or equal to zero, the server invoker will randomly choose afree port to use.

CLIENT_CONNECT_PORT_KEY (actua valueis'clientConnectPort') - key for setting the port the client invoker
should connect to. This should be used when client will be connecting to server from outside the server's network and
the external port is different from that of the internal port the server invoker will bind to (e.g. using NAT to expose
different port routing). Thiswill be mostly useful when client uses remoting detection to discover remoting servers.

CLIENT_LEASE _PERIOD (actua value is 'clientLeasePeriod’) - key used for setting the amount of time (in
milliseconds) that a client should renew its lease. If this value is not set, the default of five seconds (see
DEFAULT_CLIENT_LEASE PERIOD), will be used. This value will also be what is given to the client when it
initially queries server for leasing information.

TIMEOUT (actual valueis'timeout’) - key for setting the timeout value (in milliseconds) for socket connections.

SERVER_SOCKET_FACTORY (actua value is 'serverSocketFactory") - key for setting the value for the server
socket factory to be used by the server invoker. The value can be either a IMX Object name, in which case will
lookup the mbean and create a proxy to it with type of org.jboss.remoting.security.ServerSocketFactoryM Bean
(via MBeanServerInvocationHandler.newProxylnstance()), or, if not a IMX ObjectName, will assume is the fully
qualified classname to the implementation to be used and will load the class and create a new instance of it (which
requiresit to have avoid constructor). The instance will then be cast to type javax.net.ServerSocketFactory.

BLOCKING_MODE (actua vaue is "blockingMode'): if set to Serverlnvoker. BLOCKI NG (actual value
"blocking"), org. j boss. renoting. O ient.getCal |l backs() Will do blocking pull callbacks and cal | backPol | er
will do blocking polled callbacks, if set to Serverlnvoker. NONBLOCKI NG (actual value "nonblocking"),
Cient.getCall backs() will do non-blocking pull callbacks and cal | backPol I er will do non-blocking polled
callbacks.

BLOCKING_TIMEOUT (actual valueis "blockingTimeout"): the timeout value used for blocking callback.

REGISTER_CALLBACK_LISTENER (actua value is ‘“registerCalbackListener"): determines if
org.jboss.renoting. cal | back. Server I nvoker Cal | backHandl er S should register as
org. j boss. renoting. Connecti onLi st ener Swith leases. The default value is "true”.

JBoss June 22, 2008 89

Configuration

Bean properties (meaning have getter/setter):

Server SocketFactory - implementation of javax.net.ServerSocketFactory to be used by the server invoker. Thistakes
precedence over any other configuration for the server socket factory.

Timeout - timeout (in milliseconds) for socket connection. If set after create() method called, thisvalue will override
value set by TIMEOUT key.

LeasePeriod - the amount of time (in milliseconds) that a client should renew its lease. If this value is not set, the
default of five seconds (see DEFAULT_CLIENT_LEASE PERIOD), will be used. This value will also be what is
giventotheclient whenitinitialy queries server for leasing information. If set after create() method called, thisvalue
will override value set by CLIENT_LEASE_PERIOD key.

MaxNumber OfOnewayT hreads - the maximum number of threads to be used in the thread pool for one way
invocations (server side). This property is only used when the default oneway thread pool is used. If set after create()
method called, this value will override value set by MAX_NUM_ONEWAY_THREADS KEY key.

OnewayT hreadPooal - the oneway thread pool to use.

org.jboss.remoting.callback.CallbackPoller

CALLBACK_POLL_PERIOD (actua vaue is 'calbackPollPeriod) - key for setting the frequency (in
milliseconds) in which Client's internal callback poller should poll server for waiting callbacks. The default value
isfive seconds.

CALLBACK_SCHEDULE _MODE (actud value is "scheduleMode™): may be set
to either Cal | backPol | er. SCHEDULE_FI XED_RATE (actua value "schedul eFixedRate™) or
Cal | backPol | er. SCHEDULE_FI XED DELAY (actual value "scheduleFixedDelay"). In either case, polling will take
place at approximately regular intervals, but in the former case the scheduler will attempt to perform each poll
CALLBACK_POLL_PERIOD milliseconds after the previous attempt, and in the latter case the scheduler will
attempt to schedule polling so that the average interval will be approximately CALLBACK _POLL_PERIOD
milliseconds. Cal | backPol | er . SCHEDULE_FI XED_RATE isthe default.

REPORT_STATISTICS (actual valueis"reportStatistics'): The presence of thiskey in net adat a, regardless of its
value, will cause the cal | backPol | er to print statistics that might be useful for configuring the other parameters..

Cal | backPol | er configuration is only necessary when using one of the following Client methods:

publ i c voi d addLi stener (I nvokerCal | backHandl er cal | backhandl er, Map netadata, Object cal |l backHandl er Obj ec
public voi d addLi stener (I nvoker Cal | backHandl er cal | backhandl er, Map met adata, Object call backHandl er Obj ec

The keys should be among the entries in the metadata Map passed. This will also only apply when the underlying
transport is uni-directional (e.g. socket, http, rmi). Bi-directional transports will not need to poll.
org.jboss.remoting.callback.CallbackStore

FILE_PATH_KEY (actua value is 'StoreFilePath’) - key for setting the directory in which to write the callback
objects. The default value is the property value of ‘jboss.server.datadir' and if this is not set, then will be 'data.

JBoss June 22, 2008 90

Configuration

Will then append ‘remoting’ and the callback client's session id. An example would be 'data\remoting\5¢c4005!-9jijyx-
e5b6xyph-1-e5b6xyph-2'.

FILE_SUFFIX_KEY (actua vaueis'StoreFileSuffix’) - key for setting the file suffix to use for the callback objects
written to disk. The default valueis 'ser'.

org.jboss.remoting.callback.DefaultCallbackErrorHandler

CALLBACK_ERRORS ALLOWED (actual value is 'calbackErrorsAllowed) - key for
setting the number of calback exceptions that will be alowed when cdling on
org.jboss.remoting.callback.lnvokerCallbackHandl er.handleCallback(Callback callback) before cleaning up the
callback listener. This only appliesto push callback. The default if this property isnot set isfive.

org.jboss.remoting.callback.ServerinvokerCallbackHandler

CALLBACK_STORE_KEY (actua vaue is 'callbackStore') - key for specifing the callback store to be used.
The value can be either a JIMX ObjectName or a fully quaified class name; either way, must implement
org.jboss.remoting.SerializableStore. If using class name, the calback store implementation must have a void
constructor. The default isto use the org.jboss.remoting.callback.Null CallbackStore.

CALLBACK_ERROR HANDLER_KEY (actua vaue is 'calbackErrorHandler’) - key for specifing the
callback exception handler to be used. The value can be either a JIMX ObjectName or a fully qualified
class name, either way, must implement org.jboss.remoting.callback.CallbackErrorHandler. If using class
name, the callback exception handler implementation must have a void constructor. The default is to use
org.jboss.remoting.callback.DefaultCallbackErrorHandl er.

CALLBACK_MEM_CEILING (actua valueis'callbackMemCeiling') - key for specifying the percentage of free
memory available before callbacks will be persisted. If the memory heap allocated has reached its maximum value
and the percent of free memory available is less than the callbackMemCeiling, this will trigger persisting of the
callback message. The default valueis 20.

org.jboss.remoting.detection.jndi.JNDIDetector
Bean properties (meaning have getter/setter):

SubContextName - sub context name under which detection messages will be bound and looked up.

org.jboss.remoting.transport.bisocket.Bisocket

IS CALLBACK_SERVER (actua value is "isCallbackServer"): when a bisocket server invoker receives this
parameter with a value of true, it avoids the creation of a Server Socket . Therefore, IS CALLBACK_SERVER
should be used on the client side for the creation of a callback server. The default value isfalse.

PING_FREQUENCY (actual valueis "pingFrequency"): The server side uses this value to determine the interval,
in milliseconds, between pings that it will send on the control connection. The client side uses this value to calculate
the window in which it must receive pings on the control connection. In particular, the window is ping frequency *
ping window factor. See also the definition of PING_WINDOW_FACTOR. The default value is 5000.

JBoss June 22, 2008 91

Configuration

PING_WINDOW_FACTOR (actual valueis"pingWindowFactor"): The client side uses this value to calculate the
window in which it must receive pings on the control connection. In particular, the window is ping frequency * ping
window factor. See also the definition of PING_FREQUENCY . The default valueis 2.

MAX_RETRIES (actua value is "maxRetries'): This parameter is relevant only on the client side, where the
Bi socket O i ent | nvoker USesit to govern the number of attempts it should make to get the address and port of the
secondary Ser ver Socket , and the Bi socket Server | nvoker Usesit to govern the number of attemptsit should make
to create both ordinary and control sockets. The default valueis 10.

MAX_CONTROL_CONNECTION_RESTARTS (actua value is "maxControlConnectionRestarts'): The client
side uses this value to limit the number of times it will request a new control connection after a ping timeout. The
default valueis 10.

SECONDARY_BIND_PORT (actual value is "secondaryBindPort"): The server side uses this parameter to
determine the bind port for the secondary Ser ver Socket .

SECONDARY_CONNECT_PORT (actual valueis "secondaryConnectPort"): The server side uses this parameter
to determine the connect port used by the client side to connect to the secondary Ser ver Socket .

org.jboss.remoting.transport.http.HTTPMetadataConstants

The following are keys to use to get corresponding values from the Map returned from call to
org.jboss.remoting.l nvocationRequest.getRequestPayload() within a org.jboss.remoting.ServerlnvocationHandler
implementation. For example:

public Object invoke(lnvocationRequest invocation) throws Throwabl e

{

Map headers = invocation. get Request Payl oad() ;

where variable 'headers will contain entries for the following keys.

METHODTY PE (actual valueis'MethodType) - key for getting the method type used by client in http request. This
will be populated within the Map returned from call to org.jboss.remoting.lnvocationRequest.getRequestPayload()
within a org.jboss.remoting.ServerlnvocationHandler implementation. For example:

public Object invoke(lnvocationRequest invocation) throws Throwabl e

{
Map headers = invocati on. get Request Payl oad();
String nethodType = (String) headers. get (HTTPMet adat aConst ant s. METHODTYPE) ;
i f (met hodType != null)

{
i f (met hodType. equal s(" GET"))

PATH (actual value is 'Path’) - key for getting the path from the url request from the calling client. This will be
populated within the Map returned from call to org.jboss.remoting.InvocationRequest.getRequestPayload() within a
org.jboss.remoting.ServerlnvocationHandl er implementation. For example:

public Object invoke(lnvocati onRequest invocation) throws Throwabl e

{

Map headers = invocati on. get Request Payl oad() ;

JBoss June 22, 2008 92

Configuration

String path = (String) headers. get (HTTPMet adat aConst ant s. PATH) ;

HTTPVERSION (actua vaueis'HttpVersion') - key for getting the HTTP version from the calling client request
(eg. HTTP/1.1).

RESPONSE_CODE (actua vaueis'ResponseCode) - key for getting and setting the HT TP response code. Will be
used as key to get the response code from metadata Map passed to the Client's invoke() method after the invocation
has been made. For example:

Map netadata = new HashMap();
Cbj ect response = renotingdient.invoke(nyPayl oadChj ect, netadata);
I nt eger responseCode = (I nteger) netadata.get(HTTPMet adat aConst ant s. RESPONSE_CCODE) ;

Will be used as key to put the response code in the return payload map from invocation handler. For example:

public Object invoke(lnvocationRequest invocation) throws Throwabl e
{
Map responseHeaders = invocation. get Ret urnPayl oad();
responseHeader s. put (HTTPMet adat aConst ant s. RESPONSE_CODE, new | nt eger (202));

RESPONSE_CODE_MESSAGE (actua value is 'ResponseCodeM essage) - key for getting and setting the HTTP
response code message. Will be used as the key to get the response code message from metadata Map passed to the
Client'sinvoke() method after the invocation has been made. For example:

Map netadata = new HashMap();
Cbj ect response = renotingdient.invoke(nyPayl oadCbj ect, netadata);
String responseCodeMessage = (String) netadata.get(HTTPMet adat aConst ant s. RESPONSE_CODE_ MESSA(

Will be used askey to put the response code message in the return payload map from invocation handler. For example:

publ i c Object invoke(lnvocati onRequest invocation) throws Throwabl e
{
Map responseHeaders = invocation. get Ret urnPayl oad() ;
responseHeader s. put (HTTPMet adat aConst ant s. RESPONSE_CODE_MESSAGE, " Custom response code and nmessage

NO_THROW_ON_ERROR (actual valueis'NoThrowOnError') - key indicatingif http clientinvoker (for transports
http, https, servlet, and sslservlet) should throw an exception if the server response code is equal to or greater than
400. Unless set to true, the client invoker will by default throw either the exception that originated on the server (if
using remoting server) or throw aorg.jboss.remoting.transport.http.WebServerError, whose message will be the error
html returned from the web server.

RETURN_EXCEPTION (actua value is ‘return-exception’) - key indicating if
org.jboss.renoting. transport.servl et. Servl et Server | nvoker should throw an exception instead of theorginal
error handling behavior of returning an error message.

For every http client request made from remoting client, a remoting version and remoting specific user agent will be
set asarequest property. The request property key for the remoting version will be 'JBoss-Remoting-Version' and the

JBoss June 22, 2008 93

Configuration

value will be set based on return from call to Version.getDefaultVersion(). The 'User-Agent' request property value
will be set to the evaluation of "' JBossRemoting - " + Version.VERSION'.

org.jboss.remoting.transport.http.ssl.HTTPSClientInvoker

IGNORE_HTTPS HOST (actua value is 'org.jboss.security.ignoreHttpsHost') - key indicating if the http client
invoker (for transports https and sslservlet) should ignore host name verification (meaning will not check for URL's
hostname and server's identification hostname mismatch during handshaking). By default, if this not set to true,
standard hostname verification will be performed.

HOSTNAME_VERIFIER (actual value is 'hostnameVerifier') - key indicating the hostname verifier that should
be used by the http client invoker. The value should be the fully qualified classname of class that implements
javax.net.ssl.HostnameV erifier and has avoid constructor.

org.jboss.remoting.transport.rmi.RMIServerinvoker

REGISTRY_PORT_KEY (actua valueis'registryPort’) - the port on which to create the RMI registry. The default
is 3455. This also needsto have the isParam attribute set to true.

org.jboss.remoting.transport.socket.MicroSocketClientinvoker

TCP_NODELAY_FLAG (actual vaue is 'enableTcpNoDelay") - can be either true or false and will indicate if
client socket should have TCP_NODELAY turned on or off. TCP_NODELAY isfor a specific purpose; to disable
the Nagle buffering algorithm. It should only be set for applications that send frequent small bursts of information
without getting an immediate response; where timely delivery of data is required (the canonical example is mouse
movements). The default isfalse.

MAX_POOL_SIZE_FLAG (actua valueis'clientMaxPool Size') - the client side maximum number of threads. The
default is 50.

CLIENT_SOCKET_CLASS FLAG (actua valueis 'clientSocketClass) - specifies the fully qualified class name
for the custom SocketWrapper implementation to use on the client. Note, will need to make sure thisis marked as a
client parameter (using the 'isParam’ attribute). Making this change will not affect the marshaller/unmarshaller that
is used, which may also be arequirement.

org.jboss.remoting.transport.socket.ServerThread

CONTINUE_AFTER_TIMEOUT (actua value "continueAfterTimeout") - indicates what a server thread should
do after experiencing aj ava. net . Socket Ti meout Except i on. If set to "true”, or if JBossSerialization is being used,
the server thread will continue to wait for an invocation; otherwise, it will return itself to the thread pool.

org.jboss.remoting.transport.socket.SocketServerinvoker

CHECK_CONNECTION_KEY (actua value is 'socket.check_connection’) - key for indicating if socket invoker
should continue to keep socket connection between client and server open after invocations by sending a ping on the
connection before being re-used. The default for thisisfalse.

JBoss June 22, 2008 94

Configuration

SERVER_SOCKET_CLASS FLAG (actual valueis 'serverSocketClass) - specifiesthe fully qualified class name
for the custom SocketWrapper implementation to use on the server.

JBoss June 22, 2008 95

Sending streams

Remoting supports the sending of InputStreams. It isimportant to note that this feature DOES NOT copy the stream
data directly from the client to the server, but is a true on demand stream. Although this is obviously slower than
reading from a stream on the server that has been copied locally, it does allow for true streaming on the server. It
also alows for better memory control by the user (versus the framework trying to copy a 3 Gig file into memory
and getting out of memory errors).

Use of this new feature is simple. From the client side, there is a method in org.jboss.remoting.Client with the
signature:

public Qoject invoke(lnputStreaminputStream bject param throws Throwabl e

So from the client side, would just call invoke as done in the past, and pass the InputStream and the
payload as the parameters. An example of the code from the client side would be (this is taken directly from
org.jboss.test.remoting.stream.StreamingTestClient):

String param = "foobar";
File testFile = new File(fileURL.getFile());

bject ret = renptingdient.invoke(filelnput, paran);

From the server side, will need to implement org. j boss. renoti ng. st ream Streanl nvocat i onHandl er instead
of org.j boss. renmpting. Server | nvocat i onHandl er . StreamlnvocationHandler extends ServerlnvocationHandler,
with the addition of one new method:

public Object handl eStreanm(| nput Stream stream Cbject param

The stream passed to this method can be called on just as any regular local stream. Under the covers, the InputStream
passed isrealy proxy to thereal input stream that existsin the client's VM. Subsequent callsto the passed stream will
actually be converted to calls on the real stream on the client viathis proxy. If the client makes an invocation on the
server passing an InputStream as the parameter and the server handler does not implement Streamlnvocationhandler,
an exception will be thrown to the client caller.

If want to have more control over the stream server being created to send the stream data back to the caller, instead
of letting remoting create it internally, can do this by creating a Connector to act as stream server and pass it when
making Client invocation.

public Object invoke(lnputStreaminputStream Gbject param Connector streamConnector) throws rrhrovwabl e

JBoss June 22, 2008 96

Sending streams

Note, the Connector passed must already have been started (else an exception will be thrown). The stream handler
will then be added to the connector with the subystem 'stream'. The Connector passed will NOT be stopped when
the stream is closed by the server's stream proxy (which happens automatically when remoting creates the stream
server internally).

Can also call i nvoke() method on client and pass the invoker locator would like to use and allow remoting to create
the stream server using the specified locator.

public Object invoke(lnputStreaminputStream bject param | nvokerLocator streanServerlLocator) throws Tt

In this case, the Connector created internally by remoting will be stopped when the stream is closed by the server's
stream proxy.

ItisVERY IMPORTANT that the Streaml nvocationHandler implementation close the InputStream when it finishes
reading, as will closethe real stream that lives within the client VM.

6.1. Configuration

By default, the stream server which runs within the client VM uses the following values for its locator uri:
transport - socket

host - triesto first get local host name and if that fails, the local ip (if that fails, localhost).

port - 5405

Currently, the only way to override these settingsisto set the following system properties (either viaJVM arguments
or viaSyst em set Property() method):

remoting.stream.transport - sets the transport type (rmi, http, socket, etc.)
remoting.stream.host - host name or ip address to use
remoting.stream.port - the port to listen on

These properties are important because currently the only way for a target server to get the stream data from the
stream server (running within the client JV M) isto have the server invoker make the invocation on anew connection
back to the client (see issues below).

6.2. Issues

Thisis afirst pass at the implementation and needs some work in regards to optimizations and configuration. In
particular, thereis aremoting server that is started to service requests from the stream proxy on the target server for
data from the original stream. This raises an issue with the current transports, since the client will have to accept
calls for the original stream on a different socket. This may be difficult when control over the client's environment
(including firewalls) may not be available. A bi-directional transport, called multiplex, isbeing introduced as of 1.4.0
release which will allow calls from the server to go over the same socket connection established by the client to the
server (JBREM-91). Thiswill make communications back to client much simpler from this standpoint.

JBoss June 22, 2008 97

Serialization

Serialization - how it works within remoting: In general, remoting will rely on afactory to provide the serialization
implementation, or org. j boss. renoting. seri al i zati on. Seri al i zati onManager , t0 be used when doing object
seridization. This factory is org.j boss.renoting. serialization. SerializationStreanFactory and is a (as
defined by its javadoc):

factory isfor defining the Object stream implemenations to be used along with creating those implemenations for use.
The main function will be to return instance of ObjectOutput and Objectinput. By default, the implementations will be
java.io.ObjectOutputStream and java.io.Objectl nputStream.

