
Red Hat Enterprise MRG 1.3

Grid User Guide
Use and configuration information for MRG Grid

Lana Brindley

Scott Mumford

Grid User Guide

Red Hat Enterprise MRG 1.3 Grid User Guide
Use and configuration information for MRG Grid
Edition 7

Author Lana Brindley lbrindle@redhat.com
Author Scott Mumford smumford@redhat.com
Copyright © 2010 Red Hat, Inc

Copyright © 2010 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

All other trademarks are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701

This book covers use and operation of the MRG Grid component of the Red Hat Enterprise MRG
distributed computing platform. For installation instructions, see the MRG Grid Installation Guide.

mailto:lbrindle@redhat.com
mailto:smumford@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions ... vi
1.2. Pull-quote Conventions .. vii
1.3. Notes and Warnings .. vii

2. Getting Help and Giving Feedback .. viii
2.1. Do You Need Help? ... viii
2.2. We Need Feedback! ... viii

1. Overview 1

2. Configuration 3
2.1. Configuring MRG Grid for Microsoft Windows .. 6

3. Security 13
3.1. Security Contexts ... 13
3.2. Security negotiation .. 16
3.3. Authentication .. 18
3.4. Authentication methods ... 19
3.5. Encryption .. 22
3.6. Integrity .. 24

4. Remote configuration 25
4.1. The Configuration Store .. 25
4.2. Nodes .. 31
4.3. Tools .. 33
4.4. Remote configuration example .. 34

5. Jobs 37
5.1. Steps to submitting a job .. 37

5.1.1. Preparing the job ... 37
5.1.2. Choosing a universe .. 37
5.1.3. Writing a submit description file .. 38
5.1.4. Submitting the job .. 40
5.1.5. Monitoring job progress .. 40
5.1.6. Finishing a job ... 40

5.2. Time scheduling for job execution ... 40
5.3. Using custom kill signals .. 42

6. ClassAds 45
6.1. Writing ClassAd expressions ... 48
6.2. Resource restriction .. 59

7. Tracking Processes 61

8. Job Hooks 63

9. Policy Configuration 67
9.1. Machine states and transitioning ... 67
9.2. The condor_startd daemon .. 70
9.3. Conditions for state and activity transitions .. 72
9.4. Defining a policy .. 78

10. User Priorities and Negotiation 87
10.1. Group Quotas .. 90
10.2. Job Priorities .. 91
10.3. Hierarchical Fair Share (HFS) ... 92

Grid User Guide

iv

11. The Virtual Machine Universe 95
11.1. Configuring MRG Grid for the virtual machine universe ... 95

12. High Availability 99
12.1. High availability of the job queue ... 99
12.2. High availability of the central manager .. 100

13. Concurrency Limits 107

14. Dynamic slots 111

15. Event Trigger 113

16. Scheduling to Amazon EC2 117
16.1. Getting the MRG Grid Amazon EC2 Execute Node ... 117
16.2. MRG/EC2 Basic ... 125
16.3. MRG/EC2 Enhanced ... 129

17. Low-latency scheduling 137

18. DAGMan 141
18.1. DAGMan jobs ... 141

19. Application Program Interfaces (APIs) 149
19.1. Using the MRG Grid API ... 149
19.2. Methods ... 151

20. Frequently Asked Questions 163
Frequently Asked Questions .. 163

21. More Information 169

A. Configuration options 171
A.1. Pre-defined configuration macros .. 171
A.2. Static pre-defined configuration macros ... 172
A.3. System Wide Configuration File Variables .. 172
A.4. Logging configuration variables ... 177
A.5. DaemonCore Configuration Variables .. 180
A.6. Network-Related Configuration File Entries .. 183
A.7. Shared File System Configuration File Macros ... 187
A.8. condor_master Configuration File Macros ... 188
A.9. condor_startd Configuration File Macros ... 194
A.10. condor_schedd Configuration File Entries ... 208
A.11. condor_starter Configuration File Entries ... 209
A.12. Example configuration files ... 210

B. Codes 253
B.1. Job universe codes .. 253
B.2. Job status codes .. 253
B.3. Job notification codes ... 253
B.4. Shadow exit status codes ... 254
B.5. Job hold reason codes ... 254

C. Feature Metadata 257

D. Revision History 261

v

Preface

Red Hat Enterprise MRG
This book contains information on the use and operation of the MRG Grid component of Red Hat
Enterprise MRG. Red Hat Enterprise MRG is a high performance distributed computing platform
consisting of three components:

1. Messaging — Cross platform, high performance, reliable messaging using the Advanced Message
Queuing Protocol (AMQP) standard.

2. Realtime — Consistent low-latency and predictable response times for applications that require
microsecond latency.

3. Grid — Distributed High Throughput (HTC) and High Performance Computing (HPC).

All three components of Red Hat Enterprise MRG are designed to be used as part of the platform, but
can also be used separately.

MRG Grid
Grid computing allows organizations to fully utilize their computing resources to complete high-
performance tasks. By monitoring all resources - rack-mounted clusters and general workstations - for
availability, any spare computing power can be redirected towards other, more intensive tasks until it is
explicitly required again. This allows a standard networked system to operate in a way that is similar to
a supercomputer.

MRG Grid provides high throughput computing and enables enterprises to achieve higher peak
computing capacity as well as improved infrastructure utilization by leveraging their existing
technology to build high performance grids. MRG Grid provides a job queueing mechanism,
scheduling policy, priority scheme, resource monitoring, and resource management. Users submit
their jobs to MRG Grid, where they are placed into a queue. MRG Grid then chooses when and where
to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user
upon completion.

MRG Grid is based on the Condor Project1 developed within the University of Wisconsin-Madison2.
Condor also offers a comprehensive library of freely available documentation in its Manual3.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts4 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1 http://www.cs.wisc.edu/condor/
2 http://www.wisc.edu/
3 http://www.cs.wisc.edu/condor/manual/
4 https://fedorahosted.org/liberation-fonts/

http://www.cs.wisc.edu/condor/
http://www.wisc.edu/
http://www.cs.wisc.edu/condor/manual/
https://fedorahosted.org/liberation-fonts/
http://www.cs.wisc.edu/condor/
http://www.wisc.edu/
http://www.cs.wisc.edu/condor/manual/
https://fedorahosted.org/liberation-fonts/

Preface

vi

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit → Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Pull-quote Conventions

vii

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Preface

viii

Note
Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important
Important boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring a box labeled 'Important' won't cause data loss but may cause
irritation and frustration.

Warning
Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?
If you experience difficulty with a procedure described in this documentation, you can find help in the
following ways:

Red Hat Knowledgebase
Visit the Red Hat Knowledgebase at http://kbase.redhat.com to search or browse through
technical support articles about Red Hat products.

Red Hat Global Support Services
Your Red Hat subscription entitles you to support from Red Hat Global Support Services (GSS).
Visit http://support.redhat.com for more information about obtaining help from GSS.

Other Red Hat documentation
Access other Red Hat documentation at http://www.redhat.com/docs

Red Hat electronic mailing lists
Red Hat hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available lists at https://www.redhat.com/mailman/listinfo.
Click on the name of any list to subscribe to that list or to access the list archives.

2.2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
against the product Red Hat Enterprise MRG.

When submitting a bug report, be sure to mention the manual's identifier: Grid_User_Guide

http://kbase.redhat.com
http://support.redhat.com
http://www.redhat.com/docs
https://www.redhat.com/mailman/listinfo
http://bugzilla.redhat.com/

We Need Feedback!

ix

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

x

Chapter 1.

1

Overview
MRG Grid uses the computational ability of many computers connected over a network to complete
large or resource-intensive operations. MRG Grid harnesses existing resources by detecting when a
workstation becomes idle, and then relinquishing that resource when it is required by another user.
When a job is submitted to MRG Grid, it finds an idle machine on the network and begins running the
job on that machine. There is no requirement for machines to share file systems, so machines across
an entire enterprise can run a job, including machines in different administrative domains.

MRG Grid uses ClassAds to simplify job matching and submission. All machines in the MRG Grid pool
advertise their resources, such as available RAM memory, CPU speed, and virtual memory size in
a resource offer ClassAd. When a job is submitted, the submitter specifies a required and a desired
set of properties, in a resource request ClassAd. MRG Grid matches and ranks resource offer ads
with resource request ads, making certain that all requirements in both ads are satisfied. During this
match-making process, MRG Grid also considers several layers of priority values: the priority the user
assigned to the resource request ad, the priority of the user which submitted the ad, and desire of
machines in the pool to accept certain types of ClassAds over others.

Groups of researchers, engineers, and scientists have used MRG Grid to establish pools ranging in
size from a handful to tens of thousands of workstations.

2

Chapter 2.

3

Configuration
This chapter describes how configuration is handled throughout the MRG Grid system, and explains
how to change the configuration. A list of the configuration parameters, and examples of the default
configuration files can be found in Appendix A, Configuration options.

Configuration in MRG Grid is determined by information held in multiple files across the entire system.
The global configuration file is read first, and if it does not exist, MRG Grid will not run. The settings in
the global configuration file are then extended or overwritten by configuration files located in the local
configuration directory or other locations specified by the local configuration file parameter.

As MRG Grid reads each consecutive configuration file, the information is layered upon the details it
already knows. If any parameters are repeated, the information read last overwrites the information
read earlier.

Configuration parameters are specified using key-value pairs separated by an equals (=) sign. There
must be a space character on each side of the equals sign. Valid configuration parameters look like
this:

name = value

The different configuration files are parsed in the following order:

1. Global configuration file

A global configuration file is required by all machines in the pool and should be the same across
all nodes. This file should not be directly edited. The file is managed by the condor.rpm
package. An example of what the global configuration file looks like is in Example A.1, “The default
global configuration file”.

MRG Grid will look in different places for the global configuration file, in the following order:

a. The filename specified in the CONDOR_CONFIG environment variable

b. /etc/condor/condor_config

MRG Grid places the global configuration file here by default

c. /usr/local/etc/condor_config

d. ~condor/condor_config

Note
If a file is specified in the CONDOR_CONFIG environment variable and there is a
problem reading that file, MRG Grid will print an error message and exit. It will not
continue to search the other options. Leaving the CONDOR_CONFIG environment
variable blank will ensure that MRG Grid will search through the other options.

If a valid configuration file is not found in any of the searched locations, MRG Grid will print an
error message and exit.

2. Local configuration directory

Chapter 2. Configuration

4

The local configuration directory is located at /etc/condor/config.d. This location is defined
by the default global configuration file. The local configuration directory provides an easy way to
extend the configuration of MRG Grid by placing files that contain configuration parameters inside
the directory.

Files in this directory will override settings in the global file for that machine. Files must contain
configuration parameters. Files in this directory are read in lexigraphical order. If there are
duplicate parameters in the files, parameters that are read later will override those values read
earlier.

To ensure the files are ordered correctly, each filename is preceded with a two-digit number, using
the following ranges:

• 00 - personal condor (included by default)

• 10-40 - user configuration files

Use this range to extend the configuration of MRG Grid

• 50-80 - MRG Grid package configuration files

• 99 - Reserved for the remote configuration feature

3. Local configuration file

The LOCAL_CONFIG_FILE parameter in the global configuration file can be used to specify the
location of files with configuration to be read.

Note
The LOCAL_CONFIG_FILE parameter is used by the remote configuration
feature. Do not set this parameter if remote configuration is used.

4. Local configuration directory

If the local configuration directory has been changed by a configuration setting, it will be read a
second time. Only files added since it was last read will be processed.

Warning
Many text editors create backup files, identified by a tilde (~) after the filename.
MRG Grid cannot differentiate between these backup files and ordinary configuration
files. Leaving out-of-date backup files could result in configuration settings being
overridden. Always delete editor backup files once they are no longer required.

Creating a user configuration file
1. Switch to the root user, and create a file in the /etc/condor/config.d directory:

touch /etc/condor/config.d/10myconfigurationfile

5

2. Open the new file using your preferred text editor, and add or edit the configuration parameters as
required

3. Save the file

4. Restart the condor service:

service condor restart
Stopping condor services: [OK]
Starting condor services: [OK]

Once MRG Grid has completed parsing the four configuration file locations, it will check for
environment variables. These configuration variables are case-insensitive, and are prefixed by either
CONDOR or _condor_. MRG Grid parses environment variables last, subsequently any settings
made this way will override conflicting settings in the configuration files.

Adding entries to configuration files
1. All entries in a configuration file use the same syntax. The entries are in the form:

This is a comment
SUBSYSTEM_NAME.CONFIG_VARIABLE = VALUE

Things to note about the syntax:

• Each valid entry requires an operator of =

• A line prefixed by a # symbol will be treated as a comment and ignored. The # symbol can only
appear at the beginning of a line. It will not create a comment if it is used in the middle of a line.

• The SUBSYSTEM_NAME is optional

• There must be a space character on either side of the = sign

2. An entry can continue over multiple lines by placing a \ character at the end of the line to be
continued. For example:

ADMIN_MACHINES = condor.example.com, raven.example.com, \
stork.example.com, ostrich.example.com \
bigbird.example.com

Important
The line continuation character will also work within a comment, which will cause
MRG Grid to ignore the second line. The following example would be ignored
entirely:

This comment has line continuation \
characters, so FOO will not be set \
FOO = BAR

Chapter 2. Configuration

6

Initial configuration
Review the configuration files stored at /etc/condor/condor_config and /etc/condor/
config.d/00personal_condor.config before starting MRG Grid.

The default configuration sets up a Personal Condor. Personal Condor is a specific style of
installation suited for individual users who do not have their own pool of machines. To allow other
machines to join the pool, specify the ALLOW_WRITE option in the local configuration directory.

1. To extend a Personal Condor installation and allow other multiple nodes, begin by creating a file in
/etc/condor/config.d:

touch /etc/condor/config.d/10pool_access

2. Open the new file in your preferred text editor. A value for the ALLOW_WRITE configuration
parameter must be specified in order to allow machines to join your pool and submit jobs. Any
machine that you give write access to using the ALLOW_WRITE option should also be given read
access using the ALLOW_READ option:

ALLOW_WRITE = *.your.domain.com

Warning
The simplest option is to include ALLOW_WRITE = * in the configuration file.
However, this will allow anyone to submit jobs or add machines to your pool. This
is a serious security risk and therefore not recommended.