Currently there are only two different types of serialization implementations; 'java and 'jboss. The 'java type
USES org. j boss. renoting. serialization.inpl.java.JavaSerializati onManager as the SerializationManager
implementation and isbacked by standard Java serialization provide by the VM, which isthe default. The'jboss type
useSorg. j boss. renoting. serialization.inpl.jboss.JBossSerializationManager asthe SerializationManager
implementation and is backed by JBoss Serialization.

JBoss Seridlization is a new project under development to provide a more performant implementation of object
serialization. It complies with java serialization standard with three exceptions:

- SerialUID not needed

- javaio.Serializable is not required
- different protocol

JBoss Seridization requires JDK 1.5

It is possible to override the default SerializationManger implementation to be used by setting the system property
'SERIALIZATION' to the fully qualified name of the class to use (which will need to provide avoid constructor).

JBoss June 22, 2008 98

Network Connection Monitoring

Remoting has two mechanisms for monitoring the health of estabilished connections, which inform listeners on the
client and server sides when a possible connection failure has been detected.

8.1. Client side monitoring

Ontheclient side, anorg. j boss. renot i ng. Connect i onval i dat or periodically sends a PING message to the server
and reportsafailureif the response does not arrive within a specified timeout period. The PING is sent on onethread,
and another thread determines if the response arrives in time. Separating these two activities allows Remoting to
detect afailure regardless of the cause of the failure.

The creation of the Connecti onval i dat or is the responsibility of the org. j boss. renoting. dient class. All the
application code needs to do is to register an implementation of the org. j boss. renoti ng. Connect i onLi st ener
interface, which has only one method:

public voi d handl eConnecti onExcepti on(Throwabl e throwable, Client client);

What actionsthe Connect i onLi st ener choosesto take are up to the application, but disconnecting the d i ent might
be a reasonable strategy.

Thed i ent class has three methods for registering a Connect i onLi st ener :

publ i c void addConnecti onLi st ener (Connecti onLi stener |istener);
public voi d addConnecti onLi st ener (Connecti onLi stener |istener, int pingPeriod);
public void addConnecti onLi st ener (Connecti onLi stener |istener, Map netadata);

The second method supports configuring the frequency of PING messages, and the third method supports
more general configuration of the ConnectionVvalidator. Note that a given dient mantans a single
ConnectionVal idator, S0 the parameters in the metadata map are applied only on the first cal to
d i ent.addConnecti onLi st ener (). The following parameters are supported by Connecti onval i dat or, which is
where the parameter names are defined:

VALIDATOR_PING_PERIOD (actua value "validatorPingPeriod") - specifies the time, in milliseconds, that
elapses between the sending of PING messages to the server. The default value is 2000.

VALIDATOR_PING_TIMEOUT (actual value "validatorPingTimeout") - specifies the time, in milliseconds,
allowed for arrival of aresponse to a PING message. The default value is 1000.

For more configuration parameters, see I nteractions between client side and server side connection monitoring.

JBoss June 22, 2008 99

Network Connection Monitoring

Note, also, that Connect i onval i dat or createsaclient invoker to sendsthe PING messages, and it passesthe metadata
map to configure the client invoker.

8.2. Server side monitoring

A remoting server also has the capability to detect when aclient is no longer available. Thisis done by estabilishing
alease with the remoting clients that connect to a server. On the client side, an or g. j boss. renot i ng. LeasePi nger
periodically sends PING messages to the server, and on the server side an org. j boss. renoti ng. Lease informs
registered listenersif the PING doesn't arrive withing the specified timeout period.

Server side activation. To turn on server side connection failure detection of remoting clients, it is necessary to
satisfy two criteria. Thefirst isthat the client lease period is set and isavalue greater than 0. The value isrepresented
in milliseconds. The client lease period can be set by either the 'clientLeasePeriod' attribute within the Connector
configuration or by calling the Connect or method

public void setlLeasePeriod(long | easePeri odVal ue);

The second criterion is that an implementation of the or g. j boss. renot i ng. Connecti onLi st ener interfaceis added
as a connection listener to the Connector, via the method

publ i c void addConnecti onLi st ener (Connecti onLi stener |i stener)

Once bath criteria are met, the remoting server will turn on client leasing.
Note that there is no way to register aConnecti onLi st ener viaxml based configuration for the Connect or .

The ConnectionListener will be notified of both client faillures and client disconnects via the
handleConnectionException() method. If the client failed, meaning its lease was not renewed within configured
time period, the first parameter to the handleConnectionException() method will be null. If the client
disconnected in a regular manner, the first parameter to the handleConnectionException() method will be of type
ClientDisconnectedException (which indicates anormal termination). Note, the client's lease will be renewed on the
server with any and every invocation made on the server from the client, whether it be a normal invocation or aping
from the client internally.

The actual |ease window established on the server sideis dynamic based the rate at which the client updatesits |ease.
In particular, the lease window will always be set to lease period * 2 for any lease that does not have alease update
duration that is longer than 75% of the lease window (meaning if set lease period to 10 seconds and always update
that lease in less then 7.5 seconds, the lease period will always remain 10 seconds). If the update duration is greater
than 75% of the lease window, the lease window will be reset to the lease duration X 2 (meaning if set lease period
to 10 seconds and update that lease in 8 seconds, the new |ease window will be set to 16 seconds). Also, the lease
will not immediately expire on the first lease timeout (meaning did not get an update within the lease window). It
takes two consecutive timeouts before alease will expire and anotification for client connection failureisfired. This
essentially means that the time it will take before a connection listener is notified of a client connection failure will
be at least 4 X lease period (no exceptions).

Client side activation. By default, the client is not configured to do client leasing. To alow a client to do leasing,
either set the parameter "leasing” to "true" in the I nvoker Locat or or set the parameter d i ent. ENABLE_LEASE
(actual value "enableLease") to true in the I nvokerLocator or in the dient configuration map. [The use

JBoss June 22, 2008 100

Network Connection Monitoring

of dient.ENABLE_LEASE is recommended.] This does not mean that client will lease for sure, but will
indicate the client should cal on the server to see if the server has activated leasing and get the leasing
period suggested by the server. It is possible to override the suggested lease period by setting the parameter
org. j boss. renoting. | nvoker Locat or. CLI ENT_LEASE_PERI 0D (actual value "lease period") to avalue greater than
0 and less than the value suggested by the server. Note. If the client and server are local, meaning running within the
JVM, leasing (and thus connection notification) will not be activated, even if is configured to do so.

If leasing is turned on within the client side, thereisno API or configuration changes needed, unless want to override
as mentioned previously. When the client initially connectsto the server, it will check to seeif client leasing isturned
on by the server. If it is, it will internally start pinging periodically to the server to maintain the lease. When the
client disconnects, it will internally send message to the server to stop monitoring lease for this client. Therefore, it
isIMPORTANT that disconnect is called on the client when done using it. Otherwise, the client will continue to
make its ping call on the server to keep its lease current.

The client can aso provide extra metadata that will be communicated to the connection listener in case of failure by
supplying a metadata Map to the Client constructor. This map will be included in the Client instance passed to the
connection listener (via the handleConnectionException() method) via the Client's getConfiguration() method.

From the server side, there are two ways in which to disable leasing (i.e. turn leasing off). Thefirst isto call:

public void renmpoveConnecti onLi st ener (Connecti onLi stener |i stener) ‘

and remove all the registered ConnectionListeners. Once the last one has been removed, leasing will be disabled and
all the current leasing sessions will be terminated. The other way isto call:

public void setLeasePeriod(long | easePeri odVal ue) ‘

and pass a value less than zero. Thiswill disable leasing, preventing any new leases to be established but will alow
current leasing sessions to continue.

The following parameter is relevant to leasing configuration on the server side:

org.j boss.renoting. Server | nvoker. CLI ENT_LEASE PERI 0D (actual value "clientLeasePeriod") - specifies the
timeout period used by the server to determine if a PING is late. The default value is "5000", which indicates that
leasing will be activated if an or g. j boss. renoti ng. Connect i onLi st ener isregistered with the server. Thisisalso
the suggested |ease period returned by the server when the client inquires if leasing is activated.

The following parameters are relevant to leasing configuration on the client side:

org.jboss.remoting. dient. ENABLE_LEASE (actual value "enableLease") - if set to "true", will lead
org.jboss.renmoting. dient toattempt to set up alease with the server, if leasing is activated on the server.

org.j boss.renmoting. | nvoker Locat or. CLI ENT_LEASE (actual value "leasing") - if set to "true" in the
I nvoker Locat or, Will lead org. j boss. renoting. dient to attempt to set up a lease with the server, if leasing is
activated on the server. It is suggested that this parameter be avoided, in favor of O i ent. ENABLE_LEASE.

org. j boss. renoting. | nvoker Locat or. CLI ENT_LEASE PERI 0D (actual value "lease period") - if set to a value
greater than 0 and less than the suggested lease period returned by the server, will be used to determine the time
between PING messages sent by LeasePi nger .

JBoss June 22, 2008 101

Network Connection Monitoring

org.j boss. renoting. LeasePi nger. LEASE_PI NGER TI MEQUT (actual value "leasePingerTimeout") - specifiesthe per
invocation timeout value use by LeasePi nger when it sends PING messages. In the absence of a configured value,
the timeout value used by the d i ent that created the LeasePi nger will be used.

For examples of how to use server side connection listeners, reference org.jboss.test.remoting.|ease.L easeTestServer
and org.jboss.test.remoting.lease.L easeTestClient.

8.3. Interactions between client side and server side connection monito

As of Remoting release 2.2.2.SP7, the client side and server side connection monitoring mechanisms can be, and by
default are, more closely related, in two ways.

1. Iftheparameter org. j boss. renot i ng. Connecti onVal i dat or. TI E_TO LEASE (actual value"tieToL ease") is set
to true, then, when the server receives a PING message from anor g. j boss. renot i ng. Connect i onVal i dat or,
it will return a boolean value that indicates whether alease currently exists for the connection being monitored.
If leasing is activated on the client and server side, then a value of "false" indicates that the lease has failed,
and the Connect i onval i dat or will treat areturned value of "false” the same as atimeout; that is, it will notifiy
listeners of a connection failure. The default value of this parameter is "true". Note. If leasing is hot activated
on the client side, then this parameter has no effect.

2. If the parameter org.jboss.renoting. ConnectionValidator. STOP_LEASE_ON FAI LURE (actua value
"stopLeaseOnFailure") is set to true, then, upon detecting a connection failure, Connect i onval i dat or will stop
the LeasePi nger , if any, pinging alease on the same connection. The default valueis "true”.

TIE_TO_LEASE (actual value "tieToLease") - specifies whether Connecti onval i dat or should treat the failure of
arelated lease on the server side as a connection failure. The default valueis "true”.

STOP_LEASE_ON_FAILURE (actual value "stopLeaseOnFailure') - specifies whether, when a
Connect i onVal i dat or detectsaconnection failure, it should stop theassociated or g. j boss. renot i ng. LeasePi nger,
if any. The default valueis "true".

JBoss June 22, 2008 102

Transporters - beaming POJOs

There are many ways in which to expose a remote interface to a java object. Some require a complex framework
API based on a standard specification and some require new technologies like annotations and AOP. Each of these

have their own benefits. JBoss Remoting transporters provide the same behavior viaa simple APl without the need
for any of the newer technologies.

When boiled down, transporters take a plain old java object (POJO) and expose a remote proxy to it via JBoss
Remoting. Dynamic proxies and reflection are used to make the typed method calls on that target POJO. Since JBoss
Remoting is used, can select from a number of different network transports (i.e. rmi, http, socket, multiplex, etc.),

including support for SSL. Even clustering features can be included. See the transporter samples in the next chapter
for detailed examples of how to set up use of atransporter.

JBoss June 22, 2008 103

10

How to use it - sample code

Sample code demonstrating different remoting features can be found in the examples directory. They can be compiled
and run manually viayour IDE or viaan ant build file found in the examples directory. There are many sets of sample
code, each with their own package. Within most of these packages, there will be a server and a client class that will
need to be executed

10.1. Simple invocation

The simple invocation sample (found in the org.jboss.remoting.samples.simple package), has two classes;
SimpleClient and SimpleServer. It demonstrates making a simple invocation from a remoting client to a remoting
server. The SimpleClient class will create an InvokerL ocator object from a simple url-like string that identifies the
remoting server to call upon (which will be socket://localhost:5400 by default). Then the SimpleClient will create a
remoting Client class, passing the newly created InvokerL ocator. Next the Client will be called to make an invocation
on the remoting server, passing the request payload object (which is a String with the value of "Do something"). The
server will return aresponse from this call which is printed to standard output.

Within the SimpleServer, aremoting server is created and started. Thisis done by first creating an InvokerLocator,
just like was done in the SimpleClient. Then constructing a Connector, passing the InvokerLocator. Next, need to
call create() on the Connector to initialize all the resources, such as the remoting server invoker. Once created,
need to create the invocation handler. The invocation handler is the class that the remoting server will pass client
requests on to. The invocation handler in this sample simply returns the ssimple String "This is the return to
SamplelnvocationHandler invocation”. Once created, the handler is added to the Connector. Finally, the Connector
is started and will start listening for incoming client requests.

To run this example, can compile both the SimpleClient and SimpleServer class, then first run the SimpleServer and
then the SimpleClient. Or can go to the examples directory and run the ant target 'run-simple-server' and then in
another console window run the ant target 'run-simple-client’. For example:

ant run-sinpl e-server

ant then:

ant run-sinple-client

The output when running the SimpleClient should look like:

Calling renoting server with |ocator uri of: socket://I|ocal host: 5400
I nvoki ng server with request of 'Do sonething'
I nvocation response: This is the return to Sanpl el nvocati onHandl er invocation

The output when running the SimpleServer should look like:

JBoss June 22, 2008 104

How to useit - sample code

Starting renpting server with locator uri of: socket://I| ocal host: 5400
I nvocation request is: Do sonething
Ret urni ng response of: This is the return to Sanpl el nvocati onHandl er invocation

Note: will have to manually shut down the SimpleServer once started.

10.2. HTTP invocation

This http invocation sample (found in the org.jboss.remoting.samples.http package), demonstrates how the http
invoker can be used for avariety of http based invocations. Thistime, will start with the server side. The SimpleServer
class is much like the one from the previous simple invocation example, except that instead of using the 'socket'
transport, will be using the 'http' transport. Also, instead of using the Samplel nvocationHandler class as the handler,
will be using the WeblnvocationHandler (code shown below).

public class Wbl nvocati onHandl er i npl enents Serverl nvocati onHandl er

{

/1l Pre-defined returns to be sent back to client based on type of request.

public static final String RESPONSE VALUE = "This is the return to sinple text based http ijnvocation.”

public static final Conpl exCbject OBJECT RESPONSE VALUE = new Conpl exCbj ect (5, "dub”, false);

public static final String HTM._PAGE RESPONSE = "<htm ><head><titl| e>Test HTM. page</titl e><
"<h1>HTTP/ Servl et Test HITM. page</ hl><p>Thi s
"<p>Shoul d show up in browser or via invoker

/1 Different request types that client nmay nmake

public static final String NULL_RETURN PARAM = “"return_nul|";
public static final String OBJECT_RETURN PARAM = "return_object";
public static final String STRING RETURN PARAM = "return_string";

/**

* called to handle a specific invocation

*

* @aram i nvocation

* @eturn
* @hrows Throwabl e
*/
public Object invoke(lnvocationRequest invocation) throws Throwabl e
{
/1 Print out the invocation request
Systemout. println("lnvocation request fromclient is: " + invocation.getParaneter());
i f (NULL_RETURN_PARAM equal s(i nvocati on. get Paraneter()))
{
return null;
}
el se if(invocation.getParaneter() instanceof Conplex(oject)
{
return OBJECT_RESPONSE_VALUE;
}
el se i f (STRI NG _RETURN_PARAM equal s(i nvocati on. get Paraneter()))
{

Map responseMet adata = invocation. get Ret ur nPayl oad();

responseMet adat a. put (HTTPMet adat aConst ant s. RESPONSE_CCDE, new | nt eger (207));
responseMet adat a. put (HTTPMet adat aConst ant s. RESPONSE_CODE_MESSAGE, " Cust om response cod
/1 Just going to return static string as this is just sinple exanple code.

JBoss June 22, 2008 105

head><body
is a sing
client</t

e and ness

How to useit - sample code

return RESPONSE_VALUE;
}
el se
{
return HTM._PAGE_RESPONSE;
}
}

The most interesting part of the WeblnvocationHandler is its invoke() method implementation. First it will check to
see what the request parameter was from the InvocationRequest and based on what the valueis, will return different
responses. The first check isto seeif the client passed a request to return a null value. The second will check to see
if the request parameter from the client was of type ComplexObject. If so, return the pre-built ComplexObject that
was created as a static variable.

After that, will check to seeif the request parameter was for returning a simple String. Notice in this block, will set
the desired response code and message to be returned to the client. In this case, are setting the response code to be
returned to 207 and the response message to " Custom response code and message from remoting server”. These are
non-standard code and message, but can be anything desired.

Last, if have not found a matching invocation request parameter, will just return some simple html.

Now onto the client side for making the callsto this handler, which can befound in SimpleClient (code shown below).

public class Sinpledient

{
/Il Default |ocator val ues
private static String transport = "http";
private static String host = "l ocal host";

private static int port = 5400;

public void makel nvocation(String |ocatorURI) throws Throwabl e
{
/'l create InvokerLocator with the url type string
/1 indicating the target renoting server to call upon.
I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);
Systemout.println("Calling renoting server with locator uri of: " + locatorURl);

Cient remptingdient = new dient(locator);

/1 make invocation on renoting server and send conpl ex data object

/1 by default, the renpting http client invoker will use nethod type of POST,

/1 which is needed when ever sending objects to the server. So no netadata map needs
[/l to be passed to the invoke() nethod.

Cbj ect response = renptingdient.invoke(new Conpl exObject(2, "foo", true), null);

System out. println("\nResponse fromrenoting http server when making http POST request and sending

Map netadata = new HashMap();

/1 set the netadata so renpting client knows to use http GET nmethod type

nmet adat a. put ("TYPE", "CET");

/1 not actually sending any data to the renoting server, just want to get its response
response = renotingCdient.invoke((Object) null, netadata);

JBoss June 22, 2008 106

How to useit - sample code

Systemout. println("\nResponse fromrenoting http server when nmaki ng GET request:\n" + response);

/'l now set type back to POST and send a plain text based request
nmet adat a. put (" TYPE", "POST");
response = renotingdient.invoke(Wbl nvocati onHandl er. STRI NG_ RETURN_PARAM net adat a) ;

Systemout. println("\nResponse fromrenoting http server when naking http POST request and sendi ng

/1 notice are getting customresponse code and nessage set by web invocation handl er
I nt eger responseCode = (Integer) netadata.get(HTTPMet adat aConst ant s. RESPONSE_CODE) ;
String responseMessage = (String) netadata.get(HTTPMet adat aConst ant s. RESPONSE _CODE_MESSAGE) ;
System out . printl n("Response code fromserver: " + responseCode);
System out . println("Response nessage fromserver: " + responseMessage);

This SimpleClient, like the one before in the ssimple invocation example, starts off by creating an InvokerL ocator
and remoting Client instance, except is using http transport instead of socket. The first invocation made isto send a
newly constructed ComplexObject. If remember from the WeblnvocationHandler above, will expect this invocation
to return a different ComplexObject, which can be seen in the following system output line.

The next invocation to be made is asimple http GET request. To do this, must first et the remoting client know that
the method type needs to be changed from the default, which is POST, to be GET. Then make the invocation with a
null payload (since not wanting to send any data, just get datain response) and the metadata map just populated with
the GET type. This invocation request will return aresponse of html.

Then, will change back to being a POST type request and will pass a simple String as the payload to the invocation
request. This will return a simple String as the response from the WeblnvocationHandler. Afterward, will see the
specific response code and message printed to standard output, as well as the exception itself.

To run this example, can compile all the classes in the package, then first run the SimpleServer and then the
SimpleClient. Or can go to the examples directory and run the ant target 'run-http-server' and then in another console
window run the ant target 'run-http-client'. For example:

ant run-http-server ‘

and then:

ant run-http-client ‘

The output when running the SimpleClient should look like:

Response fromrenpting http server when neking http POST request and sending a conpl ex data object:
Conpl exCbject (i =5, s = dub, b = false, bytes.length = 0)

Response fromrenoting http server when nmeking GET request:
<ht ml ><head><titl e>Test HTM. page</titl e></head><body><hl1>HTTP/ Servl et Test HITM. page</hl><p>This is a si

Response fromrenpting http server when nmeking http POST request and sending a text based request:
This is the return to sinple text based http invocation.