Executing a program to produce configuration entries
1. MRG Grid can run a specialized program to obtain configuration entries. To run a program from

the configuration file, insert a | character at the end of the line. This syntax will only work with the
configuration variable LOCAL_CONFIG_FILE. For example, to run a program located at /bin/
make_the_config, use the following entry:

LOCAL_CONFIG_FILE = /bin/make_the_config|

The program /bin/make_the_config must output the configuration parameters on standard
output for the configuration parameters to be included in the configuration.

2.1. Configuring MRG Grid for Microsoft Windows
This section contains information for using MRG Grid on systems running:

• Microsoft Windows XP Service Pack 3

• Microsoft Windows Server 2003

Under Microsoft Windows, the following features are supported:

Configuring MRG Grid for Microsoft Windows

7

• A graphical installation and setup program, which can perform a full installation. Information
specified by the user in the setup program is stored in the system registry. The setup program can
also update a current installation with a new release

• The ability to submit, run, and manage queues of jobs on a cluster of machines running Microsoft
Windows

• All tools, including condor_q, condor_status, and condor_userprio

• The ability to customize job policies with ClassAds. The machine ClassAds contain all the
information included in the Linux version, including current load average, RAM and virtual memory
sizes, integer and floating-point performance, and keyboard and mouse idle times. Likewise, job
ClassAds contain all information including system dependent entries such as dynamic updates of
the job's image size and CPU usage

• Security mechanisms

• Support for SMP machines

• Jobs can be run at a lower operating system priority level. Jobs can be suspended, soft-killed with a
WM_CLOSE message, or hard-killed automatically based upon policy expressions. For example, a job
can be suspended whenever keyboard or mouse, or non-Condor created CPU activity is detected,
and continue the job after the machine has been idle for a specified amount of time

• Jobs that create multiple processes are accurately handled. For example, if a job spawns multiple
processes and Condor needs to kill the job, all processes created by the job will also be terminated

• In addition to interactive tools, users and administrators can receive information by e-mail (standard
SMTP) or by log files

• Provide job access to the running user's registry hive

The following features are not yet supported under Microsoft Windows operating systems:

• Accessing files via a network share that requires a kerberos ticket such as AFS is not supported

• The run_as_owner feature is disabled

Note
For information about installing MRG Grid on Microsoft Windows, see the MRG Grid
Installation Guide.

Executing jobs with the user profile loaded
When Condor is running on dedicated run accounts, it can be configured to load the current account
profile. The profile includes a set of personal directories and a registry hive, which are loaded under
HKEY_CURRENT_USER. This can be useful if the job requires direct access to the user's registry
entries. It can also be useful when the job requires an application that needs registry access.

This feature is enabled on the condor_startd, but only operates with the dedicated run account. For
security reasons, the profiles are removed after the job has completed and exited. This ensures that
any malicious jobs cannot discover the details of any previous jobs, or sabotage the registry for future
jobs. It also ensures that the next job has a fresh registry hive.

Chapter 2. Configuration

8

To run a job with the current account profile, add the following line to the job's submit description file:

load_profile = True

Using scripts as job executables
It is possible to use scripts to run condor jobs on Microsoft Windows. Condor uses the file name's
extension to determine how to handle the script. If the file name does not have an extension, it is
assumed to be a Windows executable (.exe) file.

This feature can be used without changing the basic configuration, when using Perl scripts with
ActivePerl. It is also possible to use Windows Scripting Host scripts, although some configuration
changes are neccessary.

A registry lookup is performed to ensure that the correct interpreter is invoked, with the correct
command line arguments for the scripting language. The configuration specifies values to be used
in the registry lookup. Actions that can be used on a file (like Open, Print, and Edit) are referred to
as verbs. They are specified in the configuration file, and invoked from the HKEY_CLASSES_ROOT
registry hive.

Registry lookups use the following format:

HKEY_CLASSES_ROOT\FileType\Shell\OpenVerb\Command

OpenVerb identifies the verb. This is set in the Condor configuratin file, and aids the registry lookup.

FileType is the name of a file type, and is obtained from the file name extension. The file name
extension sets the name of the Condor configuration variable. This variable name is of the form:

OPEN_VERB_FOR_EXT_FILES

EXT represents the file name extension. In the following example, the Open2 verb is specified for a
Windows Scripting Host registry lookup for several scripting languages:

OPEN_VERB_FOR_JS_FILES = Open2
OPEN_VERB_FOR_VBS_FILES = Open2
OPEN_VERB_FOR_VBE_FILES = Open2
OPEN_VERB_FOR_JSE_FILES = Open2
OPEN_VERB_FOR_WSF_FILES = Open2
OPEN_VERB_FOR_WSH_FILES = Open2

In the above example, the Open2 verb has been specified instead of the default Open verb for several
scripts, including Windows Scripting Host scripts (using the extension .wsh). The Open2 verb in
Windows Scripting Host scripts allows standard input, standard output, and standard error to be
redirected as needed for Condor jobs.

Allowing access to the user's registry
A common difficulty is encountered when a script interpreter requires access to the user's registry
entries. Note that the user's registry is different than the root registry. If not given access to the user's

Configuring MRG Grid for Microsoft Windows

9

registry, some scripts, such as Windows Scripting Host scripts, will fail. The failure error message
reads:

CScript Error: Loading your settings failed. (Access is denied.)

This error is resolved by giving explicit access to the submitting user's registry hive. Access can be
allowed by using the load_profile command in the job's submit description file:

load_profile = True

This command should also work for other interpreters. Note that not all interpreters will require access.
For example, ActivePerl does not by default require access to the user's registry hive.

Starting and stopping jobs under Microsoft Windows
1. When Condor is about to start a job, the condor_startd service on the execute machine

spawns a condor_starter process (referred to as the starter). The starter then creates:

• A run account on the machine. The account is given the login name condor-reuse-slotX,
where X is the slot number of the starter. This account is added to the group Users.

• A temporary working directory for the job on the execute machine. The directory is named
dir_XXX, where XXX is the process ID of the starter. The directory is created in the
$(EXECUTE) directory as specified in the configuration file. Condor then grants write permission
to this directory for the user account newly created for the job.

• A new, non-visible WindowStation and desktop for the job. Permissions are set so that only the
account that will run the job has access rights to the desktop. Any windows created by this job
are not seen by anyone; the job is run in the background. To force the job to use the default
desktop instead of creating a new one, set USE_VISIBLE_DESKTOP = True in the job submit
file.

2. The starter then contacts the condor_shadow service (referred to as the shadow), which is
running on the submitting machine, and copies the job's executable and input files. These files are
placed into the temporary working directory for the job.

3. Once all the executable and input files have been received, the starter spawns the user's
executable file. It changes the current working directory to the temporary working directory (that is,
$(EXECUTE)/dir_XXX, where XXX is the process ID of the starter).

4. While the job is running, the starter monitors the CPU usage and image size of all processes
started by the job. This information is sent to the shadow every five minutes, along with the total
size of all files contained in the job's temporary working directory. The shadow then inserts this
information into the job's ClassAd so that policy and scheduling expressions can make use of the
information.

The frequency of this check can be adjusted by changing the value (in seconds) of the
STARTER_UPDATE_INTERVAL configuration parameter.

5. If the job completes successfully, the starter will terminate any processes started by the job which
are still running. The starter searches the job's temporary working directory for any files which
have been created or modified. Any files that are found are sent back to the shadow running on

Chapter 2. Configuration

10

the submit machine. The shadow then moves the files into the initial directory specified in the
submit description file. If no initial directory was specified, the files are moved to the directory
from which the user invoked the condor_submit command. Once all the output files are safely
transferred back, the job is removed from the queue.

If the condor_startd is forced to kill the job before all output files are transferred, the job is not
removed from the queue but is instead transitioned back to the Idle state.

If the condor_startd vacates a job prematurely, the starter sends a WM_CLOSE message to the
job. If the job spawned multiple child processes, the WM_CLOSE message is only sent to the parent
process (that is, the one started by the starter). The WM_CLOSE message is the preferred way to
terminate a process on Microsoft Windows, since this method allows the job to clean up properly
and free any resources that have been allocated.

When a job exits, the starter cleans up any processes left behind. If
when_to_transfer_output is set to the default ON_EXIT in the submit description file, the job
will switch states from Running to Idle, and no files will be transferred back. However, if it is set
to ALWAYS, any files in the job's temporary working directory which were changed or modified will
be sent back to the submitting machine. The shadow will put the files into a subdirectory under
the SPOOL directory on the submitting machine. The job is then switched back to the Idle state
until a different machine is found on which it can be run. When the job is restarted, Condor puts
the executable and input files into the temporary working directory as before, as well as any files
stored in the submit machine's SPOOL directory for that job.

By default, when a WM_CLOSE message is sent, the process receiving the message will exit. In
some cases, the job can be coded to ignore it and not exit, but in this instance eventually the
condor_startd will hard kill the job (if that is the policy desired by the administrator).

Note
If special cleanup work needs to occur when the job is being vacated, the Win32
SetConsoleCtrlHandler() function can be used to intercept a WM_CLOSE
message. A WM_CLOSE message generates a CTRL_CLOSE_EVENT. See
SetConsoleCtrlHandler() in the Win32 documentation for more information.

6. After the job has finished and any files have been transferred back, the starter deletes the
temporary working directory, the temporary account (if one was created), the WindowStation, and
the desktop. The starter will then exit. If the starter terminates abnormally, the condor_startd
will attempt to clean up. If for some reason the condor_startd should disappear as well (which
is only likely to happen if the machine is suddenly rebooted), the condor_startd will clean up
once Condor has been restarted.

Security under Microsoft Windows
By default, the execute machine runs user jobs with the access token of an account dynamically
created by Condor. This account has limited access rights and privileges. For example, in a situation
where only administrator accounts have write access to C:\WINNT, then no Condor job that is run
on that machine would be able to write to that location. The only files jobs can access on the execute
machine are files accessible by the Users and Everyone groups, and files within the job's own
temporary working directory.

Configuring MRG Grid for Microsoft Windows

11

Important
Condor for Microsoft Windows implements all the security mechanisms described in
Chapter 3, Security.

Using a network file server
MRG Grid can be used with a network file server. The current version, however, cannot be
run_as_owner. This section outlines several ways to use Condor with networked files.

Problems can arise when using Condor with a network file server. When a temporary user is created
to run jobs, the file server will not allow it access to the files, as it has not been properly authenticated.
There are several methods that can be used to work around this issue:

1. Access the file server as a different user, with a net use command and a login and password.

For example, to copy a file from a server and then execute it:

@echo off
net use \\myserver\someshare MYPASSWORD /USER:MYLOGIN
copy \\myserver\someshare\my-program.exe
my-program.exe

This method simply authenticates to the file server with a login other than the temporary Condor
login. The disadvantage with this method is that the password is stored and transferred as clear
text, which could be a potential security issue.

2. Access the file server as guest.

For example, to copy a file from a server and then execute it:

@echo off
net use \\myserver\someshare
copy \\myserver\someshare\my-program.exe
my-program.exe

In this example, you'd contact the server MYSERVER as the Condor temporary user. If the GUEST
account is enabled on the server, the user will be authenticated to the server as user GUEST. Set
the access control lists (ACLs) so that the GUEST user or the EVERYONE group has access to the
share someshare and the directories and files there. The disadvantage of this method is that the
GUEST account must be enabled on the file server.

Warning
This method should be used with extreme caution. Ensure the file server is well
protected behind a firewall that blocks SMB traffic.

3. Access the file server with a NULL security descriptor.

This method allows shared files to be specified by adding them to the registry. Once this is set up,
a batch file wrapper can then be used:

Chapter 2. Configuration

12

net use z: \\myserver\someshare /USER:""
z:\my-program.exe

In the above example, someshare is in the list of allowed NULL session shares. To edit the list,
run regedit.exe and navigate to this key:

HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Services\
 LanmanServer\
 Parameters\
 NullSessionShares

The key can then be edited. This key only accepts binary values, so the share must be input using
the hex ASCII codes. Each share is separated by a null (0x00) and the final entry in the list is
terminated with two nulls.

This method is slightly more complex to set up, but it provides a relatively safe way to have one
partly-public share without needing to open the whole guest account. The shares that can be
accessed can be directly specified using the registry value mentioned above.

Chapter 3.

13

Security
Security in MRG Grid is implemented by ensuring every communication is subject to various checks.
When condor services communicate with each other, authentication is required to ensure that the
system has not been compromised. User requests are checked to ensure the user account has the
appropriate privileges before the request is acted upon.

Communication occurs between a client and a service. The client initiates the request, and a service
processes the command and responds. Tools such as condor_submit and condor_config are
always clients, sending requests to services. Services can also interact with each other, where the
daemon making the request acts as the client.

3.1. Security Contexts
All requests are categorized into contexts. In order to make a request, authorization must be granted
at the appropriate level.

READ
Able to obtain or read information. READ access is required to view the status of the pool
using condor_status; check a job queue with condor_q; view user priorities with
condor_userprio. READ access will not allow changes to be made, and it will not allow jobs to
be submitted.

WRITE
Able to send or write information. WRITE access is required for submitting jobs using
condor_submit; advertising a machine so it appears in the pool, which is usually done
automatically by the condor_startd service. The WRITE context implies READ access.

ADMINISTRATOR
Provides additional administrator rights. ADMINISTRATOR rights are required to change user
priorities using condor_userprio -set; turn Condor on and off using condor_on and
condor_off. The ADMINISTRATOR context implies both READ and WRITE access.

SOAP
Provides access to the Web Services (SOAP) interface. SOAP is not a general context, and should
not be used with configuration variables for authentication, encryption, and integrity checks.

CONFIG
Provides access to modify the configuration of services using condor_config_val. By default,
this level of access can change any configuration parameters of a Condor pool. The CONFIG
context implies READ access.

OWNER
Provides a context suitable for the owner of a machine to use. The OWNER context can be used to
perform commands such as the condor_vacate command, which causes the condor_startd
to vacate any job currently running on a machine.

DAEMON
Provides access to internal commands. An internal command is communication that
occurs between services, such as the condor_startd sending ClassAd updates to the
condor_collector. This context is only required for the user account that runs the Condor

Chapter 3. Security

14

services. The DAEMON context implies both READ and WRITE access. Any configuration setting for
this context that is not defined will default to the corresponding setting for the WRITE context.

NEGOTIATOR
Used explicitly to verify commands sent by the condor_negotiator service, which runs on the
central manager. Commands requiring this context are those that instruct condor_schedd to
begin negotiating, and those that tell an available condor_startd that it has been matched to a
condor_schedd with jobs to run. The NEGOTIATOR level of access implies READ access.

ADVERTISE_MASTER
Used explicitly for tasks used to advertise a condor_master to the collector. Any configuration
setting for this context that is not defined will default to the corresponding setting for the DAEMON
context.

ADVERTISE_STARTD
Used explicitly for tasks used to advertise a condor_startd to the collector. Any configuration
setting for this context that is not defined will default to the corresponding setting for the DAEMON
context.

ADVERTISE_SCHEDD
Used explicitly for tasks used to advertise a condor_schedd to the collector. Any configuration
setting for this context that is not defined will default to the corresponding setting for the DAEMON
context.

CLIENT
This context is used only for internal communications when services contact other services. Unlike
the other access policies, it provides access control for the client initiating the operation, instead of
the server that is contacted.

This table provides a list of commands that will be accepted by each service, and the security context
required for that command to be accepted.

Activity Service Security Context

Reconfigure a service with
condor_reconfig

All services WRITE

Signalling All services DAEMON

Keep alives All services DAEMON

Read configuration All services READ

Runtime configuration All services ALLOW

Daemon off All services ADMINISTRATOR

Fetch or purge logs All services ADMINISTRATOR

Activate, request, or release a
claim.

condor_startd WRITE

Retrieve startd or
job information with
condor_preen

condor_startd READ

Heartbeat condor_startd DAEMON

Deactivate claim condor_startd DAEMON

Security Contexts

15

Activity Service Security Context

condor_vacate Used to stop
running jobs

condor_startd OWNER

Retrieve negotiation
information

condor_startd NEGOTIATOR

ClassAd commands condor_startd WRITE

VM Universe commands condor_startd DAEMON

ClassAd commands condor_starter WRITE

Hold jobs condor_starter DAEMON

Create job security session condor_starter DAEMON

Start SSHD condor_starter READ

Initiate a new negotiation cycle condor_negotiator WRITE

Retrieve the current user
priorities with userprio

condor_negotiator READ

Set user priorities with
userprio -set

condor_negotiator ADMINISTRATOR

Reschedule condor_negotiator DAEMON

Reset usage condor_negotiator ADMINISTRATOR

Delete user condor_negotiator ADMINISTRATOR

Set usage statistics condor_negotiator ADMINISTRATOR

Update the
condor_collector with new
condor_master ClassAds

condor_collector ADVERTISE_MASTER

Update the
condor_collector with new
condor_schedd ClassAds

condor_collector ADVERTISE_SCHEDD

Commands that update the
condor_collector with new
condor_startd ClassAds

condor_collector ADVERTISE_STARTD

All other commands
that update the
condor_collector with new
ClassAds

condor_collector DAEMON

All commands that query the
condor_collector for
ClassAds

condor_collector READ

Query the collector condor_collector ADMINISTRATOR

Invalidate all AdTypes except
STARTD, SCHEDD, or MASTER

condor_collector DAEMON

Update the collector condor_collector ALLOW

Merge STARTD condor_collector NEGOTIATOR

Begin negotiating to match jobs condor_schedd NEGOTIATOR

Chapter 3. Security

16

Activity Service Security Context

Get matches condor_schedd DAEMON

Begin negotiation cycle with
condor_reschedule

condor_schedd WRITE

View the status of the job
queue

condor_schedd READ

Reconfigure condor_schedd OWNER

File operations. Release claim,
kill job, or spool job.

condor_schedd WRITE

Reuse shadow condor_schedd DAEMON

Update shadow condor_schedd DAEMON

Startd heartbeat condor_schedd DAEMON

Store credentials condor_schedd WRITE

Write to the job queue condor_schedd WRITE

Transfer the job queue condor_schedd WRITE

All commands condor_master ADMINISTRATOR

All high availability functionality condor_had DAEMON

Table 3.1. Registered Commands

3.2. Security negotiation
Security settings are determined through a security negotiation process. Security negotiation is used
to determine what security features are required for each connection: authentication, encryption,
integrity checking, or a combination. Negotiation also defines which protocol to use for each feature.

Setting security configuration parameters
1. Configuration parameters are used during the security negotiation process to determine which

feature and protocols are to be used. All security configuration parameters follow the format:

SEC_CONTEXT_FEATURE = VALUE

2. Using the above syntax, specify the feature against which the policy is to be set. The feature can
be any one of:

• AUTHENTICATION

• ENCRYPTION

• INTEGRITY

• NEGOTIATION

3. Specify the context for the policy. Context can be any one of:

• CLIENT

Security negotiation

17

• READ

• WRITE

• ADMINISTRATOR

• CONFIG

• OWNER

• DAEMON

• NEGOTIATOR

• ADVERTISE_MASTER

• ADVERTISE_STARTD

• ADVERTISE_SCHEDD

• DEFAULT

The DEFAULT value provides a way to set a policy for all access levels that do not have a
specific configuration variable defined.

4. Specify a value for the policy. The value can be any one of:

• REQUIRED

• PREFERRED

• OPTIONAL

• NEVER

Encryption and integrity checks can only be enabled if authentication can occur. The authentication
process provides a key exchange, which necessary for these features.

To determine the policy for all outgoing commands, set a policy of:

SEC_CLIENT_FEATURE

Setting a policy for incoming commands requires setting context. It is good policy in most situations to
require authentication for all incoming administrative requests, while enquiries on the status of a pool
do not need to be so restrictive. In order to implement this, set the following policies on the server:

SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_READ_AUTHENTICATION = OPTIONAL

This example demonstrates how to set security negotiation policies, to create a security environment
that requires as little authentication as possible.

On the job submission machine, set the following security policy:

Chapter 3. Security

18

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

However, if the machine running the condor_schedd requires authentication to be set, it will have
had this policy specified:

SEC_DEFAULT_AUTHENTICATION = REQUIRED

In this case, submitted jobs will still be accepted. This is because the security negotiation process
will enforce the most restrictive security policy. Some commands, such as condor_submit, always
require authentication, regardless of the specified policy. Other commands, such as condor_q, do not
always require authentication. In this example, the server's policy would force any condor_q queries
to be authenticated, where a different policy could allow condor_q to occur without authentication.

Example 3.1. Setting security negotiation policies

3.3. Authentication
On the client side of a communication, one of the following configuration parameters are used to
specify whether or not authentication should occur:

SEC_DEFAULT_AUTHENTICATION
SEC_CLIENT_AUTHENTICATION

For services, there are a larger number of configuration parameters used to specify whether
authentication should occur, based upon the necessary context:

SEC_DEFAULT_AUTHENTICATION
SEC_READ_AUTHENTICATION
SEC_WRITE_AUTHENTICATION
SEC_ADMINISTRATOR_AUTHENTICATION
SEC_CONFIG_AUTHENTICATION
SEC_OWNER_AUTHENTICATION
SEC_DAEMON_AUTHENTICATION
SEC_NEGOTIATOR_AUTHENTICATION
SEC_ADVERTISE_MASTER_AUTHENTICATION
SEC_ADVERTISE_STARTD_AUTHENTICATION
SEC_ADVERTISE_SCHEDD_AUTHENTICATION

If no variable is defined for SEC_access-level_AUTHENTICATION, a default value of OPTIONAL
will be used. In this case, authentication is required for any operation which modifies the job queue,
such as condor_qedit and condor_rm.

If no variable is defined for SEC_access-level_AUTHENTICATION_METHODS, a default value
of FS, KERBEROS will be defined. On a Microsoft Windows machine, it will default to NTSSPI,
KERBEROS.

For example, if the configuration file for a service includes the line:

SEC_WRITE_AUTHENTICATION = REQUIRED

Authentication methods

19

The service must authenticate the client for any communciation that requires the WRITE context.

If the configuration file for a service includes the following line:

SEC_DEFAULT_AUTHENTICATION = REQUIRED

Provided it does not include any other authentication security configuration variables, this will define
authentication over all contexts.

Where a specific policy is defined, the more specific value takes precedence over the default value.

Authentication and encryption can be accomplished using a variety of methods or protocols. Which
protocol is selected is determined during the security negotiation process. To provide a list of available
methods, use the following configuration parameters:

SEC_context_AUTHENTICATION_METHODS
SEC_context_CRYPTO_METHODS

These parameters will accept a comma- or space-delimited list of possible methods to use.

3.4. Authentication methods
The following methods of authentication are available:

• SSL (SSL)

• Kerberos (KERBEROS)

• Password (PASSWORD)

• Filesystem (FS)

• Remote filesystem (FS_REMOTE)

• Windows (NTSSPI)

• Claim-To-Be (CLAIMTOBE)

• Anonymous (ANONYMOUS)

SSL
SSL authentication is based on mutual X.509 certificates. When a connection is initiated, both the
client and the server must verify the signature on the certificate.

The names and locations of keys and certificates are defined in the configuration files, using these
variables:

• AUTH_SSL_CLIENT_CERTFILE specifies the location of the client (the process that initiates the
connection) certificate file

• AUTH_SSL_SERVER_CERTFILE specifies the location for the server (the process that receives the
connection) certificate file

Chapter 3. Security

20

• AUTH_SSL_CLIENT_KEYFILE specifies the location of the client key

• AUTH_SSL_SERVER_KEYFILE specifies the location of the server key

• AUTH_SSL_CLIENT_CAFILE specifies a path and file name for the location of client certificates
issued by trusted certificate authorities

• AUTH_SSL_SERVER_CAFILE specifies a path and file name for the location of server certificates
issued by trusted certificate authorities

• AUTH_SSL_CLIENT_CADIR specifies a directory containing client certificates that have been
prepared using the OpenSSL c_rehash utility

• AUTH_SSL_SERVER_CADIR specifies a directory containing server certificatesthat have been
prepared using the OpenSSL c_rehash utility

Kerberos
To use Kerberos for authentication, the Kerberos domain must be mapped to a Condor User ID (UID)
domain. This is done by specifying the path to a Kerberos-specific map file in the configuration file,
using the syntax:

KERBEROS_MAP_FILE = /path/to/etc/condor.kmap

Within the map file, the syntax is:

KERB.REALM = UID.domain.name

An example map file, containing two entries:

CS.WISC.EDU = cs.wisc.edu
ENGR.WISC.EDU = ee.wisc.edu

If a map file has been defined, all permitted realms must be explicitly mapped. If a map file is not
specified, then the Kerberos realm will be assumed to be the same as the Condor UID domain.

It is also possible to specify a unique name for assigning a set of credentials. This is done by
specifying the value in the configurarion file, using the KERBEROS_SERVER_PRINCIPAL parameter. If
a unique name is not defined, then it will default to host.

The name is used to define the server principal. Condor will use the defined name to calculate the
server principal in the following way:

If the KERBEROS_SERVER_PRINCIPAL parameter is set as:

KERBEROS_SERVER_PRINCIPAL = condor-daemon

Condor will define the server principal as:

Authentication methods

21

condor-daemon/the.host.name@YOUR.KERB.REALM

This example shows how to configure settings for Kerberos authentication. This will create a situation
where all communications require authentication at the WRITE or ADMINISTRATOR level.

SEC_WRITE_AUTHENTICATION = REQUIRED
SEC_WRITE_AUTHENTICATION_METHODS = KERBEROS
SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS = KERBEROS

Example 3.2. Using Kerberos authentication

Note
Kerberos authentication requires root access to some files. Currently, the only
supported way to use Kerberos authentication is to start Condor services as the root
user.

Password
The password method provides authentication through a shared secret. This is useful where strong
security is required, but an existing Kerberos or X.509 infrastructure does not exist. It is used only for
authentication between services. The shared secret is referred to as the pool password.

To use password authentication, store the pool password on the local machine that is running
the services. Define the location of the pool password in the configuration file using the
SEC_PASSWORD_FILE parameter.

Generate a password file, using the command:

condor_store_cred -f /path/to/password/file

To store the pool password, use the -c option:

condor_store_cred -c add

This command will prompt for the password before storing it on the local machine. This makes it
available for services to use it for authentication. This command will only work if the condor_master
is running.

To store a pool password, the CONFIG security context is required. The pool password can be set
remotely, but this method is only recommended if it takes place using an encrypted channel.

Filesystem
Filesystem authentication uses the ownership of a file to verify identity. A service that is attempting to
authenticate a client will request that the client write a file to a /tmp directory. The service then checks
the ownership of the file. If the file permissions match, the identity is verified and the file system
becomes trusted.

Chapter 3. Security

22

Remote Filesystem
Similar to filesystem authentication, remote filesystem authentication uses the ownership of a file to
verify the identity of a client. In this case, a service authenticating a client requires the client to write
a file in a specific location. The location is not restricted to the /tmp directory, but is specified by the
FS_REMOTE_DIR configuration variable.

This authentication method is only appropriate for clients and services that are on the same physical
computer.

Windows
Systems running Microsoft Windows can use a proprietary authentication method that uses the
SSPI interface to enforce the NT LAN Manager (NTLM). This authentication method is based on a
"challenge and response" model, with the user password used as a key.

This authentication method is only appropriate for clients and services that are on the same physical
computer. It should not be used for authentication between two computers.

Claim-To-Be
Claim-To-Be authentication accepts any identity claimed by the client. It is included for testing
purposes only, and is not recommended for live systems.