Response code from server: 207

Response nessage from server: Customresponse code and nmessage from renoting server

JBoss June 22, 2008 107

How to useit - sample code

Notice that the first response is the ComplexObject from the static variable returned within WeblnvocationHandler.
The next response is html and then simple text from the WeblnvocationHandler. Can see the specific response code
and message set in the WeblnvocationHandler.

The output from the SimpleServer should look like:

Starting renoting server with |locator uri of: http://local host: 5400

Jan 26, 2006 11:39:53 PM org. apache. coyote. httpll. Htt pliBaseProtocol init

INFO Initializing Coyote HTTP/1.1 on http-127.0.0. 1-5400

Jan 26, 2006 11:39:53 PM org. apache. coyote. httpll. Htt pliBaseProtocol start

INFO. Starting Coyote HTTP/ 1.1 on http-127.0.0. 1-5400

I nvocation request fromclient is: ConplexCbject (i =2, s =foo, b =true, bytes.length = 0)
I nvocation request fromclient is: nul

I nvocation request fromclient is: return_string

First the information for the http server invoker iswritten, which includes the locator uri used to start the server and
the output from starting the Tomcat connector. Then will see the invocation parameter passed for each client request.

Sincethe SimpleServer should still be running, can open aweb browser and enter thelocator uri, http://local host:5400.
This should cause the browser to render the html returned from the WeblnvocationHandler.

10.3. Oneway invocation

The oneway invocation sample (found in the org.jboss.remoting.samples.oneway package) is very similar to the
simple invocation example, except in this sample, the client will make asynchronous invocations on the server.

The OnewayClient class sets up the remoting client as in the simple invocation sample, but instead of using the
invoke() method, it uses the invokeOneway() method on the Client class. There are two basic modes when making
a oneway invocation in remoting. The first is to have the calling thread to be the one that makes the actual call to
the server. This alows the caller to ensure that the invocation request at least made it to the server. Once the server
receives the invocation request, the call will return (and the request will be processed by a separate worker thread on
the server). The other mode, which is demonstrated in the second call to invokeOneway, allowsfor the calling thread
to return immediately and a worker thread on the client side will make the actual invocation on the server. Thisis
faster of the two modes, but if there is a problem making the request on the server, the original caller will be unaware.

The OnewayServer is exactly the same as the SimpleServer from the previous example, with the exception that
invocation handler returns null (since even if did return aresponse, would not be delivered to the original caller).

To run this example, can compile both the OnewayClient and OnewayServer class, then run the OnewayServer and
then the OnewayClient. Or can go to the examples directory and run the ant target 'run-oneway-server' and then in
another console window run the ant target 'run-oneway-client'. For example:

ant run-oneway-server ‘

and then:

ant run-oneway- cl i ent

The output when running the OnewayClient should look like:

JBoss June 22, 2008 108

How to useit - sample code

Calling renoting server with locator uri of: socket://Iocal host: 5400
Maki ng oneway invocation with payload of 'Oneway call 1.'
Maki ng oneway i nvocation with payl oad of 'Oneway call 2.°

The output when running the Oneway Server should look like:

Starting renoting server with locator uri of: socket://|ocal host: 5400
I nvocation request is: Oneway call 1.
I nvocation request is: Oneway call 2.

Note: will have to manually shut down the OnewayServer once started.

Although this example only demonstrates making one way invocations, could include thiswith callbacks (see further
down) to have asynchronous invocations with callbacks to verify was processed.

10.4. Discovery and invocation

Thediscovery sample (found in the org.jboss.remoting.sampl es.detection package) is similar to the smpleinvocation
example in that it makes a simple invocation from the client to the server. However, in this example, instead of
explicitly specifying the invoker locator to use for the target remoting server, it is discovered dynamically during
runtime. This example is composed of two classes; SimpleDetectorClient and SimpleDetectorServer.

The SimpleDetectorClient starts off by setting up the remoting detector. Detection on the client side requires
a few components, a IMX MBeanServer, one or more Detectors, and a NetworkRegistry. The Detectors will
listen for detection messages from remoting servers and then add the information for the detected servers to the
NetworkRegistry. They use JIMX to lookup and call on the NetworkRegistry. The NetworkRegistry uses IMX
Notifications to emit changes in network topology (remoting servers being added or removed).

In this particular example, the SimpleDetectorClient is registered with the NetworkRegistry as a notification listener.
When it receives notifications from the NetworkRegistry (via the handleNotification() method), it will check to
see if the notification is for adding or removing a remoting server. If it is for adding a remoting server, the
SimpleDetectorClient will get the array of InvokerL ocators from the NetworkNotification and make aremote call for
each. If the notification is for removing aremoting server, the SimpleDetectorClient will ssmply print out a message
saying which server has been removed.

The biggest change between the SimpleDetectorServer and the SimpleServer from the first sampleisthat have added
a method, setupDetector(), to create and start a remoting Detector. On the server side, only two components are
needed for detection; the Detector and aJMX MBeanServer. Asfor the setup of the Connector, it is exactly the same
as before. Notice that even though we have added a Detector on the server side, the Connector is not directly aware
of either Detector or the MBeanServer, so no code changes for the Connector setup is required.

To run this example, can compile both the SimpleDetectorClient and SimpleDetectorServer class, then run the
SimpleDetectorServer and then the SimpleDetectorClient. Or can go to the examples directory and run the ant target
'run-detector-server' and then in another window run the ant target ‘run-detector-client'. For example:

ant run-detector-server

and then:

JBoss June 22, 2008 109

How to useit - sample code

ant run-detector-client

Theinitial output when running the SimpleDetectorClient should look like:

ri Jan 13 09: 36: 50 EST 2006: [CLIENT]: Starting JBoss/Renoting client... to stop this client, kill it mar
Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: NetworkRegistry has been created

Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: NetworkRegi stry has added the client as a |istener

Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: MuilticastDetector has been created and is |istening for new Netw
Fri Jan 13 09:36:50 EST 2006: [CLIENT]: GOT A NETWORK- REA STRY NOTI FI CATI ON: j boss. net wor k. seryver. added
Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: New server(s) have been detected - getting | ocators and sendi ng v
Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: Sending wel cone nessage to renoting server with locator uri of: ¢
Fri Jan 13 09:36:50 EST 2006: [CLIENT]: The newy discovered server sent this response to our | come nes

The output when running the SimpleDetectorServer should ook like:

Fri Jan 13 09:36:46 EST 2006: [SERVER]: Starting JBoss/Renoting server... to stop this server,| kill it ne
Fri Jan 13 09: 36: 46 EST 2006: [SERVER]: This server's endpoint will be: socket://Ilocal host: 5400

Fri Jan 13 09: 36:46 EST 2006: [SERVER]: MilticastDetector has been created and is |istening for new Netw
Fri Jan 13 09:36:46 EST 2006: [SERVER]: Starting renoting server with |ocator uri of: socket://I|ocal host:
Fri Jan 13 09: 36: 46 EST 2006: [SERVER]: Added our invocation handler; we are now ready to begih accepti ng
Fri Jan 13 09: 36:50 EST 2006: [SERVER]: RECEI VED A CLI ENT MESSAGE: Wl cone Aboard!

Fri Jan 13 09: 36: 50 EST 2006: [SERVER]: Returning the foll owi ng message back to the client: Received your

At this point, try stopping the SimpleDetectorServer (notice that the SimpleDetectorClient should still be running).
After afew seconds, the client detector should detect that the server is no longer available and will see something
like the following appended in the SimpleDetectorClient console window:

Fri Jan 13 09: 37: 04 EST 2006: [CLIENT]: It has been detected that a server has gone down wth

Fri Jan 13 09:37:04 EST 2006: [CLIENT]: GOT A NETWORK- REA STRY NOTI FI CATI ON: j boss. net wor k. serﬁer. renpvec

10.5. Callbacks

The callback sample (found in the org.jboss.remoting.sampl es.callback package) illustrates how to perform callbacks
from a remoting server to a remoting client. This example is composed of two classes, CallbackClient and
CallbackServer.

Within remoting, there are two approachesin which acallback can bereceived. Thefirst isto actively ask for callback
messages from the remoting server, which is called a pull callback (since are pulling the callbacks from the server).
The second isto have the server send the callbacksto the client asthey are generated, which is called a push callback.
This sample demonstrates how to do both pull and push callbacks.

Looking at the CallbackClient class, will see that the first thing done is to create a remoting Client, which is done
in the same manner as previous examples. Next, we'll perform a pull callback, which requires the creation of a
CallbackHandler. The CallbackHandler, which implements the InvokerCallbackHandler interface, is what is called
upon with aCallback object when acallback isreceived. The Callback object containsinformation such asthe callback
message (in Object form), the server locator from where the callback originally came from, and a handle object which
can help to identify callback context (similar to the handle object within a IMX Notification). Once created, the
CallbackHandler isthen registered as alistener within the Client. Thiswill cause the client to make acall to the server
to notify the server it has acallback listener (more on this below in the server section). Although the CallbackHandler
is not called upon directly when doing pull callbacks, it is needed as an identifier for the callbacks.

JBoss June 22, 2008 110

How to useit - sample code

Then the client will wait afew seconds, make a simple invocation on the server, and then call on the remoting Client
instance to get any callbacksthat may be available for our CallbackHandler. Thiswill return alist of callbacks, if any
exist. Thelist will be iterated and each callback will be printed to standard output. Finally, the callback handler will
be removed as alistener from the remoting Client (which in turns removesit from the remoting server).

After performing a pull callback, will perform a push callback. Thisis alittle more involved as requires creating a
callback server to which the remoting target server can callback on when it generates a callback message. To do this,
will need to create aremoting Connector, just as have seen in previous examples. For this particular example, we use
the same locator url as our target remoting server, but increment the port to listen on by one. Will also notice that use
the Sampl el nvocationHandler hander from the CallbackServer (morein thisin aminute). After creating our callback
server, a CallbackHandler and callback handle object is created. Next, remoting Client is called to add our callback
listener. Here we pass not only the CallbackHandler, but the InvokerLocator for the callback server (so the target
server will know where to deliver callback messages to), and the callback handle object (which will be included in
all the callback messages delivered for this particular callback listener).

Then the client will wait a few seconds, to allow the target server time to generate and deliver callback messages.
After that, we remove the callback listener and clean up our callback server.

The CallbackServer is pretty much the same as the previous samples in setting up the remoting server, via the
Connector. The biggest change resides in the ServerInvocationHandler implementation, Samplel nvocationHandler
(whichisan inner classto CallbackServer). The first thing to notice is now have avariable called listeners, which is
aList to hold any callback listeners that get registered. Also, in the constructor of the SamplelnvocationHandler, we
set up a new thread to run in the background. This thread, executing the run() method in Samplel nvocationHandler,
will continually loop looking to seeif the shouldGenerateCallbacks has been set. If it has been, will create a Callback
object and loop through its list of listeners and tell each listener to handle the newly created callback. Have also
added implementation to the addListener() and removeL istener() methods where will either add or remove specified
callback listener from the internal callback listener list and set the shouldGenerateCallbacks flag accordingly. The
invoke() method remains the same as in previous samples.

To run this example, can compile both the CallbackClient and CallbackServer class, then run the CallbackServer and
then the CallbackClient. Or can go to the examples directory and run the ant target 'run-callback-server' and then in
another window run the ant target 'run-callback-client. For example:

ant run-cal | back-server

and then:

ant run-cal |l back-client

The output in the CallbackClient console window should look like:

Calling renoting server with |ocator uri of: socket://I|ocal host: 5400

I nvocation response: This is the return to Sanpl el nvocati onHandl er invocation

Pul | Cal | back val ue = Callback 1: This is the payl oad of callback invocation

Pul | Call back value = Callback 2: This is the payl oad of call back invocation

Starting renoting server with locator uri of: |nvokerLocator [socket://127.0.0.1:5401/]
Recei ved push cal | back

Recei ved cal | back val ue of: Callback 3: This is the payl oad of callback invocation.
Recei ved cal | back handl e obj ect of: mnyCall backHandl eObj ect

JBoss June 22, 2008 111

How to useit - sample code

Recei ved cal | back server invoker of: |nvokerlLocator [socket://127.0.0.1:5400/]

Recei ved push cal | back.

Recei ved cal | back value of: Callback 4: This is the payl oad of callback invocation.
Recei ved cal | back handl e obj ect of: myCal | backHandl eCbj ect

Recei ved cal | back server invoker of: |nvokerlLocator [socket://127.0.0.1:5400/]

This output showsthat client first pulled two callbacks generated from the server. Then, after creating and registering
our second callback handler and a callback server, two callbacks were received from the target server.

The output in the CallbackServer console window should look like:

Starting renoting server with locator uri of: socket://Ilocal host: 5400
Addi ng cal | back |istener.

I nvocation request is: Do sonething

Renovi ng cal | back |istener.

Addi ng cal | back |istener.

Rermovi ng cal | back |istener.

Thisoutput showstwo distinct callback handlers being added and removed (with an invocation request being received
after the first was added).

Thereareafew important pointsto mention about thisexample. First, noticethat in the client, the same callback handle
object in the push callbacks was received as was registered with the callback listener. However, there was no special
code required to facilitate this within the SamplelnvocationHandler. This is handled within remoting automatically.
Also notice when the callback server was created within the client, no special coding was required to register the
callback handler with it, both were simply passed to the remoting Client instance when registering the callback listener
and was handled internally.

10.6. Streaming

The streaning sampl e (found in the org.jboss.remoting.sampl es.stream package) illustrates how ajava.io.lnputStream
can be sent from aclient and read on demand from aserver. Thisexampleiscomposed of two classes: StreamingClient
and StreamingServer.

Unlike the previous examples that sent plain old java objects as the payload, this example will be sending a
java.io.FilelnputStream as the payload to the server. This is a special case because streams can not be serialized.
One approach to this might be to write out the contents of a stream to a byte buffer and send the whole data content
to the server. However, this approach can be dangerous because if the data content of the stream is large, such as
an 800MB file, would run the risk of causing an out of memory error (since are loading all 800MB into memory).
Another approach, which is used by JBossRemoting, isto create a proxy to the original stream. This proxy can then
be called upon for reading, same as the original stream. When this happens, the proxy will call back the original
stream for the requested data.

Looking at the StreamingClient, the remoting Client is created as in previous samples. Next, will create a
java.io.FilelnputStream to the sample.txt file on disk (which isin the same directory asthe test classes). Finally, will
call the remoting Client to do its invocation, passing the new FilelnputStream and the name of the file. The second
parameter could be of any Object type and is meant to supply some meaningful context to the server in regards to
the stream being passed, such as the file name to use when writing to disk on the server side. The response from the
server, in this example, isthe size of thefile it wrote to disk.

JBoss June 22, 2008 112

How to useit - sample code

The StreamingServer sets up the remoting server as was done in previous examples. However, instead of
using an implementation of the ServerlnvocationHandler class as the server handler, an implementation of the
StreaminvocationHandler (which extends the ServerlnvocationHandler) is used. The StreamlnvocationHandler
includes an extra method called handleStream() especially for processing requests with a stream as the payload. In
this example, the class implementing the Streaml nvocationHandler isthe TestStreamlnvocationHandler class, which
is an inner class to the StreamingServer. The handleStream() method within the TestStreamlnvocationHandler will
use the stream passed to it to write out its contents to a file on disk, as specified by the second parameter passed to
the handleStream() method. Upon writing out the file to disk, the handleStream() method will return to the client
caler the size of thefile.

To run this example, can compile both the StreamingClient and StreamingServer class, then run the StreamingServer
and then the StreamingClient. Or can go to the examples directory and run the ant target 'run-stream-server' and then
in another window run the ant target 'run-stream-client'. For example:

ant run-streamserver ‘

and then:

ant run-streamclient ‘

The output in the StreamingClient console window should look like:

Calling on remoting server with |ocator uri of: socket://Iocal host: 5400
Sendi ng input streamfor file sanple.txt to server.

Size of file sanple.txt is 987

Server returned 987 as the size of the file read.

The output in the StreamingServer console window should look like:

Starting renpting server with locator uri of: socket://I|ocal host: 5400

Recei ved input streamfromclient to wite out to file server_sanple. txt

Read stream of size 987. Now witing to server_sanple.txt

New file server_sanple.txt has been witten out to C\tnp\JBossRenoting 1 4 0_final\exanpl es\server_sanpl

After running this example, there should be a newly created server_sample.txt file in the root examples directory.
The contents of the file should look exactly like the contents of the sample.txt file located in the examples\org\jboss
\remoting\samples\stream directory.

10.7. JBoss Serialization

The seridization sample (found in the org.jboss.remoting.samples.serialization package) illustrates how JBoss
Serialization can be used in place of the standard java serialization to alow for sending of invocation payload
objects that do not implement the java.io.Serializable interface. This example is composed of three classes:
SerializationClient, SerializationServer, and NonSerializablePayload.

This example is exactly like the one from the simple example with two differences. The first differenceis the use of
JBoss Serialization to convert object instancesto binary dataformat for wiretransfer. Thisisaccomplished by adding
an extra parameter (serializationtype) to the locator url with avalue of 'jboss. Isimportant to note that use of JBoss

JBoss June 22, 2008 113

How to useit - sample code

Serialization requires JDK 1.5, so this example will need to be run using JDK 1.5. The second difference is instead
of sending and receiving a simple String type for the remote invocation payload, will be sending and receiving an
instance of the NonSerializablePayload class.

There are a few important points to notice with the NonSerializablePayload class. The first is that it does NOT
implement the java.io.Serializable interface. The second is that it has a void parameter constructor. This is a
requirement of JBoss Serialization for object instances that do not implement the Serializable interface. However,
thisvoid parameter constructor can be private, asin the case of NonSerializablePayload, asto not change the external
AP of the class.

To run this example, can compile both the SeridizationClient and SeriaizationServer class, then run the
SerializationServer and then the SerializationClient. Or can go to the examples directory and run the ant target 'run-
serialization-server' and then in another window run the ant target 'run-serialization-client'. For example:

ant run-serialization-server

and then:

ant run-serialization-client

The output in the SerializationClient console window should look like:

Calling renpoting server with locator uri of: socket://local host: 5400/ ?seri al i zati ont ype=j boss
I nvoki ng server with request of 'NonSerializabl ePayl oad - name: foo, id: 1
I nvocation response: NonSerializabl ePayl oad - nane: bar, id: 2

The output in the SerializationServer console window should look like:

Starting renoting server with locator uri of: socket://|ocal host: 5400/ ?serializationtype=jboss
I nvocation request is: NonSerializabl ePayl oad - nanme: foo, id: 1
Ret urni ng response of: NonSeri al i zabl ePayl oad - nane: bar, id: 2

Note: will have to manually shut down the SerializationServer once started.

10.8. Transporters

10.8.1. Transporters - beaming POJOs

There are many ways in which to expose a remote interface to a java object. Some require a complex framework
API based on a standard specification and some require new technologies like annotations and AOP. Each of these
have their own benefits. JBoss Remoting transporters provide the same behavior via a simple APl without the need
for any of the newer technologies.

When boiled down, transporters take a plain old java object (POJO) and expose a remote proxy to it via JBoss
Remoting. Dynamic proxies and reflection are used to make the typed method calls on that target POJO. Since JBoss
Remoting is used, can select from a number of different network transports (i.e. rmi, http, socket, multiplex, etc.),
including support for SSL. Even clustering features can be included.

JBoss June 22, 2008 114

How to useit - sample code

How it works

In this section will discuss how remoting transporters can be used, some requirments for usage, and alittle detail on
the implementation. For greater breath on usage, please review the transporter samples as most use cases are covered
there.

To start, will need to have a plain old java object that implements one or more interfaces that want to expose for
remote method invocation. Then will need to create aorg. j boss. renoti ng. transporter. Transport er Server t0
wrap around it, so that can be exposed remotely. This can be donein one of two basic ways. Thefirst isto use astatic
creat eTranspor t er Ser ver () method of the TransporterServer class. There are many of these create methods, but all
basically do that same thing in that they take a remoting locator and target pojo and will return a TransporterServer
instance that has been started and ready to receive remote invocations (see javadoc for TransporterServer for all
the different static createTransporterServer() methods). The other way to create a TransporterServer for the target
pojo isto construct an instance of it. This provides a little more flexibility as are able to control more aspects of the
TransporterServer, such aswhen it will be started.