Anonymous
Anonymous authentication causes authentication to be skipped entirely. It is included for testing
purposes only, and is not recommended for live systems.

3.5. Encryption
Encryption provides privacy during communications. The client and the daemon can be configured to
use encryption where required.

The client uses these parameters to enable or disable encryption:

• SEC_DEFAULT_ENCRYPTION

• SEC_CLIENT_ENCRYPTION

The service uses these parameters to enable or disable encryption:

• SEC_DEFAULT_ENCRYPTION

• SEC_READ_ENCRYPTION

• SEC_WRITE_ENCRYPTION

• SEC_ADMINISTRATOR_ENCRYPTION

• SEC_CONFIG_ENCRYPTION

• SEC_OWNER_ENCRYPTION

• SEC_DAEMON_ENCRYPTION

Encryption

23

• SEC_NEGOTIATOR_ENCRYPTION

• SEC_ADVERTISE_MASTER_ENCRYPTION

• SEC_ADVERTISE_STARTD_ENCRYPTION

• SEC_ADVERTISE_SCHEDD_ENCRYPTION

If a service has the following parameter set, any communication that will change the configuration of
the service must be encrypted:

SEC_CONFIG_ENCRYPTION = REQUIRED

If a service has the following parameter set, and does not contain any other security configuration for
encryption, all communication over all contexts must be encrypted:

SEC_DEFAULT_ENCRYPTION = REQUIRED

Where encryption has been requested, then a mutually agreeable method of encryption must be
negotiated by the parties to the communication. A list of acceptable methods in a client can be defined
using the following parameters:

• SEC_DEFAULT_CRYPTO_METHODS

• SEC_CLIENT_CRYPTO_METHODS

A list of acceptable methods in a service can be defined using the following parameters:

• SEC_DEFAULT_CRYPTO_METHODS

• SEC_READ_CRYPTO_METHODS

• SEC_WRITE_CRYPTO_METHODS

• SEC_ADMINISTRATOR_CRYPTO_METHODS

• SEC_CONFIG_CRYPTO_METHODS

• SEC_OWNER_CRYPTO_METHODS

• SEC_DAEMON_CRYPTO_METHODS

• SEC_NEGOTIATOR_CRYPTO_METHODS

• SEC_ADVERTISE_MASTER_CRYPTO_METHODS

• SEC_ADVERTISE_STARTD_CRYPTO_METHODS

• SEC_ADVERTISE_SCHEDD_CRYPTO_METHODS

Acceptable methods must be provided as a comma-separated list. The higher in the list a method is,
the more preferred that method. Currently, possible values are:

• 3DES

Chapter 3. Security

24

• BLOWFISH

3.6. Integrity
In order to check that the messages being sent and received have not been tampered with, it is
possible to perform an integrity check. This will look for any additions or deletions within the message.

Through configuration macros, both the client and the daemon can specify whether an integrity check
is required of further communication.

The client uses these parameters to enable or disable an integrity check:

• SEC_DEFAULT_INTEGRITY

• SEC_CLIENT_INTEGRITY

The service uses these parameters to enable or disable an integrity check:

• SEC_DEFAULT_INTEGRITY

• SEC_READ_INTEGRITY

• SEC_WRITE_INTEGRITY

• SEC_ADMINISTRATOR_INTEGRITY

• SEC_CONFIG_INTEGRITY

• SEC_OWNER_INTEGRITY

• SEC_DAEMON_INTEGRITY

• SEC_NEGOTIATOR_INTEGRITY

• SEC_ADVERTISE_MASTER_INTEGRITY

• SEC_ADVERTISE_STARTD_INTEGRITY

• SEC_ADVERTISE_SCHEDD_INTEGRITY

If a service has the following parameter set, any communication that will change the configuration of
the service must have its integrity checked:

SEC_CONFIG_INTEGRITY = REQUIRED

If a service has the following parameter set, and does not contain any other security configuration for
integrity checking, all communication over all contexts must have their integrity checked:

SEC_DEFAULT_INTEGRITY = REQUIRED

Curently, the only available method for checking integrity is by using an MD5 checksum. Use of this
method is implied whenever an integrity check is requested.

Chapter 4.

25

Remote configuration
The remote configuration feature simplifies configuration and management of a pool. It allows a group
of machines to be quickly and easily configured. The feature uses a central configuration store to
maintain node configurations and provide notifications to managed nodes when necessary.

The remote configuration feature has three components:

Configuration store
The configuration store is a central repository for configuration data. It maintains individual
configuration entities and any configurations applied to the nodes it knows about.

Managed nodes
The nodes managed by the configuration store. Each node in the store represents a physical
machine to be managed. They check in with the store to retrieve configuration updates.

Tools
There are a number of tools that can be used to interact with the configuration store. The tools are
used to configure entities in the store which are then applied to the nodes.

The three components communicate using AMQP (advanced message queuing protocol). To facilitate
this, an AMQP broker needs to be provided in a location that is available to all three components.
Without this, remote configuration will not work correctly.

4.1. The Configuration Store
The configuration store is a central repository for configuration data. Before it can be used to send
configurations out to nodes, it needs to be installed and initialized. Once a configuration has been
stored, it can be put under version control, which enables configurations to be quickly and easily
re-applied as necessary. The store also allows configurations to be modified without applying the
changes to managed nodes. The store will send out notifications to the nodes that require it only once
the configuration has been activated.

Installing and initializing the configuration store
1. Install the following packages with the yum command:

• wallaby

• wallaby-utils

• condor-wallaby-base-db

• condor-wallaby-tools

yum install wallaby wallaby-utils condor-wallaby-base-db condor-wallaby-tools

2. Start the wallaby service:

service wallaby start

Chapter 4. Remote configuration

26

3. Initialize the store with the default database for condor:

$ wallaby load /var/lib/condor-wallaby-base-db/condor-base-db.snapshot

The default database contains some common parameters and features with default values that
can be used to build a condor pool.

For more information about the metadata associated with various features used in the remote
configuration feature, see Appendix C, Feature Metadata.

The configuration store records configurations as a series of entries in a database. Each entry
contains certain elements, which can be paired with metadata. The elements are:

Parameters
A parameter is a key-value pair with associated metadata that is placed in condor's configuration file to
alter how condor operates. A parameter can be dependent on other parameters, or have conflicts with
other parameters.

Metadata for parameters
The metadata for parameters provides information about the parameter. It also provides useful
information to the store when it sends notifications about configuration changes. Metadata for
parameters can contain the following information:

name
A unique string representing the name of the parameter.

type
A one word string defining the type of parameter. Currently this is for documentation purposes
only.

default
The default value of the parameter. If no value is specified when the parameter is applied to a
feature or node, this value can be used.

description
A short text description of the parameter. This is for for documentation purposes only.

conflicts
A list of other parameters that this parameter conflicts with.

depends
A list of other parameters that this parameter depends upon.

level
An integer representing the visibility level of the parameter.

must_change
A boolean value. Defines if the parameter must be given a value when it is applied to a feature,
group, or node in order to be valid. Parameters that must be given a value can not have a default
value set.

The Configuration Store

27

restart
A boolean value. Defines if the subsystems that rely on this parameter need to be restarted
for the changes to be detected. If false, a condor_reconfig will be issued instead of a
condor_restart for those subsystems.

Features
A feature is a group of parameters and their values. A parameter can have a specific value in a
feature, or it can use the parameter's default value. Features can include, depend upon, or conflict with
other features.

Metadata for features
Metadata for features can contain the following information:

name
A unique string representing the name of the feature.

params
Maps parameter names to the values that the feature contains. Values can be explicitly set, or left
empty. If left empty, a default value will be obtained from the metadata of the parameter.

conflicts
A list of other features that this feature conflicts with.

depends
A list of other features that this feature depends upon.

includes
A list of other features that this feature includes. The order of the list denotes the priority the
configuration store will use to resolve common parameters with different values.

Nodes
A node represents a physical machine that will have configurations applied to it. Any feature or
parameter applied to an individual node will take highest priority when determining configuration
values for that node.

Metadata for nodes
The metadata information for nodes:

name
A unique string representing the name of the node. The name must match the fully qualified
hostname of the node it represents.

memberships
A list of groups of which the node is a member.

Groups
A group is a group of nodes that will have parameters and features applied to it. Values for explicity-
set group parameters will take priority over values for feature parameters. The configuration store has

Chapter 4. Remote configuration

28

a built-in group: the Internal Default Group, which will always exist and be applied to all nodes
within the store at the lowest priority.

Groups do not have associated metadata.

Subsystems
A subsystem is a program that is affected by parameters in the store. The subsystems determine
which condor daemons will be acted upon when a configuration change is activated.

Metadata for subsystems
The metadata information for subsystems:

name
A unique string representing the name of the subsystem.

params
A list of parameters that rely on this subsystem. If a parameter in this list changes, the subsystem
will be reconfigured or restarted upon a valid activation, depending upon the value set in the
parameter's restart field.

Dependencies, conflicts, and includes
Features and parameters have metadata associated with them that can determine how they interact
with other features and parameters:

Dependency
A dependency is a condition that must be satisfied for the configuration to be valid. When an entity
depends on another entity, the dependency must be set in the configuration separately in order for
the configuration to be valid. Dependencies are applied in priority order, with lowest priority being
applied first.

Availability: Features, Parameters

Conflict
A conflict can not exist anywhere in the configuration for the configuration to be valid.

Availability: Features, Parameters

Include
An include is similar to a dependency, except the condition is automatically resolved by the
configuration store. If an entity includes another entity, the included entity does not need to be
explicitly set in the configuration for the configuration to be valid. Includes are applied in priority
order, with lowest priority being applied first.

Availability: Features

Snapshot
A snapshot is a copy of the state of the store at a particular time. It contains all the parameters,
features, nodes, groups, and subsystems, along with their respective metadata, as at the time the
snapshot was taken. When the snapshot is loaded into the store, all the elements will be set as they
are in the snapshot, and any changes or elements not contained in the snapshot will be lost.

The Configuration Store

29

Priorities
The configuration store use priorities to determine the order in which to inspect features and groups
when determining a node's configuration. The Internal Default Group will always be the lowest
priority group that a node is a member of, so it will be inspected first. The store will then evaluate the
priority of the groups that the node is a member of, and finally evaluate any features or parameters
applied to the node itself. If a parameter has multiple values set in multiple features or groups, the
value given in the node's configuration will be the one determined by the highest priority group or
feature.

Configuring the store using condor_configure_store
The condor_configure_store tool is used to add, remove, and edit parameters, features, groups,
subsystems, and nodes in the configuration store. Only one action (add, remove, or edit) can be
performed with each command, but multiple targets (parameters, features, groups, subsystems, or
nodes) can be acted upon each time.

The condor_configure_store tool does not have to run on the same machine as the configuration
store, nor the same machine as the broker the configuration store is communicating with. It will look
for the AMQP broker on the machine it is running on by default, but it can be instructed to look for the
broker in other locations, even if it is a non-standard port.

1. To add entities to the configuration store, use the condor_configure_store command with the
--add or -a option, the target type, and the target:

$ condor_configure_store -a -f feature1 -n node1,node2

This example adds a feature called feature1 and two nodes called node1 and node2 to the
configuration store.

Adding entities into the configuration store will invoke a text editor for entering and editing
metadata about them. The text editor is defined in $EDITOR, and will default to vi. See Editing
metadata for information about using the editor.

After modifications have been saved, the tool will prompt for any additional instructions it requires.
Follow the prompts to continue.

2. Once entities have been added, they can be edited using the --edit or -e option, the target
type, and the target:

$ condor_configure_store -e -s subsys1,subsys2 -p param1

This example invokes a text editor to change the parameters of subsystems called subsys1 and
subsys2, and a parameter called param1.

After modifications have been saved, the tool will prompt for any additional instructions it requires.
Follow the prompts to continue.

Chapter 4. Remote configuration

30

Note
When adding or editing parameters for features, if a blank value ("") is given, the
condor_configure_store tool will ask if the parameter should use the default
value defined in the parameter's metadata.

3. To remove entities from the configuration store, use the --delete or -d option, the target type,
and the target:

$ condor_configure_store -d -s subsys1,subsys2 -p param1 -f feature1 -n
node1,node2

This example removes subsystems named subsys1 and subsys2, a parameter named param1,
a feature named feature1, and nodes named node1 and node2 from the configuration store.

4. To read the full help menu, use the --help or -h option:

$ condor_configure_store -h

Editing metadata
The metadata is edited using the YAML format. The three types of input are handled differently by
YAML:

String
Any input that is not a list or a map is interpreted as a string. When a string contains a series of
alphabetic characters (letters), it can optionally be surrounded by either single or double quotation
marks. When the string is a series of numeric characters only, it must be surrounded by either
single or double quotation marks.

An empty string is represented by quotation marks with no content between them ('' or "").

List
A list is an ordered set of values. A list is comprised of one entry per line, with each line beginning
with a hyphen (-) followed by a single whitespace and the value. For example:

a_list:
- value1
- value2

An empty list is represented by square brackets with no content between them ([]).

Map
A map is a set of name-value pairs. It is comprised of one name-value pair per line, with each pair
seperated by a colon (:) and a single whitespace character. For example:

a_map:
 value1: This is a string

Nodes

31

 value2: '4'

An empty map is represented by curly braces with no content between them ({})

4.2. Nodes
The condor-wallaby-client is installed on each node and is used to manage configurations for
that node. It installs a configuration file in the MRG Grid local configuration directory, which enables
it to control configuration for the node. The condor-wallaby-client package contains a service
that will check in with the store and listen for configuration change notifications. When it receives a
new configuration from the store, the service will write it into the local configuration file for the node.
The location of the local configuration file is defined in the configuration file installed by the condor-
wallaby-client package.

Managed nodes are considered either provisioned or unprovisioned. Nodes explicitly added to
the store using remote tools are provisioned nodes. Nodes that have checked in with the store
but have not explicitly been added are unprovisioned nodes. Unprovisioned nodes receive the
configuration defined in the default group. A node must be explicitly added to the store with
condor_configure_store (even if it already exists in the store) in order to change from
unprovisioned to provisioned. Nodes are represented by their fully qualified domain names, and each
node name in the store must be unique.