When a TransporterServer is created, it will create aremoting Connector using the locator provided. It will generate
aserver invocation handler that wraps the target pojo provided and use reflection to make the calls on it based on the
invocationsit receives from clients. By default, the subsystem underwhich the server invocation handler isregistered
is the interface class name for which the target pojo is exposing. If the target implements multiple interfaces, and a
specific oneto use is not specified, all the interfaces will be registered as subsystems for the same server invocation
handler. Whenever no long want the target pojo to receive remote method invocations, will need to call the st op()
method on the TransporterServer for the target pojo (thisis very important, as otherwise will never be released from
memory and will continue to consume network and memory resources).

On the client side, in order to be able to call on the target pojo remotely, will need to use the
org.jboss.renoting. transporter. Transporterdient. Unlike the TransporterServer, can only use the static
create methods of the TransporterClient (this is because the return to the static create method is a typed dynamic
proxy). The static method to call on the TransportClient iscr eat eTransporter d i ent () , where will passthe locator
to find the target pojo (same as one used when creating the TransporterServer) and the interface for the target pojo
that want to make remote method invocations on. The return from this create call will be a dynamic proxy which you
can cast to to same interface type supplied. At that point, can make typed method invocations on the returned object,
which will then make the remote invocations under the covers. Note that can have multiple transporter clients to the
same target pojo, each using different interface types for making calls.

When no longer need to make invocations on the target pojo, the resources associated with the remoting client will
need to be cleaned up. Thisis done by calling the dest r oy Tr ansporter d i ent () method of the TransporterClient.
Thisisimportant to remember to do, as will otherwise leave network resources active even though not in use.

One of the features of using remoting transportersis location transparency. By this mean that client proxies returned
by the TransporterClient can be passed over the network. For example, can have a target pojo that returns from a
method call aclient proxy (that it created using the TransporterClient) in which the client can call on directly aswell.
See the transporter proxy sample code to see how this can be done.

Another nice feature when using transportersis the ahility to cluster. To be more specific, can create multiple target
pojos using the TransporterServer in clustered mode and then use the TransporterClient in clustered mode to create
aclient proxy that will discover the location of the target pojos are wanting to call on. Will also provide automatic,

JBoss June 22, 2008 115

How to useit - sample code

seemless failover of remote method invocationsin the case that a particular target pojo instance fails. However, note
that only provide invocation failover and does not take into account state transfer between target pojos (would need
addition of JBoss Cache or some other state synchronization tool).

The transporter sample spans several examples showing different ways to use the transporter. Each specific example
is within its own package under the org.jboss.remoting.samples.transporter package. Since each of the transporter
examples includes common objects, as well as client and server classes, the common objects will be found under
the main transporter sub-package and the client and server classes in their respective sub-packages (named client
and server).

10.8.2. Transporters sample - simple

The smple transporter example (found in org.jboss.remoting.samples.transporter.simple package) demonstrates a
very simple example of how to use the transporters to expose a plain old java object for remote method invocations.

In this smple transporter example, will be taking a class that formats a javautil.Date into
a smple String representation and exposing it so can cal on the remotely. The target
object in this case, org.jboss.remoting.samples.transporter.simple.DateProcessorimpl, implements the
org.jboss.remoting.sampl es.transporter.simple.DateProcessor interfaces (as shown below):

public interface DateProcessor

{
public String formatDate(Date dateToConvert);

}

public class DateProcessorlnpl inplements DateProcessor

{
public String formatDate(Date dateToConvert)

{
Dat eFor mat dat eFor mat = Dat eFor mat . get Dat el nst ance(Dat eFor mat . MEDI UM) ;

return dateFormat.fornmat (dateToConvert);

Thisisthen exposed using the TransporterServer by the org.jboss.remoting.samples.transporter.simple.Server class.

public class Server

{

public static void main(String[] args) throws Exception

{

Transporter Server server = TransporterServer.createTransporterServer ("socket://| ocal host 5400",

Thr ead. sl eep(10000) ;
server. stop();

The Server class smply creates a TransporterServer by indicating the locator url would like to use for the remoting
server, a newly created instance of DataProcessorlmpl, and the interface type would like to expose remotely. The
TransporterServer returned from the createTransporterServer cal is live and ready to receive incoming method
invocation requests. Will then wait 10 seconds for a request, then stop the server.

JBoss June 22, 2008 116

nev

How to useit - sample code

Next need to have client to make the remote invocation. This can be found within

org.jboss.remoting.sampl es.transporter.simple.Client.

public class dient

{
public static void nain(String[] args) throws Exception
{
Dat ePr ocessor dat eProcessor = (DateProcessor) TransporterClient.createTransporterCient ([socket://I
String fornattedDate = dateProcessor. fornmat Dat e(new Date());
Systemout.println("Current date: " + formattedDate);
}
}

Inthe Client class, createa TransporterClient which can be cast to the desired type, whichis DataProcessor in this case.
In calling the createTransporterClient, need to specify the locator ulr (same as was used for the TransporterServer),
and the interface type will be calling on for the target pojo. Once have the DateProcessor variable, will make the call

to formatDate() and pass a newly created Date object. The return will be aformated String of the date passed.

To run this example, can run the Server and then the Client. Or can go to the examples directory and run the ant
target 'run-transporter-simple-server' and then in another window run the ant target 'run-transporter-simple-client'.

For example:

ant run-transporter-sinple-server

and then:

ant run-transporter-sinple-client

The output from the client window should look similar to:

Current date: Jul 31, 2006

10.8.3. Transporter sample - basic

The basic transporter example (found in org.jboss.remoting.samples.transporter.basic package) illustrates how to

build a simple transporter for making remote invocations on plain old java objects.

In this basic transporter example, will be using a few domain objects; cust oner and Address, which are just data

objects.

public class Custoner inplenents Serializable

{

private String firstName = nul | ;
private String |l astNane = null;
private Address addr = null;
private int custonerld = -1;

public String getFirstName()
{

return firstNane;

}

public void setFirstName(String firstNane)

JBoss June 22, 2008

117

How to useit - sample code

{
this.firstNane = firstNane;

}

public String getlLast Nane()

{
return | ast Nane;

}

public void setlLastName(String | ast Nane)

{
this.lastName = | ast Nane;

}

publ i c Address get Addr ()

{
return addr;

}

public void set Addr (Address addr)

{
this.addr = addr;

}

public int getCustonerld()

{
return custonerld;

}

public void setCustonerld(int custonerld)

{
this.custonerld = custonerld;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();
buf f er. append("\ nCustonmer:\n");
buf f er. append("custoner id: " + custonerld + "\n");
buf fer. append("first nane: " + firstNane + "\n");
buf fer. append("l ast name: " + lastName + "\n");
buf f er. append("street: " + addr.getStreet() + "\n");
buf fer. append("city: " + addr.getCity() + "\n");
buf fer. append("state: " + addr.getState() + "\n");
buffer.append("zip: " + addr.getZip() + "\n");
return buffer.toString();

}

public class Address inplenents Serializable
{

private String street = null;

private String city = null;

private String state = null;

private int zip = -1;

JBoss June 22, 2008 118

How to useit - sample code

public String getStreet()

{
return street;
}
public void setStreet(String street)
{
this.street = street;
}
public String getGity()
{
return city;
}
public void setCity(String city)
{
this.city = city;
}
public String getState()
{
return state;
}
public void setState(String state)
{
this.state = state;
}
public int getZp()
{
return zip;
}
public void setZp(int zip)
{
this.zip = zip;
}

Next comes the POJO that we want to expose a remote proxy for, which is cust oner Processor | npl class. This
implementation has one method to process acust oner object. It also implements the Cust orrer Processor interface.

public class CustonerProcessorlnpl inplenents CustonerProcessor

{
/**
* Takes the custoner passed, and if not null and custoner id
* js less than 0, will create a new randomid and set it.
* The customer object returned will be the nodified custoner
* obj ect passed.

* @ar am cust oner
* @eturn
=]

JBoss June 22, 2008 119

How to useit - sample code

publ i ¢ Custoner processCustoner(Custoner customner)

{
if(customer !'= null && custoner.getCustonerld() < 0)
{
cust oner. set Cust oner | d(new Randon{() . next | nt(1000));
}
Systemout. println("processed customer with newid of " + custoner.getCustonerld());
return custoner;
}

public interface CustomerProcessor

{
/**
* Process a custoner object. |Inplenmentors
* shoul d ensure that the customer object
* passed as paraneter should have its internal
* state changed sonehow and returned.
*
* @ar am cust oner
* @eturn
*/
publ i ¢ Custoner processCustoner (Custoner custoner);
}

So far, nothing special, just plain old java objects. Next need to create the server component that will listen for remote
request to invoke on the target POJO. This is where the transporter comesin.

public class Server

{
private String |l ocatorURI = "socket://| ocal host:5400";

private TransporterServer server = null;

public void start() throws Exception

{

server = Transporter Server.createTransporterServer (|l ocatorUR, new CustomnerProcessorlnpl());
}
public void stop()
{

if(server !'= null)

{

server.stop();

}
}
public static void main(String[] args)
{

Server server = new Server();

try

{

server.start();

Thr ead. current Thread() . sl eep(60000) ;

JBoss June 22, 2008 120

How to useit - sample code

cat ch(Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}
}
}

Theserver classisapretty smpleone. It callstheTr anspor t er Ser ver factory method to create the server component
for the cust omer Processor | npl instance using the specified remoting locator information.

The TransporterServer returned from the creat eTransporterServer() cal will be a running instance of a
remoting server using thesocket transport that isboundto| ocal host and listening for remote requests on port 5400.
Therequeststhat comein will be forwarded to the remoting handler which will convert them into direct method calls
on the target POJO, cust oner Processor | mpl in this case, using reflection.

TheTransporter Server hasastart () andstop() method exposed to control when to start and stop the running of
theremoting server. Thest art () method iscalled automatically withinthecr eat eTr ansport er Server () method, so
isready to receive requests upon the return of thismethod. Thest op() method, however, needsto be called explicitly
when no longer wish to receive remote calls on the target POJO.

Next up isthe client side. Thisisrepresented by thed i ent class.

public class dient

{
private String | ocatorURl = "socket://| ocal host:5400";

public void nakeCientCall () throws Exception
{

Cust oner customer = createCustomner();
Cust omer Processor cust onmer Processor = (CustonerProcessor) TransporterClient.createTransporterCient

Systemout.println("Custonmer to be processed: " + custoner);
Cust omer processedCustonmer = custoner Processor. processCust oner (custoner);
Systemout. println("Custonmer is now. " + processedCustoner);

Transporterd ient.destroyTransporterC ient(customerProcessor);

private Custoner createCustomner()

Cust oner cust = new Custoner();
cust . set Fi r st Nane(" Bob") ;

cust. set Last Name("Smith");

Addr ess addr = new Address();
addr.setStreet ("101 Cak Street");
addr.setGity("Atlanata");
addr.setState("GA");

addr . set Zi p(30249);

cust. set Addr (addr);

JBoss June 22, 2008 121

How to useit - sample code

return cust;
}
public static void main(String[] args)
{
Client client = new Cient();
try
{
client. mkedientCall ();
}
cat ch(Exception e)
{
e.printStackTrace();
}
}
}

The dient classisalso pretty simple. It creates a new Cust oner object instance, creates the remote proxy to the
Cust orrer Processor , and then calls on the Cust oner Pr ocessor t0 processits new Cust orrer instance.

To get the remote proxy for the cust oner Processor, al that isrequired isto call the Transporterd i ent 's method
createTransporterCient () method and pass the locator uri and the type of the remote proxy (and explicitly cast
the return to that type). This will create a dynamic proxy for the specified type, Cust oner Processor in this case,
which is backed by a remoting client which in turn makes the calls to the remote POJO's remoting server. Once the
call tocreateTransport d i ent () hasreturned, the remoting client has already made its connection to the remoting
server and is ready to make calls (will throw an exception if it could not connect to the specified remoting server).

When finished making calls on the remote POJO proxy, will need to explicitly destroy the client by calling
destroyTransporterdient () and pass the remote proxy instance. This allows the remoting client to disconnect
from the POJO's remoting server and clean up any network resources previously used.

To run this example, can run the Server and then the Client. Or can go to the examples directory and run the ant
target ‘run-transporter-basic-server' and then in another window run the ant target 'run-transporter-basic-client'. For
example:

ant run-transporter-basic-server

and then:

ant run-transporter-basic-client

The output from the Client console should be similar to:

Custoner to be processed:
Cust oner :

custoner id: -1

first nane: Bob

| ast name: Smith

street: 101 GCak Street
city: Atlanata

state: GA

zi p: 30249

JBoss June 22, 2008 122

How to useit - sample code

Custoner i s now

Cust oner :

custoner id: 204
first nane: Bob

| ast name: Smith
street: 101 GCak Street
city: Atlanata

state: GA

zi p: 30249

and the output from the Server class should be similar to:

processed customer with new id of 204

The output shows that the cust oner instance created on the client was sent to the server where it was processed (by
setting the customer id to 204) and returned to the client (and printed out showing that the customer id was set to 204).

10.8.4. Transporter sample - JBoss serialization

Thetransporter serialization example (found in org.jboss.remoting.samples.transporter.serialization package) is very
similar to the previous basic example, except in this one, the domain objects being sent over the wire will NOT be
Serializable. This is accomplished via the use of JBoss Serialization. This can be useful when don't know which
domain objects you may be using in remote calls or if adding ability for remote calls on legacy code.

To start, there are a few more domain objects: O der, Or der Processor, and O der Processor | npl . These will use
some of the domain objects from the previous example as well, such as cust oner .

public class O der

{
private int orderld = -1,
private bool ean i sProcessed = fal se;
private Custoner customer = null;
private List itens = null;

public int getOderld()

{
return orderld;
}
public void setOrderld(int orderld)
{
this.orderld = orderld;
}
publ i ¢ bool ean i sProcessed()
{
return i sProcessed;
}

public void setProcessed(bool ean processed)

{

i sProcessed = processed;

JBoss June 22, 2008 123

How to useit - sample code

}

public Custoner getCustoner()

{
return custoner;

}

public void set Cust oner(Custonmer custoner)

{
this. custonmer = custoner;

}

public List getltens()

{
return itens;

}

public void setltens(List itens)

{
this.itens = itens;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();
buf f er. append("\nOrder:\n");
buffer.append("\nls processed: " + isProcessed);
buf fer. append("\nOrder id: " + orderld);
buf f er. append(custoner.toString());
buf f er. append("\nltens ordered:");
Iterator itr = itens.iterator();
whi l e(itr.hasNext())
{

buf fer. append("\n" + itr.next().toString());

}
return buffer.toString();

}

public class OrderProcessorlnpl inplenments O derProcessor

{

private CustonerProcessor custonerProcessor = null;

public OrderProcessorlnpl ()
{

cust oner Processor = new Cust oner Processor | npl ();

public Order processOrder(Order order)
{

Systemout. println("Inconm ng order to process from custoner.\n

/'l has this customer been processed?
i f(order.getCustoner().getCustonerld() < 0)

+ order.getCustoner());

JBoss June 22, 2008

124

How to useit - sample code

order . set Cust orer (cust oner Processor. processCust oner (order. get Custoner()));

}

List items = order.getltens();
Systemout.println("ltems ordered:");
Iterator itr = itens.iterator();
whil e(itr.hasNext())
{

Systemout.printlin(itr.next());

}

order. set Order | d(new Randon{). next| nt (1000));
order. set Processed(true);

Systemout.println("Order processed. Oder id now. " + order.getOrderld());
return order;

public interface O derProcessor

{
public O der processO der(Order order);

}

The o der Processor | npl will take orders, viathe processorder () method, check that the customer for the order
has been processed, and if not have the customer processor process the new customer. Then will place the order,

which means will just set the order id and processed attribute to true.

The most important point to this exampleisthat the o der class does NOT implement j ava. i o. Seri al i zabl e.

Now onto the ser ver class. Thisisjust likethe previous ser ver classin the basic example with one main difference:

thel ocat or URI value.

public class Server

{

private String locatorURI = "socket://Ilocal host: 5400/ ?seri al i zati ont ype=j boss";
private TransporterServer server = null;

public void start() throws Exception

{

server = TransporterServer.createTransporterServer(locatorURI, new O derProcessorlnpl());
}
public void stop()
{

if(server I'=null)

{

server.stop();

}

}

public static void nmain(String[] args)

{

Server server = new Server();

JBoss June 22, 2008

125

How to useit - sample code

try
{

server.start();

Thr ead. current Thread() . sl eep(60000) ;

}
cat ch(Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}

The addition of seri al i zat i ont ype=j boss tells the remoting framework to use JBoss Seridization in place of the
standard java serialization.

Ontheclient side, thereisthe d i ent class, just asin the previous basic example.

public class dient

{

private String | ocatorURI = "socket://Ilocal host: 5400/ ?seri alizati ontype=j boss";
public void makeCientCall () throws Exception
{
Order order = createOrder();
Order Processor order Processor = (OrderProcessor) TransporterCient.createTransporterdient (Il ocatorl
Systemout.println("Order to be processed: " + order);
Order changedOrder = orderProcessor. processOrder (order);

Systemout. println("Order now processed " + changedOrder);

Transporterdient.destroyTransporterCient(orderProcessor);

private Order createOrder()

Order order = new Order();
Cust oner customer = createCustoner();
order. set Cust oner (cust omer) ;

List items = new ArraylList();

i tens. add(" Xbox 360");
itens.add("Wreless controller");
i tens. add(" Ghost Recon 3");

order.setltens(itens);

return order;

JBoss June 22, 2008 126

How to useit - sample code

private Custoner createCustoner()
{
Cust oner cust = new Custoner();
cust . set Fi rst Nane(" Bob") ;
cust.setLast Name("Smith");
Address addr = new Address();
addr.setStreet ("101 Cak Street");
addr.setCity("Atlanata");
addr.setState("GA");
addr . set Zi p(30249);
cust . set Addr (addr);

return cust;

}

public static void main(String[] args)
{
Cient client = new dient();
try
{
client.mekedientCall();

}

cat ch(Exception e)

{
e.printStackTrace();

Again, the biggest difference to note isthat have added seri al i zat i ont ype=j boss to the locator uri.
Note: Running this example requires JDK 1.5.

To run this example, can run the Server and then the Client. Or can go to the examples directory and run the ant
target 'ant run-transporter-serialization-server' and then in another window run the ant target 'ant run-transporter-
serialization-client'. For example:

ant run-transporter-serialization-server

and then:

ant run-transporter-serialization-client

When the server and client are run the output for the d i ent classis:

Order to be processed:
O der:

I's processed: false
Order id: -1

Cust oner :

custoner id: -1
first nane: Bob

| ast name: Smith

JBoss June 22, 2008 127

How to useit - sample code

street: 101 GCak Street
city: Atlanata

state: GA

zi p: 30249

Itens ordered:

Xbox 360

Wreless controller
Chost Recon 3
Order now processed
O der:

I's processed: true
Order id: 221

Cust oner :

custoner id: 861

first nane: Bob

| ast name: Smith
street: 101 GCak Street
city: Atlanata

state: GA

zi p: 30249

Itens ordered

Xbox 360

Wreless controller
Chost Recon 3

The client output shows the printout of the newly created order before calling the o der Processor and then the
processed order afterwards. Noticed that the processed order hasits customer'sid set, itsorder id set and the processed
atribute is set to true.

And the output from the Ser ver is:

I ncom ng order to process from custoner.

Cust oner :

custoner id: -1

first name: Bob

| ast name: Smith
street: 101 Cak Street
city: Atlanata

state: GA

zi p: 30249

processed custonmer with new id of 861
Itens ordered

Xbox 360

Wreless controller

Chost Recon 3

Order processed. Order id now 221

The server output showsthe printout of the customer before being processed and then the order while being processed.

10.8.5. Transporter sample - clustered

JBoss June 22, 2008 128

How to useit - sample code

In the previous examples, there has been one and only one target POJO to make calls upon. If that
target POJO was not available, the client call would fail. In the transporter clustered example (found in
org.jboss.remoting.samples.transporter.clustered package), will show how to use the transporter in clustered mode so
that if one target POJO becomes unavailable, the client call can be seamlesdly failed over to another available target
POJO on the network, regardless of network transport type.

This example uses the domain objects from the first, basic example, so only need to cover the client and
server code. For this example, there are three different server classes. The first class is the Socket Server class,
which is the exact same as the Server class in the basic example, except for the call to the Transport Server's
creat eTransport Server () method.

public class Socket Server

{
public static String |locatorURl = "socket://I ocal host:5400";

private TransporterServer server = null;

public void start() throws Exception

{ server = TransporterServer.createTransporterServer(getlLocatorURI (), new CustonerProcessorl|npl (),
Cust oner Processor. cl ass. get Nane(), true);
}
protected String getLocator URI ()
{
return | ocatorURl;
}
public void stop()
{
if(server I'=null)
{
server. stop();
}
}
public static void main(String[] args)
{
Socket Server server = new Socket Server();
try
{

server.start();

Thr ead. current Thread() . sl eep(60000) ;

}
cat ch(Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}

JBoss June 22, 2008 129

How to useit - sample code

} |

Notice that are now calling on the Transport Server to create a server with the locator uri and target POJO
(cust omer Processor | npl) asbefore, but have also added the interface type of the target POJO (Cust orrer Pr ocessor)
and that want clustering turned on (viathe last t r ue parameter).

Theinterface type of thetarget POJO is needed because thiswill be used as the subsystem within the remoting server
for the target POJO. The subsystem value will be what the client uses to determine if discovered remoting server is
for the target POJO they are looking for.

The transporter uses the MulticastDetector from JBoss Remoting for automatic discovery when in clustered mode.
The actual detection of remote servers that come online can take up to a few seconds once started. There is a INDI
based detector provided within JBoss Remoting, but has not been integrated within the transporters yet.

The second server class is the RM Server class. The RM Server class extends the Socket Server class and uses a
different locator uri to specify rmi asthe transport protocol and a different port (5500).

public class RM Server extends Socket Server

{

private String | ocal LocatorURI = "rm://| ocal host:5500";

protected String getLocatorURI ()
{

return | ocal Locat or URl ;

}

public static void main(String[] args)

{

Socket Server server = new RM Server();
try
{

server.start();

Thr ead. current Thread() . sl eep(60000) ;

}
cat ch(Exception e)

{
e.printStackTrace();
}
finally
{
server.stop();
}

Thelast server classisthe HTTPSer ver class. TheHTTPSer ver classalso extendsthe Socket Ser ver classand specifies
ht t p as the transport protocol and 5600 as the port to listen for requests on.

public class HTTPServer extends Socket Server

{

JBoss June 22, 2008 130

How to useit - sample code

private String | ocal LocatorURI = "http://I|ocal host:5600";

protected String getLocatorURI ()

{

return | ocal Locat or URl ;

public static void main(String[] args)

{

Socket Server server = new HTTPServer();
try
{

server.start();

Thr ead. current Thread() . sl eep(60000) ;

}
cat ch(Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}

On the client side, thereisonly the d i ent class. This classis very similar to the one from the basic example. The
main exceptions are (1) the addition of aTransporterd i ent call to create atransporter client and (2) the fact that it
continually loops, making calls on its cust oner Processor variable to process customers. Thisis done so that when
we run the client, we can kill the different servers and see that the client continues to loop making its calls without
any exceptions or errors.

public class dient

{

private String | ocatorURl = Socket Server.|ocatorURl;

private CustonerProcessor custonerProcessor = null;

public void makeCdientCall () throws Exception

{

Cust omer custoner = createCustoner();
Systemout. println("Custoner to be processed: " + custoner);
Cust omer processedCustonmer = custoner Processor. processCust oner (custoner);

Systemout. println("Custonmer is now. " + processedCustoner);

[/ Transporterdient.destroyTransporterd i ent(custonerProcessor);

public void get Custoner Processor () throws Exception

{

cust oner Processor = (CustonerProcessor) TransporterClient.createTransporterdient(locatorURl,

JBoss June 22, 2008

131

Cust ¢

How to useit - sample code

private Custoner createCustoner()
{
Cust oner cust = new Custoner();
cust . set Fi rst Nane(" Bob") ;
cust.setLast Name("Smith");
Address addr = new Address();
addr.setStreet ("101 Cak Street");
addr.setCity("Atlanata");
addr.setState("GA");
addr . set Zi p(30249);
cust . set Addr (addr);

return cust;

}

public static void main(String[] args)
{
Cient client = new dient();
try
{
client. get Cust oner Processor () ;
whi | e(true)
{
try
{
client. mkedientCall ();
Thr ead. current Thread() . sl eep(5000) ;
}
cat ch(Exception e)
{
e.printStackTrace();
}
}
}
cat ch(Exception e)
{
e.printStackTrace();

}

Thefirstitem of noteisthat thelocator uri from the Socket Ser ver classisbeing used. Technically, thisisnot required
as once the clustered Transporterdi ent is started, it will start to discover the remoting servers that exist on the
network. However, this process can take several secondsto occur, so unlessit is known that no calls will be made on
the remote proxy right away, it is best to bootstrap with a known target server.

Can also see that in the mai n() method, the first call on the Client instance is to get Cust oner Processor (). This
method will call the Transporterdient'ScreateTransporterdient () method and passes the locator uri for the
target POJO server, the type of POJO's remote proxy, and that clustering should be enabled.

After getting the customer processor remote proxy, will continually loop making calls using the remote proxy (via
the pr ocessCust oner () method on the cust orer Processor variable).

JBoss June 22, 2008 132

How to useit - sample code

To run this example, all the servers need to be started (by running the Socket Server, RM Server, and HTTPSer ver
classes). Then run the Client class. This can be done via ant targets as well. So for example, could open four console
windows and enter the ant targets as follows:

ant

run-transporter-cl ustered-socket - server

ant

ant

run-transporter-clustered-http-server

run-transporter-clustered-rni-server

ant

run-transporter-clustered-client

Once the client starts running, should start to see output logged to the Socket Ser ver, since thisis the one used to
bootstrap. This output would look like:

processed customer
processed custoner
processed custoner

with newid of 378
with new id of 487
with new id of 980

Oncethesocket Ser ver instance hasreceived afew cals, kill thisinstance. The next timethe client makesacall onits
remote proxy, which happens every five seconds, it should fail over to another one of the servers (and will see similar
output on that server instance). After that server hasreceived afew calls, kill it and should seeit fail over once again
to the last server instance that is still running. Then, if kill that server instance, will see a CannotConnectException
and stack trace similar to the following:

org.

at org.jboss.renoting.
at org.jboss.renoting.
at org.jboss.renoting.
at org.jboss.renoting.
at org.jboss.renoting.
at org.jboss.renoting.
at org.jboss.renoting.
at
at
at
at
at
at
at
at
Caused by:
at java. net.
at java. net.
at java. net.
at java. net.
at java. net.
at java. net.
at sun.
at sun.
at sun.
at sun.

j boss. renot i ng. Cannot Connect Excepti on: Can not connect http client invoker.

transport. http. HTTPC i ent | nvoker . useHt t pURLConnect i on(HTTPC i ent | nvoker
transport. http. HTTPC i ent | nvoker. transport (HTTPC i ent | nvoker . j ava: 56)
Renot eCl i ent | nvoker . i nvoke(Renot eCl i ent | nvoker. java: 112)
Cient.invoke(dient.java: 226)

Cient.invoke(dient.java: 189)

Client.invoke(Cient.java: 174)

transporter. TransporterCient.invoke(Transporterdient.java: 219)

$Pr oxy0. processCust orer (Unknown Sour ce)

org.j boss.renoting. sanpl es.transporter3.client.Cient.mkeCientCall (Cient.java:29)
org.j boss.renoting. sanpl es.transporter3.client.dient.main(Cient.java: 64)

sun. refl ect. Nati veMet hodAccessor | npl . i nvokeO(Native Met hod)

sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor | npl . j ava: 39)

sun. refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egat i ngMet hodAccessor | npl . j ava: 25)
java.l ang. refl ect. Met hod. i nvoke(Met hod. j ava: 585)
comintellij.rt.execution.application. AppMi n. mai n(AppMai n. j ava: 86)

j ava. net . Connect Excepti on: Connection refused: connect

Pl ai nSocket | npl . socket Connect (Nati ve Met hod)

Pl ai nSocket | npl . doConnect (Pl ai nSocket | npl . j ava: 333)

Pl ai nSocket | npl . connect ToAddr ess(Pl ai nSocket | npl . j ava: 195)
Pl ai nSocket | npl . connect (Pl ai nSocket | npl . j ava: 182)

Socket . connect (Socket . j ava: 507)

Socket . connect (Socket . j ava: 457)

net . Net wor kd i ent . doConnect (Net wor kCl i ent . j ava: 157)

net. ww. http. Ht plient. openServer(HttpCdient.java: 365)

net. ww. http. HtpCient.openServer(H tpCdient.java: 477)

net. ww. http. HtpClient.<init>(HtpCient.java: 214)

. j ava: 147)

JBoss June 22, 2008

133

How to useit - sample code

at sun.net.ww. http. HHtpCient. New(Htt pdient.java: 287)

at sun.net.ww. http. HHtpCient. New(Htt plient.java: 299)

at sun. net.ww. protocol . http. H t pURLConnecti on. get NewHt t pCl i ent (Ht t pURLConnect i on. j ava: 792)

at sun. net.ww. protocol . http. H t pURLConnecti on. pl ai nConnect (Ht t pURLConnecti on. j ava: 744)

at sun. net.ww. protocol . http. H t pURLConnecti on. connect (Ht t pURLConnecti on. j ava: 669)

at sun. net.ww. protocol . http. H t pURLConnect i on. get Qut put St r ean(Ht t pURLConnect i on. j ava: 836)

at org.jboss.renoting.transport. http. HTTPQ i ent | nvoker. useHt t pURLConnecti on(HTTPCO i ent | nvoker| j ava: 117)
14 nore

sincethere are no target serversleft to make callson. Notice that earlier in the client output there were no errorswhile
was failing over to the different servers as they were being killed.

Because the CannotConnectException is being caught within the while loop, the client will continueto try calling the
remote proxy and getting this exception. Now re-run any of the previoudly killed servers and will see that the client
will discover that server instance and begin to successfully call on that server. The output should ook something like:

at sun. net.ww. protocol . http. H t pURLConnecti on. connect (Ht t pURLConnecti on. j ava: 669)

at sun. net.ww. protocol . http. H t pURLConnect i on. get Qut put Strean(Ht t pURLConnecti on. j ava: 836)

at org.jboss.renoting.transport. http. HTTPQ i ent | nvoker. useHt t pURLConnecti on(HTTPO i ent | nvoker| j ava: 117)
14 nore

Custoner to be processed:
Cust oner :

custoner id: -1

first nane: Bob

| ast name: Smith

street: 101 GCak Stree
city: Atlanata

state: null

zi p: 30249

Custoner is now

Cust oner :

custoner id: 633
first nane: Bob

| ast name: Smith
street: 101 Cak Stree
city: Atlanata

state: null

zi p: 30249

As demonstrated in this example, fail over can occur across any of the JBoss Remoting transports. Clustered
transporters is also supported using JBoss Serialization, which was introduced in the previous example.

It is important to understand that in the context of transporters, clustering means invocation fail over. The JBoss
Remoting transporters themselves do not handle any form of state replication. If this feature were needed, could use
JBoss Cache to store the target POJO instances so that when their state changed, that change would be replicated to
the other target POJO instances running in other processes.

JBoss June 22, 2008 134

How to useit - sample code

10.8.6. Transporters sample - multiple

The multiple transporter example (found in org.jboss.remoting.samples.transporter.multiple package) shows how
can have a multiple target pojos exposed via the same TransporterServer. In this example, will be two pojos being
exposed, CustomerProcessorlmpl and AccountProcessorimpl. Since the domain objects for this example is similar
to the others discussed in previous examples, will just focus on the server and client code. On the server side, need

to create the TransporterServer so that will included both of the target pojos.

public class Server

{
private String | ocatorURl = "socket://| ocal host:5400";
private TransporterServer server = null;
public void start() throws Exception
{
server = TransporterServer.createTransporterServer (locatorURI, new CustonerProcessorlnpl (),
server. addHandl er (new Account Processor | npl (), Account Processor. cl ass. get Nane());
}
public void stop()
{
if(server !'= null)
{
server.stop();
}
}
public static void nain(String[] args)
{
Server server = new Server();
try
{
server.start();
Thr ead. current Thread() . sl eep(60000) ;
}
cat ch(Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}
}
}

The TransporterServer is created with the CustomerProcessorimpl as the inital target pojo. Now that have a live
TransporterServer, can add other pojos as targets. Thisis done using the addHandler() method where the target pojo

instance is passed and then the interface type to be exposed as.

Next have the Client that makes the call to both pojos.

JBoss June 22, 2008

135

Cust one

How to useit - sample code

public class dient

{
private String |locatorURl = "socket://| ocal host:5400";

public void makedientCall () throws Exception
{

Cust oner custoner = createCustoner();
Cust oner Processor cust onmer Processor = (Customer Processor) TransporterCient.createTransporterdient

Systemout. println("Custonmer to be processed: " + custoner);
Cust oner processedCustonmer = custoner Processor. processCust oner (cust oner);
Systemout. println("Custoner is now. " + processedCustoner);

Account Processor account Processor = (Account Processor) Transporterdient.createTransporterCient(lc

Systemout. println("Asking for a new account to be created for custoner.");
Account account = account Processor. creat eAccount (processedCust oner) ;
System out. println("New account: " + account);

TransporterClient.destroyTransporterdient (custonerProcessor);
Transporterd ient.destroyTransporterC ient(accountProcessor);

private Custoner createCustoner()

Cust oner cust = new Custoner();
cust . set Fi r st Nane(" Bob") ;

cust . set Last Name("Smith");
Address addr = new Address();
addr.setStreet ("101 Cak Street");
addr.setCity("Atlanta");
addr.setState("GA");

addr. set Zi p(30249);

cust . set Addr (addr) ;

return cust;

public static void main(String[] args)
{
org.j boss.renoting. sanples.transporter.multiple.client.Client client = new org.jboss. renpting. sanpl
try
{
client.makeCdientCall();
}
catch (Exception e)

{
e.printStackTrace();

JBoss June 22, 2008 136

How to useit - sample code

Notice that TransporterClients are created for each target pojo want to call upon, they just happen to share the same
locator uri. These are independant instances so need to both be destroyed on their own when finished with them.

To run this example, run the Server class and then the Client class. This can be done via ant targets 'run-transporter-
multiple-server' and then 'run-transporter-multiple-client’. For example:

ant run-transporter-nultiple-server ‘

and then:

ant run-transporter-nultiple-client ‘

The output for the server should look similar to:

processed customer with new id of 980
Created new account with account nunber: 1 and for customner:

Cust oner :

custoner id: 980
first nane: Bob

| ast name: Smith
street: 101 GCak Street
city: Atlanta

state: GA

zi p: 30249

and the output from the client should ook similar to:

Custoner to be processed:
Cust oner :

custoner id: -1

first nanme: Bob

| ast name: Smith

street: 101 Cak Street
city: Atlanta

state: GA

zi p: 30249

Custoner i s now

Cust oner :

custoner id: 980
first nane: Bob

| ast name: Smith
street: 101 GCak Street
city: Atlanta

state: GA

zi p: 30249

Asking for a new account to be created for custoner.
New account: Account - account number: 1

Cust oner :

Cust oner :

custoner id: 980

first nane: Bob

| ast name: Smith

JBoss June 22, 2008 137

How to useit - sample code

street: 101 GCak Street
city: Atlanta

state: GA

zi p: 30249

10.8.7. Transporters sample - proxy

The proxy transporter example (found in org.jboss.remoting.samples.transporter.proxy package) shows how can
have a TransporterClient sent over the network and called upon. In this example, will have a target pojo,
CustomerProcessorimpl which itself creates a TransporterClient to another target pojo, Customer, and return it as

response to a method invocation.

To start, will look at theinitial target pojo, CustomerProcessorlmpl.

public class CustomerProcessorlnpl inplenments CustonerProcessor

{
private String |l ocatorURI = "socket://| ocal host:5401";

* Takes the custoner passed, and if not null and custoner
* js less than 0, will create a new randomid and set it.

* The customer object returned will be the nodified custoner

* obj ect passed.

* @ar am cust oner
* @eturn
=
public | Custoner processCustoner(Customer custoner)
{
if (customer != null && custoner.getCustonerld() < 0)
{
cust oner. set Cust onmer | d(new Randon{() . next | nt(1000));

}

| Cust omer custoner Proxy = null;
try
{

TransporterServer server = TransporterServer.createTr

id

ansporterServer(locatorURI, custoner, | Cust

custonerProxy = (I Customer) TransporterCient.createTransporterCient(locatorURl, |Customer.clas

}
catch (Exception e)

{
e. printStackTrace();

}

Systemout. println("processed customer with new id of
return custoner Proxy;

' + custonerProxy. getCustonerld())|

Notice that the processCustomer() method will take a Customer object and set customer id on it. Then it will create
a TransporterServer for that customer instance and aso create a TransporterClient for the same instance and return

that TransporterClient proxy as the return to the processCustomer() method.

JBoss June 22, 2008

138

How to useit - sample code

Next will ook at the Customer class. It isabasic data object in that is really just stores the customer data.

public class Customer inplenents Serializable, |Custoner
{

private String firstName = nul | ;

private String |l astNane = null;

private Address addr = null;

private int custonerld = -1;

public String getFirstName()

{
return firstNane;
}
public void setFirstName(String firstNane)
{
this.firstName = firstNane;
}
public String getlLast Nane()
{
return | ast Nane;
}
public void setlLastName(String | ast Nane)
{
this.lastNane = | ast Nane;
}
publ i c Address get Addr ()
{
return addr;
}
public void set Addr (Address addr)
{
this.addr = addr;
}
public int getCustonerld()
{
return custonerld;
}
public void setCustonerld(int custonerld)
{
this.custonerld = custonerld;
}

public String toString()

{
Systemout. println("Customer.toString() being called.");
StringBuffer buffer = new StringBuffer();
buf f er. append("\ nCust oner:\n");

buf f er. append("custoner id: " + custonerld + "\n");
buf fer. append("first nane: " + firstNane + "\n");
buf fer. append("l ast name: " + lastNanme + "\n");

JBoss June 22, 2008

139

How to useit - sample code

buf fer. append("street: " + addr.getStreet() + "\n");
buffer.append("city: " + addr.getCity() + "\n");

buf fer. append("state: " + addr.getState() + "\n");
buf fer. append("zip: " + addr.getZip() + "\n");

return buffer.toString();

Notice the toString() method and how it prints out to the standard out when being called. Thiswill be important when

the sampleisrun later.

Now if look at the Server class, will seeis a standard setup like have seen in previous samples.

public class Server

{
private String | ocatorURl = "socket://| ocal host:5400";
private TransporterServer server = null;
public void start() throws Exception
{
server = TransporterServer.createTransporterServer(locatorURI, new CustonerProcessorlnpl (),
}
public void stop()
{
if (server !'=null)
{
server.stop();
}
}
public static void main(String[] args)
{
Server server = new Server();
try
{
server.start();
Thr ead. current Thread() . sl eep(60000) ;
}
catch (Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}
}
}

JBoss June 22, 2008

140

Cust one

How to useit - sample code

It is creating a TransporterServer for the CustomerProcessimpl upon being started and will wait 60 seconds for
invocations.

Next isthe Client class.

public class dient

{
private String |locatorURl = "socket://| ocal host:5400";

public void makedientCall () throws Exception
{

Cust oner custoner = createCustoner();

Cust oner Processor cust onmer Processor = (Customer Processor) TransporterCient.createTransporterdient
Systemout. println("Custoner to be processed: " + custoner);
| Cust omer processedCust omer = cust omer Processor . processCust omer (cust oner) ;

/'l processedCustoner returned is actually a proxy to the Custoner instnace

/1 that lives on the server. So when print it out below, will actually

/1 be calling back to the server to get the string (vi toString() call).