Installing and configuring the remote configuration client
1. To allow a machine to be managed with remote configuration, install the following package with

the yum command:

• condor-wallaby-client

yum install condor-wallaby-client

2. The remote configuration client needs to be told the location of the broker that is communicating
with the configuration store. Open the condor local configuration directory and create or edit a
configuration file with the following parameter, and the IP address or hostname of the machine
running the broker:

QMF_BROKER_HOST = wallaby_broker

3. Restart condor before attempting to configure nodes.

Applying configurations to a node with condor_configure_pool
The condor_configure_pool tool is used to apply entities in the configuration store to physical
nodes. It is also used to manage configurations within the configuration store. Only one node or group
can be acted upon with each command, but multiple features and parameters can by be acted upon
each time.

The condor_configure_pool tool does not have to run on the same machine as the configuration
store, nor the same machine as the broker the configuration store is communicating with. It will look
for the AMQP broker on the machine it is running on by default, but it can be instructed to look for the
broker in other locations, even if it is a non-standard port.

Chapter 4. Remote configuration

32

1. To display entities in the configuration store and their metadata, use the
condor_configure_pool command with the --list-all-type option. It is possible to list
more than one type by using successive commands:

$ condor_configure_pool --list-all-nodes --list-all-subsystems

This example will list all nodes and subsystems, and their metadata.

2. To apply entities to a node, use the -a option with the names of the entities and the target node:

$ condor_configure_pool -a -n node1 -f feature1 -p param1,param2

This example applies a feature called feature1 and parameters called param1 and param2 to a
node called noe1.

Note
To modify the configuration of the configuration store's Default Group, which
affects all nodes the configuration store knows about, use the --default-
group option as the target instead of a specific node or group name.

When adding parameters to a node or group of nodes, the tool will prompt for the parameter
values before asking to commit the changes to the configuration store. Answer y to instruct the
tool to begin making the changes.

The tool will prompt for any additional instructions it requires. Follow the prompts to continue.

Once the changes have been applied, the tool will ask if the configuration should be saved.
Answer y to confirm and provide a name for the configuration.

The tool will ask if the changes should be activated. Answer y to instruct the tool to validate the
changes and push them out to the pool.

3. A configuration change can be activated when it is made, or it can be activated at a later time.
This allows multiple changes to be made, and then validated and applied all at once. To activate
changes, use the --activate option:

$ condor_configure_pool --activate

The configuration store will validate the configuration and then push it out to all affected nodes. If
the validation test does not pass, it will return an error message and exit.

Note
Changes that are activated using the --activate option will not generate a
snapshot if a configuration is successfully activated.

Tools

33

4. To remove entities from the configuration store, use the --delete or -d option, the target type,
and the target:

$ condor_configure_pool -d -g group1 -f feature1,feature2

This example removes features named feature1 and feature2 from a group of nodes called
group1.

5. When changes are activated through the -a option, a snapshot is generated. Snapshots can also
be taken at any time using the --take-snapshot option with an appropriate name:

$ condor_configure_pool --take-snapshot "A snapshot name"

This example will take a snapshot called A snapshot name.

Once a snapshot exists, it can be loaded using the --load-snapshot option with the name of
the snapshot to be loaded:

$ condor_configure_pool --load-snapshot "A snapshot name"

This example will load the snapshot called A snapshot name.

Note
Loading a snapshot will not instruct the configuration store to activate the
configuration, or push any changes out to nodes. To apply the configuration
changes in the snapshot, activate the configuration using the --activate
option.

Existing snapshots can be removed from the store using the --remove-snapshot option with
the name of the snapshot to be removed:

$ condor_configure_pool --remove-snapshot "A snapshot name"

This example will remove the snapshot called A snapshot name.

6. To read the full help menu, use the --help or -h option:

$ condor_configure_pool -h

4.3. Tools
There are several tools for use with the remote configuration tool. They do not need to be located on
the same machine as the store, but they all must be provided by the AMQP broker that is connected to
the store. If no broker information is provided, the tools will look for a broker on the machine they are
run on.

Chapter 4. Remote configuration

34

condor_configure_store
The condor_configure_store tool is used to configure parameters, features, groups,
subsystems, and nodes in the store. Only one action can be performed at a time with this tool.

condor_configure_pool
The condor_configure_pool tool is used to apply configurations to a specific node or group
of nodes. It uses the parameters, features, groups, and nodes stored in the configuration store by
the condor_configure_store tool. Only one node or group can be acted upon at a time, but
multiple features and parameters can by be added at once.

Wallaby tools
The wallaby tool includes a set of useful commands for interacting with wallaby. All wallaby commands
use the following syntax:

wallaby [broker options] command [command options]

wallaby dump [outfile]
The wallaby dump command is used to export objects in the store into plain text. The output can
be placed into a file and loaded back into the store with wallaby load.

wallaby load [file]
The wallaby load command is used to load a file generated by wallaby dump into the
configuration store. When a new database is loaded into the store, it will replace the entire
contents of the store with the new information.

wallaby inventory
The wallaby inventory tool is used to list details of the nodes being managed by the
configuration store. It provides the node name, information about the last time the node checked in
with the store, and whether the node was explicitly provisioned in wallaby or whether it checked in
for a configuration before wallaby knew about it.

4.4. Remote configuration example
This example uses the remote configuration tool to configure a group of five nodes running condor.
The configured pool contains a central manager, one scheduler, and three execute nodes. Any
unprovisioned nodes are configured to run only the master daemon, but will report to the central
manager.

Create the Workers group, and add all five nodes to the store:

$ condor_configure_store -a -g Workers -n node1,node2,node3,node4,node5

Add node3, node4, and node5, to the Workers group by setting their node membership in the editor:

memberships:
- Workers

Make node1 the central manager. Answer N when asked to activate the changes:

Remote configuration example

35

$ condor_configure_pool -n node1 -a -f CentralManager

Make node2 the scheduler. Answer N when asked to activate the changes:

$ condor_configure_pool -n node2 -a -f Scheduler

Make all nodes in the Workers group execute nodes. Answer N when asked to activate the changes:

$ condor_configure_pool -g Workers -a -f ExecuteNode

Make all nodes that check in with the store run only the master daemon:

$ condor_configure_pool --default-group -a -f Master

The tool will prompt for a value for CONDOR_HOST. This must be set for the configuration to be
valid, and in this configuration should be node1. Answer Y when asked to set the parameter. If the
configuration is correct, answer Y when asked to activate the changes.

In this example, the activation will fail for all nodes because they are missing a dependency. In
order for the unprovisioned nodes to be able to check in with the central manager they will need the
NodeAccess feature. This can be resolved by setting it on the default group:

$ condor_configure_pool --default-group -a -f NodeAccess

The tool will prompt for values for ALLOW_READ and ALLOW_WRITE. These must be set for the
configuration to be valid. Answer Y when asked to set the parameters. If the configuration is correct,
answer Y when asked to activate the changes.

The configuration is now activated and a named snapshot has been created. This can be verified by
listing the snapshots:

$ condor_configure_pool --list-all-snapshots

Snapshots:
Automatically generated snapshot at date time -- hash

Example 4.1. Using the remote configuration tool

36

Chapter 5.

37

Jobs
A job is a piece of work to be accomplished. A job must include a submit description file which
provides information to MRG Grid that helps control how the work is handled, including restrictions on
the type of execute nodes are able to run the job. The work to be accomplished must be able to run
without interactive user input.

5.1. Steps to submitting a job

5.1.1. Preparing the job
A job can be anything that will execute in the appropriate universe, such as a binary, Java class file,
virtual machine, script, or other executable. Determine the input and output files required, and note
their locations. Test the job, to ensure that it works as expected.

Standard input (STDIN) and console output (STDOUT and STDERR) can be redirected to and from
files. Any files needed to perform STDIN functions must be created before the job can be submitted.
They should also be tested to make sure they will run correctly.

5.1.2. Choosing a universe
MRG Grid uses an execution environment, called a universe. Jobs will run in the vanilla universe by
default, unless a different universe is specified in the submit description file.

Currently, the following universes are supported:
• Vanilla

• Java

• VM (for Xen and KVM)

• Grid

• Scheduler

• Local

• Parallel

Vanilla universe
The vanilla universe is the default universe, and has very few restrictions.

If a vanilla universe job is partially completed when the remote machine has to be returned, or fails for
some other reason, MRG Grid will perform one of two actions. It will either suspend the job, in case
it can complete it on the same machine at a later time, or it will cancel the job and restart it again on
another machine in the pool.

Java universe
The java universe allows users to run jobs written for the Java Virtual Machine (JVM). A program
submitted to the java universe may run on any sort of machine with a JVM regardless of its location,

Chapter 5. Jobs

38

owner, or JVM version. MRG Grid will automatically locate details such as finding the JVM binary and
setting the classpath.

VM universe
The VM universe allows for the running of Xen or KVM virtual machine instances. A VM universe job's
lifecycle is tied to the virtual machine that is being run.

Grid universe
The Grid Universe provides jobs access to external schedulers. For example, jobs submitted to EC2
are routed through the Grid Universe.

Scheduler universe
The scheduler universe is primarily for use with the condor_dagman daemon. It allows users to
submit lightweight jobs to be run immediately, alongside the condor_schedd daemon on the host
machine. Scheduler universe jobs are not matched with a remote machine, and will never be pre-
empted.

The scheduler universe, however, offers few features and limited policy support. The local universe is
a better choice for most jobs which must run on the submitting machine, as it offers a richer set of job
management features, and is more consistent with the other universes.

Local universe
The local universe allows a job to be submitted and executed with different assumptions for the
execution conditions of the job. The job does not wait to be matched with a machine - it is executed
immediately, on the machine where the job is submitted. Jobs submitted in the local universe will
never be pre-empted.

Parallel universe
The parallel universe is used to run jobs that require simultaneous startup on multiple execution
nodes, such as Message Passing Interface (MPI) jobs.

5.1.3. Writing a submit description file
A job is submitted for execution using condor_submit, which requires a file called a submit
description file. The submit description file contains the name of the executable, the initial working
directory, and any command-line arguments.

The submit description file must inform condor_submit how to run the job, what input and output to
use, and where any additional files are located.

The submit description file includes information about:
• Which executable to run

• The files to use for keyboard and screen data

• The platform required to run the program

• The universe to use. If you are unsure which universe to use, select the vanilla universe.

Writing a submit description file

39

• Where to send notification emails

• How many times to run a program

The following examples are common submit description files, demonstrating the syntax to use when
creating the file.

This example submits a job called physica.

Since no platform is specified in this description file, MRG Grid will default to run the job on a machine
which has the same architecture and operating system as the machine from which it was submitted.
The submit description file does not specify input, output, and error commands, this will cause MRG
Grid to use /dev/null for all STDIN, STDOUT and STDERR. A log file, called physica.log will be
created. When the job finishes, its exit conditions will be noted in the log file. It is recommended that
you always have a log file.

Executable = physica
Log = physica.log
Queue

Example 5.1. Basic submit description file

This example queues two copies of the program mathematica.

The first copy will run in directory run_1, and the second will run in directory run_2. For both queued
copies, STDIN will be test.data, STDOUT will be loop.out, and STDERR will be loop.error.
There will be two sets of files written, as the files for each job are written to the individual directories.
The job will be run in the vanilla universe.

Executable = mathematica
Universe = vanilla
input = test.data
output = loop.out
error = loop.error
Log = mathematica.log

Initialdir = run_1
Queue

Initialdir = run_2
Queue

Example 5.2. Using multiple directories in a submit description file

This example queues 150 runs of program chemistria.

This job must be run only on Linux workstations that have greater than 32 megabytes of physical
memory. If machines with greater than 64 megabytes of physical memory are available, the job should
be run on those machines as a preference. This submit description file also advises that it will use
up to 28 megabytes of memory when running. Each of the 150 runs of the program is given its own
process number, starting with process number 0. In this case, STDIN, STDOUT, and STDERR will refer
to in.0, out.0 and err.0 for the first run of the program, and in.1, out.1 and err.1 for the
second run of the program. A log file will be written to chemistria.log.

Executable = chemistria

Chapter 5. Jobs

40

Requirements = Memory >= 32 && OpSys == "LINUX" && Arch =="X86_64"
Rank = Memory >= 64
Image_Size = 28 Meg

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = chemistria.log

Queue 150

Example 5.3. Specifying execution requirements in a submit description file

This example submits a job to be run in the VM universe using KVM.

Universe=vm
Executable=testvm
Log=$(cluster).vm.log
VM_TYPE=kvm
VM_MEMORY=512
KVM_DISK=/var/lib/libvirt/images/RHEL5.img:vda:w
Queue

Example 5.4. Specifying the VM universe in a submit description file

5.1.4. Submitting the job
Submit the job with the condor_submit command. Full details of the condor_submit command
can be found on the condor_submit manual page.

5.1.5. Monitoring job progress
Jobs can be monitored in a number of different ways. To check the status of a job using the command-
line, use the condor_status command.

Jobs can also be queried using the condor_q command.

5.1.6. Finishing a job
When a job has been succesfully completed, MRG Grid will send an email to the address given in the
submit description file. If no email address exists in the file, it will use the address in the configuration
settings instead. The email will contain information about the job, including the time it took to complete,
and the resources used.

If there is a log file recorded for the job, it will record an exit status code. A full list of the exit codes is
in Section B.4, “Shadow exit status codes”.

If a job needs to be removed before it has been completed, this can be achieved by using the
condor_rm command.

5.2. Time scheduling for job execution
MRG Grid allows jobs to begin execution at a later time. This feature can be accessed by adding a
deferral time to the submit description file. Jobs running on a Unix platform can also be set to run
periodically.

Time scheduling for job execution

41

Deferring jobs
Job deferral allow the submitter to specify an exact date and time at which a job is to begin. MRG
Grid attempts to match the job to an execution machine as normal, however, the job will wait until the
specified time to begin execution. Submitters can also provide details for how to handle a job that
misses it's specified execution time.

The deferral time is defined in the submit description file as a Unix Epoch timestamp. Unix Epoch
timestamps are the number of seconds elapsed since midnight on January 1, 1970, Coordinated
Universal Time.

After a job has been matched and the files transferred to a machine for execution, MRG Grid checks
to see if the job has a deferral time. If it does, and the time for execution is still in the future, the job will
wait. While it waits, JobStatus will indicate that the job is running.

If a job reports that the time for execution is in the past - that is, the job has failed to execute when
it should have - then the job is evicted from the execution machine and put on hold in the queue.
This could occur if the files were transferred too slowly, or because of a network outage. This can be
avoided by specifying a deferral window within which the job can still begin. When a job arrives too
late, the difference between the current time and the deferral time is calculated. If the difference is
within the deferral window, the job will begin executing immediately.

When a job defines a deferral time far in the future and then is matched to an execution machine,
potential computation cycles are lost because the deferred job has claimed the machine, but is not
actually executing. Other jobs could execute during the interval when the job waits for its deferral time.
To make use of the wasted time, a job defines a deferral_prep_time with an integer expression
that evaluates to a number of seconds. At this number of seconds before the deferral time, the job
may be matched with a machine.

If a job is waiting to begin execution and a condor_hold command is issued, the job is removed from
the execution machine and put on hold.

Limitations to the job deferral feature
There are some limitations to the job deferral feature:

• Job deferral will not work with scheduler universe jobs. If a deferral time is specified in a job
submitted to the scheduler universe, a fatal error will occur.

• Job deferral times are based on the execution machine's system clock, not the submission
machine's system clock.

• A job's JobStatus attribute will always show the job as running when job deferral is used. As of
the 1.3 release of MRG Grid, there is no way to distinguish between a job that is executing and a job
that has been deferred and is waiting to begin execution.

Example submit description files
The following examples show how to set job deferral times and deferral windows.

This example starts a job on January 1, 2008 at 09:00:00 GMT.

To calculate the date and time as Unix epoch time on a Unix-based machine, use the date program
from the shell prompt with the following syntax:

Chapter 5. Jobs

42

$ date --date "MM/DD/YYYY HH:MM:SS" +%s

You could also use an online time converter, such as the Epoch Converter1.

January 1, 2008 at 09:00:00 GMT converts to 1199178000 in Unix epoch time. The line you will need
to add to the submit description file is:

deferral_time = 1199178000

Example 5.5. Setting the deferral time using Unix epoch time

This example starts a job one minute from the submit time.

This parameter uses a value in seconds to determine the start time:

deferral_time = (CurrentTime + 60)

Example 5.6. Setting the deferral time in seconds from submission time

This example sets a deferral window of 120 seconds, within which a job can begin execution

This parameter uses a value in seconds to determine the length of the deferral window:

deferral_window = 120

Example 5.7. Setting a deferral window in the submit description file

This example schedules a job to begin on January 1st, 2010 at 09:00:00 GMT, and sets a deferral
prep time of 1 minute.

The deferral_prep_time attribute delays the job from being matched until the specified number of
seconds before the job is to begin execution. This prevents the job from being assigned to a machine
long before it is due to start and unnecessarily tying up resources.

deferral_time = 1262336400
deferral_prep_time = 60

Example 5.8. Setting a deferral prep time in the submit description file

5.3. Using custom kill signals
Condor terminates jobs by sending them a signal. By default, vanilla universe jobs are killed with a
SIGKILL command. This does not allow the job to perform a graceful shutdown, and is referred to
as a hard-kill. To avoid this, it is possible for each job to define a custom kill signal. In this case, when
the job is killed, the custom signal will be sent first. This allows the job to perform necessary functions
for a graceful shutdown, such as writing out summary data. The starter will wait a period of time after
initiating the job termination before determining that the starter is not responding and needs to be
killed.

Defining a custom kill signal
1. In the job description file, specify the custom kill signal with the kill_sig parameter:

1 http://www.epochconverter.com/

http://www.epochconverter.com/
http://www.epochconverter.com/

Using custom kill signals

43

kill_sig = 3

Where 3 is SIGQUIT, or:

kill_sig = SIGQUIT

2. By default, the starter will wait the number of seconds defined in the killing_timeout
configuration variable, less one second. It is also possible to set a timeout value in the job
description file, using the kill_sig_timeout parameter. The starter will wait the shorter of the
two values.

44

Chapter 6.

45

ClassAds
Job submission is simplified through the use of ClassAds. ClassAds are used to advertise the
attributes of individual jobs and each slot on a machine. MRG Grid then uses the ClassAds to match
jobs to slots.

Note
Slots are the logical equivalent of the physical cores on a machine. For example,
a quad-core workstation would have four slots - with each slot being a dedicated
allocation of memory (note however that hyperthreading will generally double the
amount of slots available - a quad-core machine with hyperthreading would have
eight slots).

ClassAds for slots advertise information such as:

• available RAM

• CPU type and speed

• virtual memory size

• current load average

Slots also advertise information about the conditions under which it is willing to run a job, and what
type of job it would prefer. Additionally, machines can specify which jobs they would prefer to run. All
this information is held by the ClassAd.

ClassAds for jobs advertise the type of machine they need to execute the job. For example, a job may
require a minimum of 128MB of RAM, but would ideally like 512MB. This information is listed in the
jobs ClassAd and slots that meet those requirements will be ranked for matching.

MRG Grid continuously reads all the ClassAds, ranking and matching jobs and slots. All requirements
for both sets of ClassAds must be fulfilled before a match is made. ClassAds are generated
automatically by the condor_submit daemon, but can also be manually constructed and edited.

This example uses the condor_status command to view ClassAds information from the machines
available in the pool.

$ condor_status

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

adriana.cs x86_64 LINUX Claimed Busy 1.000 64 0+01:10:00
alfred.cs. x86_64 LINUX Claimed Busy 1.000 64 0+00:40:00
amul.cs.wi x86_64 LINUX Owner Idle 1.000 128 0+06:20:04
anfrom.cs. x86_64 LINUX Claimed Busy 1.000 32 0+05:16:22
anthrax.cs x86_64 LINUX Claimed Busy 0.285 64 0+00:00:00
astro.cs.w x86_64 LINUX Claimed Busy 0.949 64 0+05:30:00
aura.cs.wi x86_64 LINUX Owner Idle 1.043 128 0+14:40:15

Example 6.1. Using condor_status to view ClassAds

The condor_status command has options that can be used to view the data in different ways. The
most common options are:

Chapter 6. ClassAds

46

condor_status -available
Shows only those machines that are currently available to run jobs.

condor_status -run
Shows only those machines that are currently running jobs.

condor_status -l
Lists the ClassAds for all machines in the pool.

Note
Use $ man condor_status for a complete list of options.

Constraints and preferences
Jobs are matched to resources through the use of constraints and preferences.

Constraints and preferences for jobs are specified in the submit description file using requirements
and rank expressions. For machines, this information is determined by the configuration.

The rank expression is used by a job to specify which requirements to use to rank potential machine
matches.

This example uses the rank expression to specify preferences a job has for a machine.

A job ClassAd might contain the following expressions:

Requirements = Arch=="x86_64" && OpSys == "LINUX"
Rank = TARGET.Memory + TARGET.Mips

In this case, the job requires an computer running a 64 bit Linux operating system. Among all such
computers, the job prefers those with large physical memories and high MIPS (Millions of Instructions
Per Second) ratings.

Example 6.2. Using the rank expression to set constraints and preferences for jobs

Any desired attribute can be specified for the rank expression. The condor_negotiator daemon
will satisfy the required attributes first, then deliver the best resource available by matching the rank
expression.

A machine may also specify constraints and preferences for the jobs that it will run.

This example using the machine configuration to set constraints and preferences a machine has for a
job

A machine's configuration might contain the following:

Friend = Owner == "tannenba" || Owner == "wright"
ResearchGroup = Owner == "jbasney" || Owner == "raman"
Trusted = Owner != "rival" && Owner != "riffraff"
START = Trusted && (ResearchGroup || LoadAvg < 0.3 &&
KeyboardIdle > 15*60)
RANK = Friend + ResearchGroup*10

47

This machine will always run a job submitted by members of the ResearchGroup but will never run
jobs owned by users rival and riffraff. Jobs submitted by Friends are preferred to foreign
jobs, and jobs submitted by the ResearchGroup are preferred to jobs submitted by Friends.

Example 6.3. Using machine configuration to set constraints and preferences

Querying ClassAd expressions
ClassAds can be queried from the shell prompt with the condor_status and condor_q tools. Some
common examples are shown here:

Note
Use $ man condor_status and $ man condor_q for a complete list of options.

This example finds all computers that have mmore than 100MB of memory and their keyboard idle for
longer than 20 minutes

$ condor_status -constraint 'KeyboardIdle > 20*60 && Memory > 100'

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

amul.cs.wi x86_64 LINUX Claimed Busy 1.000 128 0+03:45:01
aura.cs.wi x86_64 LINUX Claimed Busy 1.000 128 0+00:15:01
balder.cs. x86_64 LINUX Claimed Busy 1.000 1024 0+01:05:00
beatrice.c x86_64 LINUX Claimed Busy 1.000 128 0+01:30:02
[output truncated]

 Machines Owner Claimed Unclaimed Matched Preempting

x86_64/LINUX 3 0 3 0 0 0
x86_64/LINUX 21 0 21 0 0 0
x86_64/LINUX 3 0 3 0 0 0
x86_64/LINUX 1 0 0 1 0 0
x86_64/LINUX 1 0 1 0 0 0

Total 29 0 28 1 0 0

Example 6.4. Using the condor_status command with the -constraint option

This example uses a regular expression and a ClassAd function to list specific information.

A file called ad contains ClassAd information:

$ cat ad
MyType = "Generic"
FauxType = "DBMS"
Name = "random-test"
Machine = "f05.cs.wisc.edu"
MyAddress = "<128.105.149.105:34000>"
DaemonStartTime = 1153192799
UpdateSequenceNumber = 1

The condor_advertise daemon is used to insert the generic ClassAd information into the file:

$ condor_advertise UPDATE_AD_GENERIC ad

Chapter 6. ClassAds

48

You can now use condor_status to constrain the search with a regular expression containing a
ClassAd function:

$ condor_status -any -constraint 'FauxType=="DBMS" && regexp("random.*", Name, "i")'

MyType TargetType Name

Generic None random-test

Job queues can also be queried in the same way.

Example 6.5. Using a regex and a ClassAd function to list information

6.1. Writing ClassAd expressions
The primary purpose of a ClassAd is to make matches, where the possible matches contain
constraints. To achieve this, the ClassAd mechanism will continuously carry out expression
evaluations, where two ClassAds test each other for a potential match. This is performed by the
condor_negotiator daemon. This section examines the semantics of evaluating constraints.

A ClassAd contains a set of attributes, which are unique names associated with expressions.

MyType = "Machine"
TargetType = "Job"
Machine = "froth.cs.wisc.edu"
Arch = "x86_64"
OpSys = "LINUX"
Disk = 35882
Memory = 128
KeyboardIdle = 173
LoadAvg = 0.1000
Requirements = TARGET.Owner=="smith" || LoadAvg<=0.3 && KeyboardIdle>15*60

Example 6.6. A typical ClassAd

ClassAd expressions are formed by literals, attributes and other sub-expressions combined with
operators and functions. ClassAd expressions are not statically checked. For this reason, the
expressions UNDEFINED and ERROR are used to identify expressions that contain names of attributes
that have no associated value or that attempt to use values in a way that is inconsistent with their
types.

Literals
Literals represent constant values in expressions. An expression that contains a literal will always
evaluate to the value that the literal represents. The different types of literals are:

Integer
One or more digits (0-9). Additionally, the keyword TRUE represents 1 and FALSE represents 0

Real
Two sequences of continuous digits separated by a . character

String
Zero or more characters enclosed within " characters. A \ character can be used as an escape
character

Writing ClassAd expressions

49

Undefined
The keyword UNDEFINED represents an attribute that has not been given a value.

Error
The keyword ERROR represents an attribute with a value that is inconsistent with its type, or badly
constructed.

Attributes
Every expression must have a name and a value, together the pair is referred to as an attribute. An
attribute can be referred to in other expressions by its name.

Attribute names are sequences of letters, numbers and underscores. They can not start with a
number. All characters in the name are significant, but they are not case sensitive.

A reference to an attribute must consist of the name of the attribute being refered to. References can
also contain an optional scope resolution prefix of either MY. or TARGET.