/1 Notice the output of 'Custonmer.toString() being called.' on the server side.
Systemout.println("Custonmer is now. " + processedCustoner);

Transporterdient.destroyTransporterC ient(customerProcessor);

private Custoner createCustoner()

Cust oner cust = new Custoner();
cust . set Fi r st Narme(" Bob") ;

cust. set Last Name("Smth");
Address addr = new Address();
addr.set Street ("101 Cak Street");
addr.setGty("Atlanta");
addr.setState("GA");

addr . set Zi p(30249);

cust . set Addr (addr) ;

return cust;

public static void nain(String[] args)
{

Cient client = new dient();

try

{

client.makedientCall();
}
catch (Exception e)

{
e.printStackTrace();

JBoss June 22, 2008 141

How to useit - sample code

Theclient classlookssimilar to the other example seeninthat it createsa TransporterClient for the CustomerProcessor
and callson it to process the customer. Will then call on the |Customer instance returned from the processCustomer()
method call and call toString() on it (in the system out call).

To run this example, run the Server class and then the Client class. This can be done via ant targets 'run-transporter-
proxy-server' and then 'run-transporter-proxy-client'. For example:

ant run-transporter-proxy-server ‘

ant then:

ant run-transporter-proxy-client ‘

The output for the client should look similar to:

Custoner.toString() being called.
Custoner to be processed:

Cust oner :

custoner id: -1

first nane: Bob

| ast nane: Smith

street: 101 GCak Street

city: Atlanta

state: GA

zi p: 30249

Custoner i s now

Cust oner :

custoner id: 418
first nane: Bob

| ast name: Smith
street: 101 Cak Street
city: Atlanta

state: GA

zi p: 30249

The first line is the print out from calling the Customer's toString() method that was created to be passed to the
CustomerProcessor's processCustomer() method. Then the contents of the Customer object before being processed.
Then have the print out of the customer after has been processed. Notice that when the | Customer object instanceis
printed out the second time, do not see the '‘Customer.toString() being called'. Thisis because that code is no longer
being executed in the client vm, but instead is aremote call to the customer instance living on the server (remember,
the processCustomer() method returned a TransporterClient proxy to the customer living on the server side).

Now, if look at output from the server will look similar to:

processed customer with new id of 418
Custoner.toString() being called.

JBoss June 22, 2008 142

How to useit - sample code

Notice that the 'Customer.toString() being called.’ printed out at the end. Thisisthe result of the client's call to print
out the contents of the customer object returned from the processCustomer() method, which actually lives within
the server vm.

This example has shown how can pass around TransporterClient proxies to target pojos. However, when doing this,
isimportant to understand where the code is actually being executed as there are consegquences to being remote verse
local, which need to be understood.

10.8.8. Transporter sample -complex

The complex transporter example (found in org.jboss.remoting.samples.transporter.complex package) is based off a
test case a user, Milt Grinberg, provided (thanks Milt). The example is similar to the previous examples, except in
this case involves matching Doctors and Patients using the ProviderInterface and provides a more complex sample
in which to demonstrate how to use transporters.

Thisexamplerequires JDK 1.5to run, sinceisusing JBoss Serialization (and non-serialized data objects). Torun this
example, run the Server class and then the Client class. This can be done via ant targets 'run-transporter-compl ex-
server' and then 'run-transporter-complex-client' as well. For example:

ant run-transporter-conpl ex-server ‘

and then:

ant run-transporter-conpl ex-client ‘

The output for the client should look similar to:

*** Have a new patient that needs a doctor. The patient is:

Pati ent:
Name: Bill Gates
Al ment - Type: financial, Description: Mney com ng out the wazoo.

*** |ooking for doctor that can help our patient...

*** Found doctor for our patient. Doctor found is:
Doct or :

Narme: Andy Jones

Speci al ty: financial

Patients:
Pati ent:
Narme: Larry Ellison
Al ment - Type: null, Description: null

Doctor - Nane: Andy Jones

Pati ent:
Nanme: Steve Jobs
Ailment - Type: null, Description: null

Doctor - Nane: Andy Jones

Pati ent :
Nane: Bill Gates

JBoss June 22, 2008 143

How to useit - sample code

Al ment - Type: financial, Description: Mney com ng out the wazoo.
*** Set doctor as patient's doctor. Patient info is now

Pati ent:
Narme: Bill Gates
Al ment - Type: financial, Description: Mney com ng out the wazoo.
Doctor - Nane: Andy Jones

*** Have a new patient that we need to find a doctor for (renenber, the previous one retired and there ar
*** Could not find doctor for patient. This is an expected exception when there are not doctors avail abl
org. j boss.renoting. sanpl es. transporter. conpl ex. NoDoct or Avai | abl eExcepti on: No doctor avail able for ail mer

at org.jboss.renoting. Renot ed i ent | nvoker. i nvoke(Renot eCl i ent | nvoker.java: 183)

at org.jboss.renpting.dient.invoke(dient.java: 325)

at org.jboss.renmoting. dient.invoke(Cdient.java: 288)

at org.jboss.renpting.dient.invoke(dient.java:273)

at org.jboss.renoting.transporter. TransporterCient.invoke(Transporterdient.java: 237)

at $Proxy0. fi ndDoct or (Unknown Sour ce)

at org.jboss.renoting. sanples.transporter.conplex.client.Cient.mkedientCall(Cient.java:72

at org.jboss.renoting. sanples.transporter.conplex.client.dient.min(Cient.java: 90)

at sun.reflect. Nati veMet hodAccessor | npl . i nvokeO(Native Mt hod)

at sun.reflect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor | npl . j ava: 39)

at sun.refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessor | npl . j ava: 25)

at java.lang.refl ect.Method. i nvoke(Met hod. j ava: 585)

at comintellij.rt.execution.application.AppMi n. mai n(AppMai n. j ava: 86)

From the output see the creation of a new patient, Bill Gates, and the attempt to find a doctor that specializesin his
ailment. For Mr. Gates, we were able to find a doctor, Andy Jones, and can see that he has been added to the list of
Dr. Jones patients. Then we have Dr. Jonesretire. Then we create anew patient and try to find an avail able doctor for
the same ailment. Since Dr. Jones has retired, and there are no other doctors that specialize in that particular ailment,
an exception isthrown. Thisis as expected.

10.9. Multiplex invokers

This section illustrates the construction of multiplex invoker groups described in the section Multiplex Invoker. The
directory

exanpl es/ org/j boss/renoting/ sanpl es/ mul ti pl ex/i nvoker

contains a server class, Mil ti pl exl nvoker Ser ver , Which is suitable for use with any of the client classes described
below. It may beruninan IDE or from the command lineusing ant target r un- mul ti pl ex- server fromthebui | d. xm
filefound in the exanpl es directory. The server will stay alive, processing invocation requests as they are presented,
until it has sent two push callbacks to however many listeners are registered, at which timeit will shut itself down.

The sample clients are as follows. Each sample client <client> may be run in an IDE or by using the ant target
run- <client> (e.g., run-di ent 2Ser ver 1).

e dient2Serverl: A Miltiplexdientlnvoker starts according to client rule 2, after which a
Ml ti pl exServer | nvoker is started according to server rule 1. Note that the c i ent and Connect or are passed
matching clientMultiplexld and serverMultiplexld parameters, respectively.

JBoss June 22, 2008 144

How to useit - sample code

e dient2Server2: A Miltiplexdientlnvoker starts according to client rule 2, after which a
Mul ti pl exServer | nvoker is started according to server rule 2. Note that no clientMultiplexid is passed to the
C i ent and no serverMultiplexld parameter is passed to the Connect or in this example.

e dient3Serverl: AMiltiplexdientlnvoker iscreated, and, lacking binding information, findsitself governed
by client rule 3. Subsequently, a mul ti pl exSer ver I nvoker is started according to server rule 1, providing the
binding information which allowsthe mul ti pl exd i ent | nvoker to start. Notethat thed i ent and Connect or are
passed matching clientMultiplexid and serverMultiplexid parameters, respectively.

e Server2dientl: A MiltiplexServerlnvoker &arts according to server rule 2, after which a
Ml ti pl exd i ent I nvoker is started according to client rule 1. Note that the Connect or and d i ent are passed
matching serverMultiplexid and clientMultiplexid parameters, respectively.

* Server2dient2: A MiltiplexServerlnvoker starts according to server rule 2, after which a
Ml ti pl exd i ent | nvoker is started according to client rule 2. Note that no serverMultiplexid is passed to the
Connect or and no clientMultiplexid parameter is passed to the d i ent in this example.

e Server3dient1: A MiltiplexServerlnvoker iscreated, and, lacking connect information, findsitself governed
by server rule 3. Subsequently, a Mul ti pl exd i ent | nvoker is started according to client rule 1, providing the
connect information which allowsthe Ml ti pl exSer ver | nvoker to start. Note that the Connect or and d i ent are
passed matching server Multiplexid and clientMultiplexid parameters, respectively.

For variety, the examples in which the client invoker starts first use the configuration vap to pass invoker group
parameters, and the examples in which the server invoker starts first pass parametersin the | nvoker Locat or .

JBoss June 22, 2008 145

11

Client programming model

The approach taken for the programming model on the client side is one based on a session based model. This means
that it is expected that once a Client is created for a particular target server, it will be used exclusively to make calls
on that server. This expectation dictates some of the behavior of the remoting client.

For example, if create a Client on the client side to make server invocations, including adding callback listeners, will
have to use that same instance of Client to remove the callback listeners. This is because the Client creates a unique
session id that it passeswithin the callsto the server. Thisid isused as part of the key for registering callback listeners
on the server. If create a new Client instance and attempt to remove the callback listeners, a new session id will be
passed to the server invoker, who will not recognize the callback listener to be removed.

Seetest caseorg. j boss. test. renpting. cal | back. push. Ml ti pl eCal | backSer ver sTest Case .

JBoss June 22, 2008 146

12

Compatibility and versioning

Asof JBossRemoting 2.0.0 versioning has been added to guarantee compatibility between different versions. Thisis
accomplished by changing serialization formats for certain classes and by using wire versioning. By wire versioning,
mean that the version used by aclient and server will be sent on the wire so that the other side will be able to adjust
accordingly. Thiswill be automatic for JBossRemoting 2.0.0 and later versions. However, since versioning was not
introduced until the 2.0.0 release, if need to have a 1.4.x version of remoting communicate to a later version, will
need to set a system property on the 2.0.0 version so that knows to use the older wire protocol version. The system
property to set is 'jboss.remoting.pre_2_0_compatible' and should be set to true. There are afew minor features that
will not be fully compatible between 1.4.x release and 2.0.0, which are listed in the release notes.

JBoss June 22, 2008 147

13

Getting the JBossRemoting source and building

The JBossRemoting source code resides in the JBoss CV S repository under the CVS module JBossRemating. To
check out the source using the anonymous account, use the following command:

cvs -d: pserver:anonynmous@noncvs. f orge. j boss. com /cvsroot/jboss checkout JBossRenoti ng ‘

To check out the source using a committer user id, use the following:

cvs -d: ext:usernane@vs. forge.jboss. com/cvsroot/jboss checkout JBossRenoting ‘

This should checkout the entire remoting project, including doc, tests, libs, etc.

See http://www.jboss.org/wiki/Wiki.jsp?page=CV SRepository [http://www.jboss.org/wiki/Wiki.jsp?
page=CV SRepository] for more information on how to access the JBoss CV S repository.

The build process for JBossRemoting is based on a standard ant build file (build.xml). The version of ant that is
supported is ant 1.6.2, but should work with earlier versions as there are no special ant features being used.

The main ant build targets are as follows:
compile - compiles all the core JBossRemoting classes.
jars- creates the jboss-remoting.jar file from the compiled classes

dist.jars- createsthe subsystem jar files (jboss-remoting-core.jar, jboss-remoting-socket.jar, etc.) from the compiled
classes

javadoc - creates the javadoc html files for JBossRemoting

tests.compile - compiles the JBossRemoting test files

testsjars - creates the jboss-remoting-tests.jar and jboss-remoting-loading-tests.jar files.

tests.quick - runsthe functional unit tests for JBossRemoting.

tests- runsall thetests for JBBossRemoting, including functional and performance testsfor all the different transports.
clean - removes all the build artifacts and directories.

most - calls clean then jars targets.

dist - builds the full JBossRemoting distribution including running the full test suite.

JBoss June 22, 2008 148

http://www.jboss.org/wiki/Wiki.jsp?page=CVSRepository

Getting the JBossRemoting source and building

dist.quick - builds the full JBossRemoting distribution, but does not run the test suite.
Theroot directory for al build output is the output directory. Under this directory will be:
cl asses - compiled core classes

et ¢ - deployment and IMX XMBean xml files

l'i b - al the jars and war file produced by the build

test s - contains the compiled test classes and test results

For most development, the most target can be used. Please run the tests.quick target before checking anything in to
ensure that code changes did not break any previously functioning test.

JBoss June 22, 2008 149

14

Known issues

All of the known issues and road map can be found on our bug tracking system, Jira, at http://jira.jboss.com/
jiralsecure/BrowseProject.jspa?id=10031 [http://jira,jboss.com/jira/secure/BrowseProject.jspa?d=10031] (require
member plus registration, which isfree). If you find more, please post them to Jira. If you have questions post them

to the JBoss Remoting users forum (http://www.jboss.com/index.html ?modul e=bb& op=viewforum& =222 [http://
www.j boss.com/index.html ?module=bb& op=viewforum&f=222]).

JBoss June 22, 2008 150

http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031
http://www.jboss.com/index.html?module=bb&op=viewforum&f=222

15

Future plans

Full road map for JBossRemoting can be found at http://jira.jboss.com/jira/lbrowse/
JBREM ?report=com.atlassian.jira.plugin.system.project:roadmap-panel [http://jira.jboss.com/jiralbrowse/IBREM?
report=com.atlassian.jira.plugin.system.project:roadmap-panel].

If you have questions, comments, bugs, fixes, contributions, or flames, please post them to the JBoss Remoting users
forum (http://www.jboss.com/index.html?modul e=bb& op=viewforum&f=222 [http://www.jboss.com/index.html?
module=bb& op=viewforum&f=222]). You can aso find more information about JBoss Remoting on our wiki (
http://www.jboss.org/wiki/Wiki.jsp?page=Remoting [http://www.jboss.org/wiki/Wiki.jsp?page=Remoting]). The
wiki will usually contain the latest updates to doc and features that did not make into previous rel ease.

JBoss June 22, 2008 151

http://jira.jboss.com/jira/browse/JBREM?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.com/jira/browse/JBREM?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://www.jboss.com/index.html?module=bb&op=viewforum&f=222
http://www.jboss.org/wiki/Wiki.jsp?page=Remoting

16

Release Notes

Important changes and differences in 2.2.0 release (from 2.0.0 release)
- Asynchronous method for handling callbacks (JBREM-640)

- Bidirectional transport (JBREM-650)

- Local transport (JBREM-660)

- Marshallers’'Unmarshallers construct their preferred streams (JBREM-692)

Release Notes - JBoss Remoting - Version 2.2.2.5P8

Bug

* [JBREM-949] - CLONE [JBREM-947] - ConnectionValidator hangs when server dies

* [IBREM-954] - InterruptedException should not be rethrown as CannotConnectionException

* [IBREM-960] - Remoting configured with Servlet invoker can return misleading Exceptions when Servlet path
isincorrect

* [JBREM-962] - Remote classloading does not work with Isolated EARS
* [JBREM-965] - Fix PortUtil.getRandomStartingPort()

* [JBREM-981] - CLONE [JBREM-980] - ServerlnvokerServlet should retrieve ServletServerinvoker based on
updated InvokerL ocator

* [IBREM-1003] - Verify |Pv6 addresses are handled correctly, part 2
Feature Request

* [JBREM-972] - CLONE [JBREM-971] - Enhance client-side connection error handling so certain (potentialy
revealing) socket-related exceptins are not discarded

* [JBREM-973] - CLONE [JBREM-970] - Enhance client-side error reporting so a misspelled truststore file name
required by SSL can be easily spotted

Release

JBoss June 22, 2008 152

Release Notes

* [JBREM-948] - Release 2.2.2.5P8

Task

* [IBREM-950] - Assure version compatibility with earlier versions of Remoting

* [JBREM-995] - Apply unit test timing fixes

* [JBREM-1001] - Update Remoting Guide

* [JBREM-1002] - Allow ServerThread to keep running after SocketTImeoutException, part 2

* [JBREM-1004] - Run manual servlet unit tests

Release Notes - JBoss Remoting - Version 2.2.2.SP7

Bug

* [JBREM-942] - A deadlock encountered on ConnectionV alidator

* [IBREM-944] - Fix race in ConnectionNotifier

Release

* [JBREM-943] - Release 2.2.0.SP7

Task

* [JBREM-945] - Allow ServerThread to keep running after SocketTImeoutException

* [JBREM-946] - Assure version compatibility with earlier versions of Remoting

Release Notes - JBoss Remoting - Version 2.2.2.5P6

Bug

* [JBREM-915] - NullPointerException in InvokerL ocator

* [JBREM-937] - Callback BisocketServerlnvoker should reuse available ServerThreads
Release

* [JBREM-939] - Release 2.2.2.5P6

Task

* [IBREM-940] - Assure version compatibility with earlier versions of Remoting

JBoss June 22, 2008 153

Release Notes

Release Notes - JBoss Remoting - Version 2.2.2.SP5
Bug

* [JBREM-892] - CLONE -Client side connection exception is not thrown on the client side when the lease times
out [JBREM-888]

* [IBREM-910] - CLONE -Connector.stop() cannot find invoker MBean when bind addressis 0.0.0.0 [JBREM-909]
Release

* [JBREM-913] - Release 2.2.2.5P5

Task

* [IBREM-912] - Remove stacktrace when SSL SocketBuilder.createSSL SocketFactory() fails

Release Notes - JBoss Remoting - Version 2.2.2.5P4

** Bug

* [JBREM-823] - Serverlnvoker#getM BeanObjectName() returnsinvalid ObjectName if host value is |Pv6
* [IBREM-845] - Infinite loop in BisocketClientlnvoker.createSocket

* [JBREM-858] - MaxPool Size value should be used in key to MicroSocketClientlnvoker.connectionPools
* [JBREM-860] - Eliminate delay in MicroSocketClientl nvoker.getConnection()

* [IBREM-871] - HTTP Client invoker doesn't throw exceptions when using the sslservlet protocol

** Feature Request

* [JBREM-852] - Verify IPv6 addresses are handled correctly

* [IBREM-855] - Update build.xml to allow jdk 1.5 compiler to target VM version 1.4

* [JBREM-873] - Have ServerlnvokerCallbackHandler register as connection listener

** Release

* [JBREM-872] - Release 2.2.0.SP4

** Task

* [JBREM-862] - Verify compatibility with earlier versions

N.B. Release 2.2.2.SP4 replaces 2.2.2.SP3.

JBoss June 22, 2008 154

Release Notes

Release Notes - JBoss Remoting - Version 2.2.2.SP2

Bug

* [IBREM-811] - Privileged Block to create Class L oader

* [JBREM-813] - ServletServerinvoker should return an exception instead of just an error message
Release

* [JBREM-817] - Release 2.2.2.5P2

Task

* [IBREM-687] - allow binding to 0.0.0.0

Release Notes - JBoss Remoting - Version 2.2.2.5P1

** Bug

* [JBREM-653] - alow user to set content-type for http responses
* [JBREM-750] - Logger in HTTPClientInvoker should be static.
** Release

* [JBREM-803] - Release 2.2.2.SP1

** Task

* [IBREM-805] - Verify Remoting 2.2.2.SP1 is compatible with earlier versions

Release Notes - JBoss Remoting - Version 2.2.2.GA
** Bug
* [JBREM-731] - Address of secondary server socket should be acquired each time a control connection is created.

* [JBREM-743] - For polling callback handler, org.jboss.remoting.Client.addListener() should create only one
CallbackPoller per InvokerCallbackHandler

* [JBREM-747] - org.jboss.remoting.transport.Connector should unregister server invoker from MBeanServer
* [IBREM-754] - Reset timeout on each use of HttpURL Connection

* [IBREM-761] - NPE in BisocketServerlnvoker$Control ConnectionThread

* [JBREM-766] - Guard against "spurious wakeup" from Thread.sleep()

* [IBREM-771] - MicroSocketClientInvoker can experience socket leaks

JBoss June 22, 2008 155

Release Notes

* [JBREM-774] - BisocketClientlnvoker.replaceControl Socket() and handleDisconnect() should close control socket
* [IBREM-775] - MicroSocketClientlnvoker.initPool () should omit pool from log message

* [JBREM-778] - BisocketServerlnvoker.start() creates a new static Timer each time

* [IBREM-779] - BisocketClientlnvoker should guard agains scheduling on an expired Timer, part 2

* [IBREM-784] - Use separate maps for control sockets and ordinary sockets in BisocketClientlnvoker

* [IBREM-785] - BisocketClientInvoker.transport() inadvertently uses listenerld member variable

* [IBREM-787] - Move network i/o in BisocketClientlnvoker constructor to handleConnect()

* [JBREM-788] - Access to BisocketClientlnvoker static maps should be synchronized in handleDisconnect()
* [IBREM-790] - NPE in BisocketClientlnvoker$PingTimerTask

* [IBREM-793] - Lease should synchronize access to client map

* [IBREM-794] - LeasePinger.addClient() should not create a new LeaseTimerTask if none currently exists

* The following is the public version of support patch JBREM-791, under which the fix was applied. -RS

* [JIBREM-806] - In HTTPClientinvoker remove newlines and carriage returns from Base64 encoded user hames
and passwords

** Feature Request

* [JBREM-749] - BisocketServerlnvoker: Make configurable the address and port of secondary server socket
* [IBREM-755] - Make ConnectorValidator parameters configurable

* [JBREM-756] - CallbackPoller should shut down if too many errors occur.