The expression evaluation is carried out in the context of two ClassAds, creating a potential for
ambiguities in the name space. The following rules define the semantics of attribute references made
by ClassAd A which is being evaluated in relation to ClassAd B:

If the reference contains a scope resolution prefix:

• If the prefix is MY. the attribute will be looked up in ClassAd A. If the attribute exists in ClassAd
A, the value of the reference becomes the value of the expression bound to the attribute name. If the
attribute does not exist in ClassAd A, the value of the reference becomes UNDEFINED

• If the prefix is TARGET. the attribute is looked up in ClassAd B. If the attribute exists in ClassAd
B the value of the reference becomes the value of the expression bound to the attribute name. If the
attribute does not exist in ClassAd B, the value of the reference becomes UNDEFINED

If the reference does not contain a scope resolution prefix:

• If the attribute is defined in ClassAd A the value of the reference is the value of the expression
bound to the attribute name in ClassAd A

• If the attribute is defined in ClassAd B the value of the reference is the value of the expression
bound to the attribute name in ClassAd B

• If the attribute is defined in the ClassAd environment, the value from the environment is returned.
This is a special environment, not the standard Unix environment. Currently, the only attribute of the
environment is CurrentTime, which evaluates to the integer value returned by the system call
time(2)

• If the attribute is not defined in any of the above locations, the value of the reference becomes
UNDEFINED

If the reference refers to an expression that is itself in the process of being evaluated, it will cause a
circular dependency. In thise case, the value of the reference becomes ERROR

Operators
The unary negation operator of - takes the highest precedence in a string. In order, operators take the
following precedence:

Chapter 6. ClassAds

50

1. - (unary negation)

2. * and /

3. + (addition) and - (subtraction)

4. < <= >= and >

5. == != =?= and =!=

6. &&

7. ||

The different types of operators are:

Arithmetic operators
The operators * / + and - operate arithmetically on integers and real literals

Arithmetic is carried out in the same type as both operands. If one operand is an integer and the
other real, the type will be promoted from integer to real

Operators are strict with respect to both UNDEFINED and ERROR

If one or both of the operands are not numerical, the value of the operation is ERROR

Comparison operators
The comparison operators == != <= < >= and > operate on integers, reals and strings

The operators =?= and =!= behave similarly to == and !=, but are not strict. Semantically, =?=
tests if its operands have the same type and the same value. For example, 10 == UNDEFINED
and UNDEFINED == UNDEFINED both evaluate to UNDEFINED, but 10 =?= UNDEFINED will
evaluate to FALSE and UNDEFINED =?= UNDEFINED will evaluate to TRUE. The =!= operator
tests for not identical conditions

String comparisons are case insensitive for most operators. The only exceptions are the operators
=?= and =!= which perform case sensitive comparisons when both sides are strings

Comparisons are carried out in the same type as both operands. If one operand is an integer and
the other real, the type will be promoted from integer to real

Strings can not be converted to any other type, so comparing a string and an integer or a string
and a real results in ERROR

The operators == != <= < and >= > are strict with respect to both UNDEFINED and ERROR

Logical operators
The logical operators && and || operate on integers and reals. The zero value of these types are
considered FALSE and non-zero values TRUE

Logical operators are not strict, and exploit the "don't care" properties of the operators to eliminate
UNDEFINED and ERROR values when possible. For example, UNDEFINED && FALSE evaluates to
FALSE, but UNDEFINED || FALSE evaluates to UNDEFINED

Any string operand is equivalent to an ERROR operand for a logical operator. For example TRUE
&& "string" evaluates to ERROR

Writing ClassAd expressions

51

Pre-defined functions
ClassAd expressions can use predefined functions. Function names are not case sensitive. Function
calls can also be nested or recursive.

This is a complete list of predefined functions. The format of each function is:

ReturnType FunctionName(ParameterType1 parameter1, ParameterType2 parameter2, ...)

The possible types are as listed in Literals. If the function can be any of these literal types, it is
described as AnyType. Where the type is Integer, but only returns the value 1 or 0 (True or
False), it is described as Boolean. Optional parameters are given in square brackets.

AnyType ifThenElse(AnyType IfExpr,AnyType ThenExpr, AnyType ElseExpr)
A conditional expression.

When IfExpr evaluates to true, return the value as given by ThenExpr

When false, return the value as given by ElseExpr

When UNDEFINED, return the value UNDEFINED

When ERROR, return the value ERROR

When IfExpr evaluates to 0.0, return the value as given by ElseExpr

When IfExpr evaluates to a non-0.0 or Real value, return the value as given by ThenExpr

When IfExpr evaluates to give a value of type String, return the value ERROR

Expressions are only evaluated as defined

If a number of arguments other than three are given, the function will return ERROR

Boolean isUndefined(AnyType Expr)
Returns True if Expr evaluates to UNDEFINED. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Boolean isError(AnyType Expr)
Returns True, if Expr evaluates to ERROR. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Boolean isString(AnyType Expr)
Returns True if Expr gives a value of type String. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Boolean isInteger(AnyType Expr)
Returns True, if Expr gives a value of type Integer. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Boolean isReal(AnyType Expr)
Returns True if Expr gives a value of type Real. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Chapter 6. ClassAds

52

Boolean isBoolean(AnyType Expr)
Returns True, if Expr returns an integer value of 1 or 0. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Integer int(AnyType Expr)
Returns the integer value as defined by Expr

Where the type of the evaluated Expr is Real the value is rounded down to an integer

Where the type of the evaluated Expr is String the string is converted to an integer using a C-
like atoi() function. If the result is not an integer, ERROR is returned

Where the evaluated Expr is ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

Real real(AnyType Expr)
Returns the real value as defined by Expr

Where the type of the evaluated Expr is Integer the return value is the converted integer

Where the type of the evaluated Expr is String the string is converted to a real value using a C-
like atof() function. If the result is not real ERROR is returned

Where the evaluated Expr is ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

String formatTime([Integer time] [, String format])
Returns a formatted string that is a representation of time. The argument time is interpreted as
coordinated universe time in seconds, since midnight of January 1, 1970. If not specified, time
will default to the value of attribute CurrentTime.

The argument format is interpreted in a similar way to the format argument of the ANSI C
strftime function. It consists of arbitrary text plus placeholders for elements of the time. These
placeholders are percent signs (%) followed by a single letter. To have a percent sign in the output,
use a double percent sign (%%). If the format is not specified, it defaults to %c (local date and time
representation).

Because the implementation uses strftime() to implement this, and some versions implement
extra, non-ANSI C options, the exact options available to an implementation may vary. An
implementation is only required to use the ANSI C options, which are:

• %a

abbreviated weekday name

• %A

full weekday name

• %b

abbreviated month name

• %B

Writing ClassAd expressions

53

full month name

• %c

local date and time representation

• %d

day of the month (01-31)

• %H

hour in the 24-hour clock (0-23)

• %I

hour in the 12-hour clock (01-12)

• %j

day of the year (001-366)

• %m

month (01-12)

• %M

minute (00-59)

• %p

local equivalent of AM or PM

• %S

second (00-59)

• %U

week number of the year (Sunday as first day of week) (00-53)

• %w

weekday (0-6, Sunday is 0)

• %W

week number of the year (Monday as first day of week) (00-53)

• %x

local date representation

• %X

local time representation

Chapter 6. ClassAds

54

• %y

year without century (00-99)

• %Y

year with century

• %Z

time zone name, if any

String string(AnyType Expr)
Returns the string that results from the evaluation of Expr

A non-string value will be converted to a string

Where the evaluated Expr is ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

Integer floor(AnyType Expr)
When the type of the evaluated Expr is Integer, returns the integer that results from the
evaluation of Expr

When the type of the evaluated Expr is anything other than Integer, function real(Expr) is
called. Its return value is then used to return the largest integer that is not higher than the returned
value

Where the Real(Expr) returns ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

Integer ceiling(AnyType Expr)
When the type of the evaluated Expr is Integer, returns the integer that results from the
evaluation of Expr

When the type of the evaluated Expr is anything other than Integer, function real(Expr) is
called. Its return value is then used to return the smallest integer that is not less than the returned
value

Where the Real(Expr) returns ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

Integer round(AnyType Expr)
When the type of the evaluated Expr is Integer, returns the integer that results from the
evaluation of Expr

When the type of the evaluated Expr is anything other than Integer, function real(Expr)
is called. Its return value is then used to return the integer that results from a round-to-nearest
rounding method. The nearest integer value to the return value is returned, except in the case
of the value at the exact midpoint between two values. In this case, the even valued integer is
returned

Where the Real(Expr) returns ERROR or UNDEFINED, or the integer does not fit into 32 bits
ERROR is returned

Writing ClassAd expressions

55

If a number of arguments other than one is given, the function will return ERROR

Integer random([AnyType Expr])
When the type of the optional argument Expr evaluates to Integer or Real, the return value is
the integer or real r randomly chosen from the interval 0 <= r < x

With no argument, the return value is chosen with random(1.0)

In all other cases, the function will return ERROR

If a number of arguments other than one is given, the function will return ERROR

String strcat(AnyType Expr1 [, AnyType Expr2 ...])
Returns the string which is the concatenation of all arguments, where all arguments are converted
to type String by function string(Expr)

If any argument evaluates to ERROR or UNDEFINED, ERROR is returned

String substr(String s, Integer offset [, Integer length])
Returns the substring s, from the position indicated by offset, with optional length characters

The first character within s is at offset 0. If the length argument is not used, the substring
extends to the end of the string

If offset is negative, the value of length - offset is used for offset

If length is negative, an initial substring is computed, from the offset to the end of the string.
Then, the absolute value of length characters are deleted from the right end of the initial substring.
Further, where characters of this resulting substring lie outside the original string, the part that lies
within the original string is returned. If the substring lies completely outside of the original string,
the null string is returned

If a number of arguments other than either two or three is given, the function will return ERROR

Integer strcmp(AnyType Expr1, AnyType Expr2)
Both arguments are converted to type String by string(Expr)

The return value is an integer that will be less than 0 if Expr1 is less than Expr2

The return value will be equal to 0 if Expr1 is equal to Expr2

The return value will be greater than 0 if Expr1 is greater than Expr2

Case is significant in the comparison. Where either argument evaluates to ERROR or UNDEFINED,
ERROR is returned

If a number of arguments other than two is given, the function will return ERROR

Integer stricmp(AnyType Expr1, AnyType Expr2)
This function is the same as the strcmp function, except that letter case is not significant

String toUpper(AnyType Expr)
The argument is converted to type String by the string(Expr)

The return value is a string, with all lower case letters converted to upper case

If the argument evaluates to ERROR or UNDEFINED, ERROR is returned

Chapter 6. ClassAds

56

If a number of arguments other than one is given, the function will return ERROR

String toLower(AnyType Expr)
The argument is converted to type String by the string(Expr)

The return value is a string, with all upper case letters converted to lower case

If the argument evaluates to ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

Integer size(AnyType Expr)
Returns the number of characters in the string, after calling the string(Expr) function

If the argument evaluates to ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

The following functions contain string lists. String delimiters are used to define how the string list
should be read. The characters in the string delimiter define the characters used to separate the
elements within the string list.

This example uses the stringListSize function to demonstrate how a string delimiter of ", |" (a
comma, followed by a space character, followed by a pipe) operates.

The function is given as follows:

StringListSize("1,2 3|4&5", ", |")

Firstly, the string is broken up according to the first delimiter - the comma character - resulting in the
following two elements:

"1" and "2 3|4&5"

Now perform the same process, using the second delimiter - the space character - resulting in three
elements:

"1", "2" and "3|4&5"

Finally, apply the third delimiter - the pipe character - resulting in a total of four elements:

"1", "2", "3" and "4&5"

Note that because the & character is not defined as a delimiter, the final group ("4&5") is considered
only one element

Example 6.7. Using a string delimiter of ", |" with string lists

Note
The string delimiter is optional in the following functions. If no string
delimiter is defined, the default string delimiter of " ," (a space character,
followed by a comma) is used.

Writing ClassAd expressions

57

Integer stringListSize(String list [, String delimiter])
Returns the number of elements in the String list, as delimited by the String delimiter

If one or both of the arguments is not a string, returns ERROR

If a number of arguments other than one is given, the function will return ERROR

Integer stringListSum(String list [, String delimiter]) OR Real stringListSum(String
list [, String delimiter])

Returns the sum of all items in the String list, as delimited by the String delimiter

If all items in the list are integers, the return value is also an integer. If any item in the list is a real
value, the return value is real

If any item is not either an integer or real value, the return value is ERROR

Real stringListAve(String list [, String delimiter])
Sums and returns the real-valued average of all items in the String list, as delimited by the
String delimiter

If any item is neither an integer nor a real value, the return value is ERROR

A list containing no items returns the value 0.0

Integer stringListMin(String list [, String delimiter]) OR Real stringListMin(String list
[, String delimiter])

Returns the minimum value from all items in the String list, as delimited by the String
delimiter

If all items in the list are integers, the return value is also an integer. If any item in the list is a real
value, the return value is a real

If any item is neither an integer nor a real value, the return value is ERROR

A list containing no items returns the value UNDEFINED

Integer stringListMax(String list [, String delimiter]) OR Real stringListMax(String
list [, String delimiter])

Returns the maximum value from all items in the String list, as delimited by the String
delimiter

If all items in the list are integers, the return value is also an integer. If any item in the list is a real
value, the return value is a real

If any item is neither an integer nor a real value, the return value is ERROR

A list containing no items returns the value UNDEFINED

Boolean stringListMember(String x, String list [, String delimiter])
Returns TRUE if item x is in the string list, as delimited by the String delimiter

Returns FALSE if item x is not in the string list

Comparison is performed with the strcmp() function

If the arguments are not strings, the return value is ERROR

Chapter 6. ClassAds

58

Boolean stringListIMember(String x, String list [, String delimiter])
This function is the same as the stringListMember function, except that the comparison is
done with the stricmp() function, so letter case is not significant

The following functions contain a regular expression (regex) and an options argument. The options
argument is a string of special characters that modify the use of the regex. The only accepted options
are:

Option Description

I or i Ignore letter case

M or m Modifies the interpretation of the carat (^) and
dollar sign ($) characters, so that ^ matches
the start of a string, as well as after each new
line character and $ matches before a new line
character

S or s Modifies the interpretation of the period (.)
character to match any character, including the
new line character.

X or x Ignore white space and comments within the
pattern. A comment is defined by starting with
the # character, and continuing until the new line
character.

Table 6.1. Options for use in functions

Note
For a complete list of regular expressions visit the PCRE Library1

Boolean regexp(String pattern, String target [, String options])
Returns TRUE if the String target is a regular expression as described by pattern. Otherwise
returns FALSE

If any argument is not a String, or if pattern does not describe a valid regular expression,
returns ERROR

String regexps(String pattern, String target, String substitute, [String options])
The regular expression pattern is applied to target. If the String target is a regular
expression as described by pattern, the String substitute is returned, with backslash
expansion performed

If any argument is not a String returns ERROR

Boolean stringListRegexpMember(String pattern, String list [, String delimiter] [,
String options])

Returns TRUE if any of the strings within the list is a regular expression as described by pattern.
Otherwise returns FALSE

If any argument is not a String, or if pattern does not describe a valid regular expression,
returns ERROR

http://www.pcre.org

Resource restriction

59

To include the optional fourth argument options, a third argument of String delimiter is
required. If a specific delimiter is not specified, the default value of " ," (a space character
followed by a comma) will be used

Integer time()
Returns the current Unix epoch time, which is equal to the ClassAd attribute CurrentTime. This
is the time, in seconds, since midnight on January 1, 1970

String interval(Integer seconds)
Uses seconds to return a string in the form of days+hh:mm:ss representing an interval of time.
Leading values of zero are omitted from the string

6.2. Resource restriction
The condor_startd daemon is able to divide system resources amongst all available slots, by
changing how they advertised to the collector for match-making purposes. This parameter will cause
all jobs to execute inside a wrapper that will enforce limits on RAM, disk space, and swap space.