* [IBREM-757] - Implement quick Client.removeL istener() for polled callbacks.

* [JBREM-765] - Add a separate timeout parameter for callback clients

** Patch

* [IBREM-781] - Socket transport needs to provide to the client local address of a TCP/IP connection, as seen from
the server

** Release

* [JBREM-789] - Release 2.2.2.GA

** Task

* [JBREM-641] - re-implement the callback polling for http transport to reduce latency

* [JBREM-767] - Avoid deadlock in callback BisocketClientlnvoker when timeout ==

JBoss June 22, 2008 156

Release Notes

* [JBREM-782] - Remove network i/o from synch block in ServerlnvokerCallbackHandler.getCallbackHandler()
* [JBREM-783] - Remove network i/o from synch blocks that establish and terminate LeasePingers

* [IBREM-796] - Verify Remoting 2.2.2 is compatible with earlier versions

Release Notes - JBoss Remoting - Version 2.2.1.GA
** Bug

* [JBREM-751] - Eliminate unnecessary "Unable to process control connection:” message from
BisocketServerlnvoker

** Release

* [JBREM-763] - Release 2.2.1.GA

Release Notes - JBoss Remoting - Version 2.2.0.SP4

** Bug

* [IBREM-748] - BisocketClientlnvoker should guard agains scheduling on an expired Timer
** Release

* [JBREM-744] - Release 2.2.0.SP4

** Task

* [IBREM-714] - Make sure 2.2.0 and 2.0.0 are compatible binary releases

* [JBREM-734] - BisocketClientinvoker constructor should get parameters from InvokerLocator as well as
configuration map.

Release Notes - JBoss Remoting - Version 2.2.0.SP3

** Task

* [JBREM-741] - Eliminate unnecessary log.warn() in BisocketServerlnvoker
Release Notes - JBoss Remoting - Version 2.2.0.SP2

** Bug

* [JBREM-739] - Fix java serialization leak. [Note. This issue has been moved to 2.4.0.Betal pending the addition
of unit tests, but the bug has been fixed.]

JBoss June 22, 2008 157

Release Notes

Release Notes - JBoss Remoting - Version 2.2.0.SP1
** Bug

* [IBREM-732] - When server terminates and has clients, when the server comes back up clients that survived, can't
connect. Connection refused when trying to connect the control socket.

Release Notes - JBoss Remoting - Version 2.2.0.GA (Bluto)

** Bug
* [IBREM-721] - Fix memory leaksin bisocket transport and LeasePinger

* [JBREM-722] - BisocketClientinvoker should start pinging on control connection without waiting for call to
createsocket()

* [IBREM-725] - NPE in BisocketServel nvoker::createControl Connection

* [IBREM-726] - BisocketServerlnvoker control connection creation needs to be in loop
** Feature Request

* [IBREM-705] - Separate the http invoker and web container dependency

* [IBREM-727] - Make Client'simplicitly created Connectors accessible

** Task * [JBREM-634] - update doc on callbacks

* [IBREM-724] - Update build.xml to create bisocket transport jars

Release Notes - JBoss Remoting - Version 2.2.0.Betal (Bluto)

** Bug
* [JBREM-581] - can not do connection validation with ss transport (only impacts detection)

* [IBREM-600] - org.jboss.test.remoting.lease.multiplex.MultiplexL easeTestCase fails

* [JBREM-623] - need reset() call added back to JavaSerializationM anager.sendObject() method
* [IBREM-642] - Socket.setReuseAddress() in MicroSocketClientlnvoker invocation isignored
* [IBREM-648] - Client.disconnect without clearing ConnectionListeners will cause NPEs

* [JBREM-651] - Array class loading problem under jdk6

* [JBREM-654] - a NullPointerException occures and is not handled in SocketServerlnvoker and
MultiplexServerinvoker

* [IBREM-655] - rename server thread when new socket connection comesin
* [JBREM-656] - Creating a client inside a ConnectionListener might lead into L ease reference counting problems

* [IBREM-658] - bug in oneway thread pool under heavy load

JBoss June 22, 2008 158

Release Notes

* [JBREM-659] - Java 6 and ClassL oader.loadClass()

* [JBREM-670] - Remove equals() and hashCode() from
org.jboss.remoting.transport.rmi.RemotingRM I ClientSocketFactory.

* [JBREM-671] - serlvet invoker no longer supports leasing

* [JBREM-683] - ByVauelnvocationTestCase is broken

* [IBREM-685] - A server needs redundant information to detect a one way invocation

* [JBREM-690] - Once the socket of a callback server timeouts, it starts to silently discard traffic

* [IBREM-697] - Horg.jboss.remoting.transport.rmi.RemotingRM I ClientSocketFactory.ComparableHol der should
use InetAddress for host.

* [JBREM-700] - NPE in AbstractDetector

* [JBREM-704] - BisocketServerlnvoker inadvertently logs "got listener: null" as INFO

* [IBREM-708] - Correct org.jboss.remoting.Client.readExternal ()

* [IBREM-711] - ChunkedTestCase and Chuncked2TestCase failing

* [JBREM-712] - HTTPInvokerProxy TestCase failing

* [JBREM-723] - BisocketClientlnvoker.transport() needs to distinguish between push and pull callback connections
** Feature Request

* [JBREM-525] - Automatically set HostnameVerifier in HTTPSClientInvoker to allow all hosts if authorization is
turned off.

* [JBREM-598] - add timeout config per client invocation

* [JBREM-618] - Support CallbackPoller configuration.

* [IBREM-640] - Implement an asynchronous method for handling callbacks.
* [JBREM-650] - Create bidirectiona transport

* [IBREM-657] - Implement versions of Client.removelListener() and Client.disconnect() which do not write to a
broken server.

* [JBREM-660] - create local transport

* [JBREM-664] - Fix misleading InvalidConfigurationException

* [IBREM-692] - Let marshallers’unmarshallers construct their preferred streams.

* [JBREM-720] - Need to expose create method for TransporterClient that passes load balancing policy

** Task

JBoss June 22, 2008 159

Release Notes

* [JBREM-274] - add callback methods to the Client API

* [JBREM-369] - For Connectors that support callbacks on SSL connections, there should be a unified means of
configuring SSL ServerSocket and callback Client SSL Socket.s.

* [IBREM-453] - Send the pre-release jar to the messaging team for testing
* [JBREM-614] - Client.invoke() should check isConnected().

* [JBREM-631] - Fix org.jboss.test.remoting.transport.socket.connection.SocketConnectionCheckTestCase and
SocketConnectionTestCase failures.

* [JBREM-635] - Remove misleading error message from HTTPUnMarshaller.

* [IBREM-636] - Remove ServerlnvokerCallbackHandler's dependence on initial InvocationRequest for listerner id.
* [IBREM-637] - add tomcat jar to component-info.xml for remoting release

* [JBREM-644] - Reduce unit test logging output.

* [JBREM-647] - Initialize Client configuration map to empty HashMap.

* [IBREM-663] - Put org.jboss.remoting.L easePinger on separate thread.

* [JBREM-669] - Client.removeListener() should catch exception and continue if invocation to server fails.

* [JBREM-674] - add test case for client exiting correctly

* [IBREM-693] - Make sure "bisocket" can fully replace "socket" as Messaging's default transport

* [JBREM-695] - RemotingRMIClientSocketFactory.createSocket() should return a socket even if a
RMIClientInvoker has not been registered.

* [IBREM-702] - http.basic.password should alow for empty passwords
* [IBREM-707] - Fix handling of OPTIONS invocations in Coyotel nvoker
* [JBREM-709] - Fix occasional failures of org.jboss.test.remoting.lease.socket.multiple.SocketL easeTestCase

* [JBREM-719] - Fix spelling of
ServerlnvokerCallbackHandler. REMOTING_ACKNOWLEDGES _PUSH_CALLBACKS

Release Notes - JBoss Remoting - Version 2.2.0.Alpha6

* % Bug
* [JBREM-662] - Failed Clientlnvoker not cleaned up properly

* [IBREM-673] - Use of java.util.Timer recently added and not set to daemon, so applications not exiting
* [JBREM-683] - ByVauelnvocationTestCase is broken

** Feature Request

JBoss June 22, 2008 160

Release Notes

* [JBREM-678] - Sending an one-way invocation into a server invoker that is not started should generate awarning
inlogs

* [IBREM-679] - Add the possibility to obtain ConnectionValidator's ping period from a Client

* [IBREM-680] - An invocation into a"broken" client should throw a subclass of |OException

** Task

* [IBREM-676] - TimerTasks run by TimerUtil should have a chance to clean up if TimerUtil.destroy() is called.
Release Notes - JBoss Remoting - Version 2.2.0.Alphab

** Bug

* [JBREM-666] - Broken or malicious clients can lock up the remoting server

* [IBREM-667] - Worker thread names are confusing

** Feature Request

* [IBREM-668] - jrunit should allow TRACE level logging

Release Notes - JBoss Remoting - Version 2.2.0.Alphad

** Bug

* [IBREM-649] - Concurrent exceptions on Lease when connecting/disconnecting new Clients

Release Notes - JBoss Remoting - Version 2.2.0.Alpha3 (Bluto)

** Bug

* [IBREM-594] - invoker not torn down upon connector startup error

* [IBREM-596] - Lease stops working if the First Client using the same Locator is closed

* [JBREM-602] - If LeasePeriod isnot set and if enablel ease==true |easePeriod assumes negative value

* [IBREM-610] - Prevent org.jboss.remoting.callback.CallbackPoller from delivering callbacks out of order.

* [IBREM-611] - Initializing Client.sessionl d outside constructor leadsto java.lang.NoClassDef FoundError in certain
circumstances

* [JBREM-615] - If CalbackStore.add() is called twice quickly, System.currentTimeMillis() might not change,
leading to duplicate file names.

* [JBREM-616] - Deletion of callback files in getNext() is not synchronized, allowing callbacks to be returned
multiple times.

* [JBREM-619] - In SocketServerlnvoker.run() and MultiplexServerlnvoker().run, guarantee ServerSocketRefresh
thread terminates.

JBoss June 22, 2008 161

Release Notes

* [JBREM-622] - InvokerL ocator aready exists for listener

* [IBREM-625] - MicroSocketClientlnvoker should decrement count of used sockets when a socket is discarded.
* [IBREM-629] - NPE in sending natification of lost client

** Feature Request

* [JBREM-419] - Invokers Encryption

* [IBREM-429] - Create JBossSerialization MarshalledVaue more optimized for RemoteCalls

* [JBREM-548] - Support one way invocations with no response

* [IBREM-597] - Allow access to underlying stream in marshaller with socket transport

* [JBREM-604] - alow socket server invoker to accept third party requests

* [JBREM-605] - Inform a server side listener that a callback has been delivered.

* [IBREM-607] - Add idle timeout setting for invoker threads

* [JBREM-609] - Support nonserializable callbacks in CallbackStore

** Task

* [IBREM-562] - publish performance benchmarks

* [JBREM-601] - Integrate http with messaging

* [IBREM-612] - Verify push callback connection with multiplex transport shares client to server connection.
* [IBREM-613] - Serverlnvoker.InvalidStateException should be a static class.

* [JBREM-617] - CallbackPoller should have its own thread.

* [JBREM-620] - If HTTPClientInvoker receives an Exception in an InvocationRespose, it should throw it instead
of creating a new Exception.

* [IBREM-621] - http transport should behave more like other transports.

* [JBREM-624] - Add JBoss EULA

* [IBREM-627] - Fix org.jboss.test.remoting.transport.multiplex.MultiplexlnvokerShutdownTestCase failure.

* [IBREM-630] - Fix client/server race in org.jboss.test.remoting.transport.multiplex.L ateClientShutdownTestCase.
* [JBREM-632] - Modify src/etc/logdj.xml to allow DEBUG level logging for org.jboss.remoting loggers in jrunit
test cases.

Release Notes - JBoss Remoting - Version 2.0.0.GA (Boon)

** Bug

JBoss June 22, 2008 162

Release Notes

* [JBREM-568] - SSL SocketBuilderMBean does not have matching getter/setter attribute types

* [JBREM-569] - HTTP(S) proxy broken

* [IBREM-576] - deadlock with socket invoker

* [JBREM-579] - transporter does not handle reflection conversion for primitive types

* [JBREM-580] - detection can not be used with ssl based transports

* [JBREM-586] - socket client invoker connection pooling not bounded

* [JBREM-590] - SSL client socket invoker does not use configuration map for SSL SocketBuilder

** Feature Request

* [JBREM-564] - Default client socket factory configured by a system property

* [JBREM-575] - local client invoker should convert itself to remote client invoker when being serialized

** Task

* [JBREM-570] - Change log in ConnectionValidator to be debug instead of warn when not able to ping server
* [JBREM-571] - fix/cleanup doc

* [IBREM-574] - Write SSL info for virtual sockets and server sockets in toString()

* [IBREM-578] - add spring remoting to performance benchmark tests

* [IBREM-582] - remove System.out.println and printStackTrace calls

* [IBREM-583] - Fix ConcurrentM odificationException in MultiplexingManager.notify SocketsOf Exception()

* [JBREM-584] - Get org.jboss.test.remoting.performance.spring.rmi.SpringRM I PerformanceT estCase to run with
multiple clients and callback handlers

* [IBREM-587] - ClientConfigurationCallbackConnectorTestCase(jboss_serialization) failure.

* [JBREM-593] - Synchronize client and server in
org.jboss.test.remoting.transport.multiplex.L ateClientShutdownTestCase

Release Notes - JBoss Remoting - Version 2.0.0.CR1 (Boon)

** Bug

* [IBREM-303] - org.jboss.test.remoting.transport.multiplex.BasicSocket TestCase(jboss _serialization) failure

* [JBREM-387] - classloading problem - using wrong classl oader

* [JBREM-468] - No connection possible after an illegitimate attempt

* [IBREM-484] - AbstractDetector.checklnvokerServer() is probably broken

JBoss June 22, 2008 163

Release Notes

* [JBREM-494] - ClientDisconnectedException does not have serial version UID

* [JBREM-495] - classes that do not have serial version UID

* [IBREM-500] - ServerThread never dies

* [JBREM-502] - not getting REMOVED notification from registry for intra-VM detection

* [JBREM-503] - NPE in abstract detector

* [IBREM-506] - StreamHandler throws index out of bounds exception

* [JBREM-508] - serialization exception with mustang

* [IBREM-519] - StreamServer never shuts down the server

* [JBREM-526] - TimeUtil not using daemon thread

* [JBREM-528] - ConcurrentM odificationException when checking for dead servers (AbstractDetector)
* [IBREM-530] - Detection heartbeat requires small timeout (for dead server detection)

* [JBREM-534] - multiplex client cannot re-connect to server after it has died and then been re-started

* [JBREM-537] - org.jboss.test.remoting.transport.rmi.ssl.handshake.RMIInvoker TestCase(java_serialization) -
failing

* [JBREM-541] - null pointer when receiving detection message

* [JBREM-545] - setting of the bind address within MulticastDetector not working

* [IBREM-546] - InvokerLocator.equalsis broken

* [JBREM-552] - cannot init cause of ClassCastException

* [JBREM-553] - deadlock when disconnecting

* [IBREM-556] - versioning tests failing

* [IBREM-561] - http chuncked test cases failing under jdk 1.5

** Feature Request

* [IBREM-427] - SSL Connection: load a new keystore at runtime

* [JBREM-430] - transporter needs to be customizable

* [JBREM-461] - Better documentation for ssimultiplex

* [JBREM-491] - need to implement using ssl client mode for push callbacks for all transports
* [JBREM-492] - would like an API to indicate if atransport requires SSL configuration

* [IBREM-499] - need indication if invoker is secured by sdl

JBoss June 22, 2008 164

Release Notes

* [JBREM-501] - give descriptive names to threads

* [JBREM-504] - some synch blocks in AbstractDetector could change

* [IBREM-520] - Organize configuring of ServerSocketFactory's and callback SocketFactory's.

* [IBREM-527] - Allow user to pass Connector to be used for stream server

* [JBREM-532] - need synchronous call from detector client to get all remoting servers on network
* [JBREM-539] - add sdservlet procotol

* [JBREM-544] - http clientinvoker (for http, https, servlet, and sslservlet) needsto handle exceptionsin same manner
as other transport implementations

** Tagk
* [IBREM-21] - Add stress tests

* [IBREM-218] - investigate why jrunit report on cruisecontrol inaccurate
* [IBREM-311] - need required library matrix

* [IBREM-320] - optimize pass by value within remoting

* [IBREM-321] - performance tuning

* [JBREM-368] - Configure SSL Sockets and SSL ServerSockets used in callbacks to be in server mode and client
mode, respectively.

* [JBREM-383] - Document new versioning for remoting

* [JBREM-384] - correct manifest to comply with new standard

* [JBREM-390] - finish multiplex

* [IBREM-412] - Remoting Guide lacks left margin

* [IBREM-423] - document how remoting identity works and how to configure

* [JBREM-428] - add the samples/transporter/multiple/ to the distribution build (think may be there by default) and
update the docs

* [IBREM-434] - fix configuration data within document (socketTimeout should be timeout)
* [JBREM-435] - break out remoting jars (serialization)

* [JBREM-442] - need full doc on how socket invoker works (connection pooling, etc.)

* [JBREM-447] - convert static transporter factory methods into constructor calls

* [IBREM-452] - Send the pre-release jar to the messaging team for testing

JBoss June 22, 2008 165

Release Notes

* [JBREM-454] - cache socket wrapper classes

* [IBREM-477] - remove Client.setlnvoker() and Client.getlnvoker() methods

* [IBREM-487] - Eliminate possible synchronization problem in InvokerRegistry

* [IBREM-490] - consolidate the remoting security related classes

* [JBREM-493] - Update version of jboss serialization being used

* [JBREM-496] - restructure service providers for remoting

* [JBREM-497] - change InvokerL ocator to respect hosthame over ip address

* [IBREM-498] - change logging on cleaning up failed detection

* [IBREM-507] - need to make configuration properties consistent

* [JBREM-509] - Fix call to super() in Serverlnvoker's two argument constructor.

* [JBREM-511] - Allow HTTPSClientlnvoker to create a HostnameV erifier from classname.

* [IBREM-513] - Create SSL version of RMI transport.

* [JBREM-514] - Fix potential NullPointerException in SSL SocketClientlnvoker.createSocket().
* [IBREM-516] - add very simple transporter sample

* [IBREM-517] - HTTPServerlnvoker needs to be deprecated

* [JBREM-523] - connection pool on socket client invoker needs to be bound

* [JBREM-524] - Clean up MicrosocketClientInvoker code

* [IBREM-529] - Need to be able to reuse socket connections after move to TIME_WAIT state
* [IBREM-533] - remove external http GET test

* [IBREM-535] - add config to force use of remote invoker instead of local

* [IBREM-536] - turn off host verification when doing push callback from server using same ssl config as server
* [JBREM-538] - update remoting dist build to break out transportsinto individual jars

* [JBREM-540] - need to make servlet-invoker.war part of remoting distribution

* [JBREM-542] - change how remoting servlet finds servlet invoker

* [IBREM-543] - fix servlet invoker error handling to be more like that of the http invoker

* [IBREM-547] - need test case for exposing multiple interfaces for transporter server target pojo

* [JBREM-551] - org.jboss.test.remoting.transport.multiplex.MultiplexInvoker TestCase(java_serialization) failure

JBoss June 22, 2008 166

Release Notes

* [JBREM-555] - fix connection validator to not require extra thread to execute ping every time
* [JBREM-558] - Break master.xml documentation into chapter files

* [JBREM-559] - update doc for 2.0.0.CR1 release

* [JBREM-560] - InvokerGroupTestCase(java_serialization) failure

* [IBREM-563] - Multiplex ClientConfigurationCallbackConnectorTestCase(jboss _serialization) failure

Release Notes - JBoss Remoting - Version 2.0.0.Beta2 (Boon)

** Bug

* [IBREM-304] - org.jboss.test.remoting.transport.multiplex.MultiplexInvokerTestCase(java_seridlization) fails
* [IBREM-371] - HTTPClientInvoker does not pass an ObjectOutputStream to the marshaller
* [IBREM-405] - NPE when calling stop() twice on MulticastDetector

* [JBREM-406] - StringlndexOutOfBoundsException in InvokerL ocator

* [JBREM-408] - client lease updates broken on server side

* [JBREM-409] - Invocations fail when the pool exhausts and under heavy load

* [JBREM-414] - INDI detection failing

* [JBREM-418] - ObjectlnputStreamWithClassL oader can't handle primitives

* [JBREM-426] - keyStorePath and keyStorePassword being printed to standard out

* [IBREM-432] - TransporterClient missing seriadVersionUID

* [IBREM-440] - CallbackStore.getNext() won't necessarily get the oldest one

* [IBREM-441] - DefaultCallbackErrorHandler.setConfig needs to avoid NPE

* [IBREM-449] - Failure Information lost in RemotingSSL SocketFactory

* [JBREM-450] - ClassNotFoundException for class array type during deserialization

* [JBREM-464] - ssl socket invoker not using ssl server socket factory

* [JBREM-467] - NPE when calling Client.removeConnectionListener()

* [JBREM-470] - javax.net.ssl.SSLException: No available certificate corresponds to the SSL cipher suites
* [IBREM-472] - Misspelled serialization type generates obscure NPE

* [JBREM-479] - ClientConfigurationMapTestCase failure

* [IBREM-482] - client invoker configuration lost after first time invoker is created

JBoss June 22, 2008 167

Release Notes

** Feature Request

* [IBREM-312] - make TransporterClient so can be sent over network as dynamic proxy

* [IBREM-363] - make callbacks easier with richer API for registering for callbacks

* [JBREM-411] - Add chunked streaming support to the HTTP invoker

* [JBREM-413] - Transporter server should alow multiple pojo targets

* [IBREM-422] - Add plugable load balancing policy to transporter client

* [JBREM-425] - Add support for setting the HTTP invoker content encoding that is accepted
* [IBREM-431] - transporter server should automatically expose all interfaces implemented as subsystems
* [IBREM-439] - Streaml nvocationHandler.handleStream should throw Throwable for consi stency
* [JBREM-469] - Enable HTTP polling

* [JBREM-471] - need better InvokerL ocator.equals() implementation

* [IBREM-481] - Changing StringUtilBuffer creation on JBossSerialization

** Task

* [IBREM-299] - MultiplexInvokerTestCase failure

* [IBREM-314] - need org.jboss.test.pooled.test. SSL SocketsUnitTestCase for remating

* [JBREM-328] - change lease ping to be HEAD instead of POST for http transport

* [JBREM-362] - convert Connector to be standard mbean instead of xmbean

* [JBREM-365] - set default user agent header in http client invoker

* [IBREM-366] - clean up client invoker tracking within InvokerRegistry

* [IBREM-367] - set live server socket factory on Connector

* [JBREM-370] - add changes from 1.4.1 release to master.xml doc

* [JBREM-377] - need to convert ConnectionValidator to use TimerQueue

* [JBREM-379] - need to update jboss-serialization jar being used

* [JBREM-380] - change ConnectionV alidator to only notify once of failure

* [IBREM-382] - disable lease ping for local invoker

* [IBREM-415] - sync bug fixes with pooled invoker and socket invoker

* [JBREM-420] - INDI Detector should not need a connector when running in client mode

JBoss June 22, 2008 168

Release Notes

* [JBREM-421] - remote stream handler api inconsistent with regular handler

* [JBREM-436] - Extend MultiplexinglnputStream with readint() to avoid creating a MultiplexingDatal nputStream
in Virtual Socket.connect() and elsewhere.

* [JBREM-437] - Eliminate "verify connect" phase from virtual socket connection protocol.
* [IBREM-443] - add HandshakeCompletedL istener support to ssl multiplex

* [IBREM-451] - Send the pre-release jar to the messaging team for testing

* [IBREM-455] - checking of socket connection is not really needed

* [JBREM-456] - block callback handling when callback store fulll

* [JBREM-460] - createSocket() in SSL SocketClientinvoker and SSLMultiplexClientinvoker should not assume
SocketFactory has been created.

* [JBREM-465] - property setting on the client from locator parameters and config map
* [JBREM-476] - make externalization of Client match original instance state

* [IBREM-478] - fix local client invoker handling of disconnected server invokers

* [IBREM-483] - remove LocalLeaseTestCase

* [JBREM-485] - use the ClientinvokerHolder to contain the reference counting instead of having to use
clientInvokerCounter

* [JBREM-486] - Fix ConcurrentM odificationException in
org.jboss.test.remoting.transport.mock.Mock ServerlnvocationHandl er

Release Notes - JBoss Remoting - Version 2.0.0.Betal

** Bug

* [IBREM-372] - memory leak on server side leasing

* [IBREM-376] - problem versioning with not using connection checking

* [JBREM-378] - client connection checking not working

** Feature Request

* [IBREM-340] - Strong version compatibility guarantee

** Task

* [JBREM-374] - single thread the leasing timer

Release Notes - JBoss Remoting - Version 1.4.4.GA

JBoss June 22, 2008 169

Release Notes

** Bug

* [IBREM-426] - keyStorePath and keyStorePassword being printed to standard out

Release Notes - JBoss Remoting - Version 1.4.3.GA
** Bug

* [IBREM-418] - ObjectInputStreamWithClassL oader can't handle primitives

Release Notes - JBoss Remoting - Version 1.4.2 final
** Feature Request

* [IBREM-429] - Create JBossSerialization MarshalledVaue more optimized for RemoteCalls

Release Notes - JBoss Remoting - Version 1.4.1 final

** Feature Request

* [IBREM-310] - Ability to turn connection checking off

* [IBREM-325] - move IMarshalledV aue from jboss-commons to jboss-remoting.jar

** Bug

* [JBREM-313] - client lease does not work if client and server in same VM (using local invoker)
* [JBREM-317] - HTTPClientInvoker conect sends gratuitous POST

* [IBREM-341] - Client ping interval must be lease than lease period

* [JBREM-343] - Exceptions on connection closing

* [JBREM-345] - problem using client address and port

* [IBREM-346] - fix ConcurrentM odificationException in cleanup of MultiplexServerinvoker
* [IBREM-350] - ConcurrentM odificationException in InvokerRegistry

* [IBREM-361] - Race condition in invoking on Client

** Task

* [IBREM-2] - sample-bindings.xml does not have entry for remoting

* [JBREM-220] - clean up remoting wiki

* [IBREM-316] - Maintain tomcat originated code under the ASF license.

* [IBREM-319] - ability to inject socket factory by classname or instance in all remoting transports

JBoss June 22, 2008 170

Release Notes

* [IBREM-323] - client lease config changes

* [IBREM-329] - create global transport config for timeout

* [IBREM-330] - create socket server factory based off of configuration properties

* [IBREM-335] - Client.invoke() should pass configuration map to InvokerRegistry.createClientlnvoker().
* [JBREM-336] - InvokerRegistry doesn't purge InvokerL ocators from static Set registeredLocators.

* [IBREM-337] - PortUTtil.findFreePort() should return ports only between 1024 and 65535.

* [JBREM-342] - Thread usage for timers and lease functionality

* [IBREM-354] - ServerlnvokerCallbackHandler should make its subsystem accessible.

* [IBREM-356] - Serverlnvoker should destroy its callback handlers.

* [IBREM-359] - MultiplexInvokerConfigTestCase should execute MultiplexinvokerConfigTestServer instead of
MultiplexInvokerTestServer.

Release Notes - JBoss Remoting - Version 1.4.0 final

** Feature Request

* [IBREM-91] - UIL2 type transport (duplex calling of same socket)

* [IBREM-117] - clean up callback client after several failures delivering callbacks

* [JBREM-138] - HTTP/Servlet invokers require content length to be set

* [JBREM-229] - Remove dependency on ThreadL ocal for SerializationManagers and pluggabl e serialization
* [JBREM-233] - Server side exception listeners for client connections

* [IBREM-257] - Append client stack trace to thrown remote exception

* [IBREM-261] - Integration with IMarshalledV alue from JBossCommons

* [IBREM-278] - remoting detection needs ability to accept detection of server invoker running locally

* [JBREM-280] - no way to add path to invoker uri when using complex configuration

** Bug

* [JBREM-41] - problem using localhost/127.0.0.1

* [IBREM-115] - http server invoker does not wait to finish processing on stop

* [IBREM-223] - Broken Pipeif client don't do any calls before the timeout value

* [IBREM-224] - java.net.SocketTimeoutException when socket timeout on the keep alive

JBoss June 22, 2008 171

Release Notes

* [JBREM-231] - bug in invoker locator when there are no params (NPE)

* [IBREM-234] - StreamCorruptedException in DTM testcase

* [IBREM-240] - TestUtil does not always give free port for server

* [IBREM-243] - socket client invoker sharing pooled connections

* [JBREM-250] - InvokerL ocator doesn't support URL in IPv6 format (ex: socket://3000::117:5400/)
* [IBREM-251] - transporter passes method signature based on concrete object and not the parameter type
* [JBREM-256] - NullPointer in MarshallerL oaderHandler.java:69

* [IBREM-259] - Unmarshalling of server response is not using caller's classloader

* [IBREM-271] - http client invoker needs to explicitly set the content type if not provided
* [JBREM-277] - error shutting down coyote invoker when using APR protocol

* [JBREM-281] - getting random port for connectorsis not reliable

* [IBREM-282] - ServletServerlnvoker not working with depployed for use as gjb invoker
* [JBREM-286] - Socket server does not clean up server threads on shutdown

* [IBREM-289] - PortUtil only checking for free ports on localhost

** Task

* [JBREM-7] - Add more tests for local invoker

* [JBREM-121] - improve connection failure callback

* [JBREM-126] - add tests for client vs. server address bindings

* [IBREM-195] - Performance optimization

* [IBREM-199] - remoting clients required to include servlet-api.jar

* [JBREM-207] - clean up build file

* [JBREM-214] - multiplex performance tests getting out of memory error

* [JBREM-215] - re-write http transport/handler documentation

* [JBREM-216] - Need to add new samplesto example build in distro

* [IBREM-217] - create samples documentation

* [IBREM-219] - move remoting site to jboss labs

* [JBREM-226] - Release JBoss Remoting 1.4.0 final

JBoss June 22, 2008

172

Release Notes

* [JBREM-230] - create interface for marshallers to implement for swapping out serialization impl
* [IBREM-235] - add new header to source files

* [IBREM-239] - Update the LGPL headers

* [IBREM-242] - Subclass multiplex invoker from socket invoker.

* [JBREM-249] - http invoker (tomcat connector) documentation

* [JBREM-253] - Convert http server invoker implementation to use tomcat connector and protocols
* [IBREM-255] - HTTPClientlnvoker not setting response code or message

* [IBREM-275] - fix package error in examle-service.xml

* [JBREM-276] - transporter does not throw original exception from server implementation

* [JBREM-279] - socket server invoker spits out error messages on shutdown when is not needed
* [JBREM-287] - need to complete javadoc for all user classes/interfaces

* [IBREM-288] - update example-service.xml with new configurations

** Reactor Event

* [JBREM-241] - Refactor SocketServerlnvoker so that can be subclassed by MultiplexServerinvoker

Release Notes - JBoss Remoting - Version 1.4.0 beta

** Feature Request

* [IBREM-28] - Marshaller for non serializable objects

* [IBREM-40Q] - Compression marshaller/unmarshaller

* [JBREM-120] - config for using hostname in locator url instead of ip

* [JBREM-140] - can not set response headers from invocation handlers

* [JBREM-148] - support pluggable object serialization packages

* [IBREM-175] - Remove Dependenciesto Server Classes from Unifiedlnvoker
* [IBREM-180] - add plugable serialization

* [JBREM-187] - Better HTTP 1.1 stack support for HTTP invoker

* [JBREM-201] - Remove dependency from JBossSerialization

** Bug

JBoss June 22, 2008 173

Release Notes

* [JBREM-127] - RMI Invoker will not bind to specified address
* [IBREM-192] - distro contains samplesin src and examples directory

* [IBREM-193] - HTTPClientInvoker doesn't call getErrorStream() on HttpURL Connection when an error response
codeis returned

* [IBREM-194] - multiplex performance tests hang

* [IBREM-202] - getUnmarshaller always calls Class.forName operation for creating Unmarshallers
* [JBREM-203] - rmi server invoker hangsif custom unmarshaller

* [JBREM-205] - Spurious java.net.SocketException: Connection reset error logging

* [IBREM-210] - InvokerLocator should be insensitive to parameter order

** Task
* [IBREM-9] - Fix performance tests

* [IBREM-33] - Add GET support within HTTP server invoker

* [JBREM-145] - convert user guide from MS word doc to docbook

* [JBREM-182] - Socket timeout too short (and better error message)

* [JBREM-183] - keep alive support for http invoker

* [IBREM-196] - reducde the number of retries for socket client invoker

* [IBREM-204] - create complex remoting example using dynamic proxy to endpoint
* [JBREM-212] - create transporter implementation

* [JBREM-213] - alow config of ignoring https host validation (ssl) via metadata

** Patch
* [JBREM-152] - NullPointerException in SocketServerlnvoker.stop() at line 185.

* [IBREM-153] - LocalClientinvoker's outlive their useful lifetime, causing anomalous behavior

Release Notes - JBoss Remoting - Version 1.2.1 final
** Feature Request
* [IBREM-161] - Upgrade JRunit to Beta 2

** Bug

JBoss June 22, 2008 174

Release Notes

* [JBREM-147] - Invalid reuse of target location

* [IBREM-163] - NPE in Mutlicast Detector

* [IBREM-164] - HTTP Invoker unable to send large amounts of data

* [JBREM-176] - Correct inheritance structure for detectors

* [IBREM-177] - configuration attribute spelled incorrectly in ServerlnvokerMBean
* [JBREM-178] - SocketServerlnvoker hanging on Linux

* [JBREM-179] - socket timeout not being set properly

** Task

* [IBREM-156] - Better exception handling within socket server invoker
* [JBREM-158] - Clean up test cases

* [JBREM-162] - add version to the remoting jar

Release Notes - JBoss Remoting - Version 1.2.0 final

** Feature Request

* [IBREM-8] - Ability to stream files viaremating

* [IBREM-22] - Manipulation of the client proxy interceptor stack

* [JBREM-24] - Allow for specific network interface bindings

* [JBREM-27] - Support for HTTP/HTTPS proxy

* [IBREM-35] - Servlet Invoker - counterpart to HTTP Invoker (runs within web container)

* [IBREM-43] - custom socket factories

* [IBREM-46] - Connection failure callback

* [JBREM-87] - Add handler metadata to detection messages

* [JBREM-93] - Callback handler returning a generic Object

* [JBREM-94] - callback server specific implementation

* [JBREM-109] - Add support for JaasSecurityDomain within SSL support
* [IBREM-122] - need log4j.xml in examples

** Bug

* [JBREM-58] - Bug with multiple callback handler registered with same server

JBoss June 22, 2008

175

Release Notes

* [JBREM-64] - Need Marshal Factory to produce new instance per get request

* [JBREM-84] - Duplicate Connector shutdown using same server invoker

* [IBREM-92] - in-VM push callbacks don't work

* [JBREM-97] - Won't compile under JDK 1.5

* [JBREM-108] - can not set bind address and port for rmi and http(s)

* [JBREM-114] - getting callbacks for a callback handler always returns null

* [JBREM-125] - can not configure transport, port, or host for the stream server

* [IBREM-131] - invoker registry not update if server invoker changes locator

* [IBREM-134] - can not remove callback listeners from multiple callback servers

* [IBREM-137] - Invalid RemoteClientInvoker reference maintained by InvokerRegistry after invoker disconnect()
* [JBREM-141] - bug connecting client invoker when client detects that previously used oneis disconnected
* [IBREM-143] - NetworkRegistry should not be required for detector to run on server side
** Task

* [IBREM-11] - Create seperate JBoss Remoting modulein CVS

* [IBREM-2Q] - break out remoting into two seperate projects

* [JBREM-34] - Need to add configuration properties for HTTP server invoker

* [JBREM-39] - start connector on new thread

* [IBREM-55] - Clean up Callback implementation

* [IBREM-57] - Remove use of InvokerRequest in favor of Callback object

* [IBREM-62] - update Unifiedinvoker to use remote marshall loading

* [IBREM-67] - Add ability to set ThreadPool via configuration

* [JBREM-98] - remove isDebugEnabled() within code asis now depricated

* [JBREM-101] - Fix serialization versioning between releases of remoting

* [JBREM-104] - Release JBossRemoting 1.1.0

* [IBREM-110] - create jboss-remating-client.jar

* [IBREM-113] - Convert remote tests to use JRunit instead of distributed test framework

* [JBREM-123] - update detection samples

JBoss June 22, 2008 176

Release Notes

* [JBREM-128] - standardize address and port binding configuration for all transports
* [IBREM-130] - updated wiki for checkout and build

* [JBREM-132] - write test case for BREM-131

* [JBREM-133] - Document use of Client (as a session object)

* [JBREM-135] - Remove ClientlnvokerAdapter

** Reactor Event

* [JBREM-65] - move callback specific classes into new callback package

* [IBREM-111] - pass socket's output/inputstream directly to marshaller/unmarshaller
Release Notes - JBoss Remoting - Version 1.0.2 fina

** Bug

* [JBREM-36] - performance tests fail for http transports

* [JBREM-66] - Race condition on startup

* [JBREM-82] - Bad warning in Connector.

* [IBREM-88] - HTTP invoker only binds to localhost

* [IBREM-89] - HTTPUnMarshaller finishing read early

* [JBREM-90] - HTTP header values not being picked up on the http invoker server
** Task

* [IBREM-70] - Clean up build.xml. Fix .classpath and .project for eclipse

* [IBREM-83] - Updated Invocation marshalling to support standard payloads
Release Notes - JBoss Remoting - Version 1.0.1 fina

** Feature Request

* [JBREM-54] - Need access to HTTP response headers

** Bug

* [JBREM-1] - Thread.currentThread().getContextClassL oader() is wrong

* [IBREM-31] - Exception handling in http server invoker

* [IBREM-32] - HTTP Invoker - check for threading issues

* [JBREM-50] - Need ability to set socket timeout on socket client invoker

JBoss June 22, 2008 177

Release Notes

* [JBREM-59] - Pull callback collection is unbounded - possible Out of Memory
* [JBREM-60] - Incorrect usage of debug level logging

* [IBREM-61] - Possible RMI exception semantic regression

** Task

* [IBREM-15] - merge Unifiedlnvoker from remoting branch

* [JBREM-30] - Better integration for registering invokers with MBeanServe

* [IBREM-37] - backport to 4.0 branch before 1.0.1 final release

* [JBREM-56] - Add Callback object instead of using InvokerRequest

** Reactor Event

* [JBREM-51] - defining marshaller on remoting client

Release Notes - JBoss Remoting - Version 1.0.1 beta

** Bug
* [IBREM-19] - Try to reconnect on connection failure within socket invoker

* [JBREM-25] - Deadlock in InvokerRegistry

** Feature Request
* [JBREM-12] - Support for call by value

* [JBREM-26] - Ability to use MBeans as handlers

** Tagk
* [IBREM-3] - Fix Asyn invokers - currently not operable

* [IBREM-4] - Added test for throwing exception on server side
* [IBREM-5] - Socket invokers needs to be fixed

* [JBREM-16] - Finish HTTP Invoker

* [IBREM-17] - Add CannotConnectException to all transports

* [JBREM-18] - Backport remoting from HEAD to 4.0 branch

** Reactor Event

JBoss June 22, 2008

178

Release Notes

* [JBREM-23] - Refactor Connector so can configure transports

* [JBREM-29] - Over load invoke() method in Client so metadata not required

JBoss June 22, 2008 179