Important
This parameter prevents a job from using more resources than have been allocated
to the slot running it. It is important to accurately specify the resources needed when
submitting the job, to prevent errors in execution.

This example demonstrates resource restriction.

In this example, an execute node exists with the following resources:

• 2GB of RAM

• 100GB of disk space

• 100MB of swap space

This execute node has 2 slots with the resources evenly divided between them. This means that each
slot advertises to the collector with the following resources:

• 1GB of RAM

• 50GB of disk space

• 50MB of swap space

Any job that requests more resources than what is available by one of these slots will not be matched.
However, if a job is advertised with the following requirements, it will be matched:

• 1GB of RAM

• 50GB of disk space

• 50MB of swap space

If this job was matched and run, but eventually needed more than 1GB of RAM, 50GB of disk, or
50MB of swap space, nothing would prevent the job from consuming the resources it needs to run.

Chapter 6. ClassAds

60

This can become a problem, as the other slot is still advertising half the system resources, even
though less than half is now available.

If a second job is matched to the other available slot and attempts to use the resources it has
requested, it is likely to create resource contention with the first job.

Setting and using resource restriction creates a wrapper for the job to run within. This means that the
example job would not be able to consume more than 1GB of RAM, 50GB of disk space, or 50GB of
swap space. If it did attempt to, job execution would fail.

Example 6.8. Resource restriction

Warning
Using this feature can result in hard failures in the application. Memory allocations or
disk writes can fail if they attempt to use more resources than is allocated on the slot.
Any jobs to be run with strict resource enforcement should be written in such a way
that they are able to gracefully handle failures when requesting resources.

1. Create a file in the local configuration directory, and add the following lines:

USER_JOB_WRAPPER=$(LIBEXEC)/condor_limits_wrapper.sh

2. Save the changes, and restart the condor service:

service condor restart
Stopping condor services: [OK]
Starting condor services: [OK]

Chapter 7.

61

Tracking Processes
MRG Grid needs to keep track of all processes created by every job. This is neccesary in order to
provide resource usage statistics, and also so that processes can be properly cleaned up once a job
has been completed. This is achieved by tracking a combination of parent/child process relationships,
groups, and using the information in each job environment.

Tracking processes reliably can be difficult. When condor cleans up after executing a job, it does
the best that it can by deleting all of the processes started by the job. During the life of the job, it
also attempts to track the CPU usage of all processes created by the job. There are a variety of
mechanisms used to detect all processes, but the only way to catch them all is to run the job under
a dedicated execution account. Otherwise, some processes will always be left behind. Sometimes,
these processes can then create problems for the next job to be processed. Running jobs with a
dedicated Condor user account or group can help increase the reliability of process tracking.

Setting up a dedicated user account
When a job is submitted, it is usually run under the user account that submitted it. However, there are
some conditions which will make it run under the user nobody. The nobody user is often used by
the system for other jobs, or non-condor tasks as well, which can make killing processes owned by
nobody complicated. To avoid this issue, create a dedicated low-privilege user account for each job
execution slot on every machine. These user accounts can then be used for running jobs instead of
the nobody account.

1. Create the users: one for each job execution slot on each machine. In this example, the machine
has two slots, so two users have been created: condorusr1, and condorusr2:

adduser condorusr1
adduser condorusr2

2. Create a file in the local configuration directory, and add the following lines:

SLOT1_USER = condorusr1
SLOT2_USER = condorusr2

3. Mark these users as dedicated by adding the DEDICATED_EXECUTE_ACCOUNT_REGEXP
configuration variable to the file. This allows condor to kill all the processes belonging to
these users when a job has been completed. The DEDICATED_EXECUTE_ACCOUNT_REGEXP
configuration variable uses a regular expression to match the user accounts:

DEDICATED_EXECUTE_ACCOUNT_REGEXP = condorusr[0-9]+

4. Finally, adjust the STARTER_ALLOW_RUNAS_OWNER configuration variable, so that it no longer
runs jobs as the job owner, but uses the dedicated user accounts instead:

STARTER_ALLOW_RUNAS_OWNER = False

5. To check if the dedicated user is being used as expected, check the log file for this entry:

Chapter 7. Tracking Processes

62

Tracking process family by login "condorusr1"

Setting up a dedicated group
To be able to track processes regardless of the user account of the job they have submitted under,
it is also possible to create a range of dedicated group IDs (GIDs). In this case, the dedicated GID
is specified in a supplementary group list of a job's initial process. Because doing this requires root
privileges, the job will not be able to create processes that condor cannot see.

1. Create a dedicated GID range, ensuring that the number of IDs available in the range matches the
number of execution slots available on the machine. In this example, the machine has eight slots,
so a range of eight GIDs has been created, from 750 to 757:

groupadd -g 750-757

2. Create a file in the local configuration directory, and add the following lines:

USE_GID_PROCESS_TRACKING = True
MIN_TRACKING_GID = 750
MAX_TRACKING_GID = 757

Note
Process tracking using GID requires use of the condor_procd daemon. If
the USE_GID_PROCESS_TRACKING configuration variable is set to True,
condor_procd will be used regardless of the setting for USE_PROCD.

Chapter 8.

63

Job Hooks
A hook is an external program or script invoked during the life cycle of a job. External programs or
scripts allow MRG Grid to interface with external systems, and fetch work or perform other tasks that
could not be accomplished with MRG Grid alone. This can result in an easier and more direct method
of interfacing with an external scheduling system.

Hooks can also be useful where a job needs to be performed behind a firewall, but requires data from
outside. The hook only needs an outbound network connection to complete the task, thereby being
able to operate from behind the firewall, without the intervention of a connection broker.

Hooks can also be used to manage the execution of a job. They can be used to fetch execution
environment variables, update information about the job as it runs, notify when it exits, or take special
action if the job is evicted.

MRG Grid can be configured to look for jobs by using job hooks. Any job retrieved by the job hooks
is evaluated to decide if it should be executed, and whether or not it should pre-empt any currently
running jobs. If the resources are not available to run the retrieved job, it will be refused. Jobs retrieved
by job hooks will not appear in any of the MRG Grid queue mechanisms (like condor_q).

When a job is accepted the condor_startd daemon will spawn a condor_starter daemon to
manage the execution of the job. The job will then be treated as any other, and can potentially be pre-
empted by a higher ranking job.

Job hooks related to fetching or evicting jobs are handled either by the condor_startd. Job hooks
invoked during a job's lifecycle are handled by the condor_starter daemon.

The different types of hooks are:

HOOK_FETCH_WORK
This hook returns any work to be considered by the condor_startd daemon. The
FetchWorkDelay configuration variable determines how long the daemon will wait between
attempts to fetch work.

HOOK_REPLY_FETCH
When a job is retrieved with the HOOK_FETCH_WORK job hook, the condor_startd decides
whether to accept or reject the fetched job and uses HOOK_REPLY_FETCH job hook to send
notification of the decision.

Importantly, this hook is advisory in nature. condor_startd will not wait for the results of
HOOK_REPLY_FETCH before performing other actions. The output and exit status of this hook is
ignored.

HOOK_EVICT_CLAIM
HOOK_EVICT_CLAIM is invoked by condor_startd in order to evict a fetched job. This hook is
also advisory in nature.

HOOK_PREPARE_JOB
When a job is going to be run, condor_starter invokes HOOK_PREPARE_JOB. This job hook
allows commands to be executed to set up the job environment, such as transferring input files.

condor_starter will wait for HOOK_PREPARE_JOB to be returned before it attempts to execute
the job. An exit status of 0 indicates that the job has been prepared succesfully. If the hook returns
with an exit status that is not 0, an error has occured and the job will be aborted.

Chapter 8. Job Hooks

64

HOOK_UPDATE_JOB_INFO
This hook is invoked periodically during the life of a job to update job status information.
The period before the hook is invoked for the first time can be adjusted by changing the
STARTER_INITIAL_UPDATE_INTERVAL configuration variable. After the initial interval, further
intervals can be adjusted with the STARTER_UPDATE_INTERVAL configuration variable. Using the
default values, the hook would be invoked for the first time eight seconds after the job has begun
executing, and then every five minutes (600 seconds) thereafter.

HOOK_JOB_EXIT
This hook is invoked whenever a job exits - either through completion or eviction.

The condor_starter will wait for this hook to return before taking any further action.

When a hook is invoked, it will have certain privileges. Job hooks invoked from the condor_startd
will have the same privileges as the condor user (or the privileges of the user running the startd, if
that is a user other than Condor). Job hooks invoked by the condor_starter will have the same
privileges as the job owner.

Defining the FetchWorkDelay Expression
The condor_startd daemon will attempt to fetch new work in two circumstances:

1. When condor_startd evaluates its own state; and

2. When the condor_starter exits after completing fetched work.

It is possible that, even if a slot is already running another job, it could be pre-empted by a new job,
which could result in a problem known as thrashing. In this situation, every job gets pre-empted and no
job has a chance to finish. By adjusting the frequency that condor_startd checks for new work, this
can be prevented. This can be achieved by defining the FetchWorkDelay configuration variable.

The FetchWorkDelay variable is expressed as the number of seconds to wait in between the last
fetch attempt completing and attempting to fetch another job.

This example instructs condor_startd to wait for 300 seconds (5 minutes) between attempts
to fetch jobs, unless the slot is marked as Claimed/Idle. In this case, condor_startd should
attempt to fetch a job immediately:

FetchWorkDelay = ifThenElse(State == "Claimed" && Activity == "Idle", 0, 300)

If the FetchWorkDelay variable is not defined, condor_startd will default to a 300 second (5
minute) delay between all attempts to fetch work, regardless of the state of the slot.

Example 8.1. Setting the FetchWorkDelay configuration variable

Using keywords to define hooks in configuration files
Hooks are defined in the configuration files by prefixing the name of the hook with a keyword. This
allows a machine to have multiple sets of hooks, with each set identified by a keyword.

Each slot on a machine can define a separate keyword for the set of hooks that should be used. If
a slot-specific keyword is not used, condor_startd will use the global keyboard defined in the
STARTD_JOB_HOOK_KEYWORD configuration variable.

65

Note
Slots are the logical equivalent of the physical cores on a machine. For example,
a quad-core workstation would have four slots - with each slot being a dedicated
allocation of memory (note however that hyperthreading will generally double the
amount of slots available - a quad-core machine with hyperthreading would have
eight slots).

Once a job has been retrieved using the HOOK_FETCH_WORK job hook, the condor_startd daemon
will use the keyword for that job to select the hooks required to execute it.

This is an example configuration file that defines hooks on a machine with four slots.

Three of the slots (slots 1-3) use the global keyword for running work from a database-driven system.
These slots need to fetch work and provide a reply to the database system for each attempted claim.

The fourth slot (slot 4) uses a custom keyword to handle work fetched from a web service. It needs
only to fetch work.

STARTD_JOB_HOOK_KEYWORD = DATABASE

SLOT4_JOB_HOOK_KEYWORD = WEB

DATABASE_HOOK_DIR = /usr/local/condor/fetch/database
DATABASE_HOOK_FETCH_WORK = $(DATABASE_HOOK_DIR)/fetch_work.php
DATABASE_HOOK_REPLY_FETCH = $(DATABASE_HOOK_DIR)/reply_fetch.php

WEB_HOOK_DIR = /usr/local/condor/fetch/web
WEB_HOOK_FETCH_WORK = $(WEB_HOOK_DIR)/fetch_work.php

Note that the keywords DATABASE and WEB are very generic terms. It is advised that you choose more
specific keywords for your own installation.

Example 8.2. Using keywords when defining hooks

66

Chapter 9.

67

Policy Configuration
Machines in a pool can be configured through the condor_startd daemon to implement policies
that perform actions such as:
• Start a remote job

• Suspend a job

• Resume a job

• Vacate a job

• Kill a job

Policy configuration is the at the heart of the balancing act between the needs and wishes of machine
owners and job submitters. This section will outline how to adjust the policy configuration for machines
in your pool.

Note
If you are configuring the policy for a machine with multiple cores, and therefore
multiple slots, each slot will have its own individual policy expressions. In this case,
the word machine refers to a single slot, not to the machine as a whole.

This chapter assumes you know and understand ClassAd expressions. Ensure that you have read
Chapter 6, ClassAds before you begin.

9.1. Machine states and transitioning
Every machine is assigned a state, which changes as machines become available to run jobs. The six
possible states are:

Owner
The machine is not available to run jobs. This state normally occurs when the machine is being
used by the owner. Additionally, machines begin in this state when they are first turned on

Unclaimed
The machine is available to run jobs, but is not currently doing so

Matched
The machine has been matched to a job by the negotiator, but the job has not claimed the
machine

Claimed
The machine has been claimed by a job. The job may be currently executing, or waiting to begin
execution

Preempting
The machine was claimed, but is now being pre-empted. This state is used to evict a running
job from a machine, so that a new job can be started. This can happen for one of the following
reasons:
• The owner has started using the machine

Chapter 9. Policy Configuration

68

• Jobs with a higher priority are waiting to run

• Another request that this resource would rather serve was found

The following diagram demonstrates the machine states and the possible transitions between them.

Possible transitions between machine states
Owner to Unclaimed

This transition occurs when the machine becomes available to run a job. This occurs when the
START expression evaluates to TRUE.

Unclaimed to Owner
This transition occurs when the machine is in use and therefore not available to run jobs. This
occurs when the START expression evaluates to FALSE.

Unclaimed to Matched
This transition occurs when the resource is matched with a job.

Unclaimed to Claimed
This transition occurs if condor_schedd initiates the claiming procedure before the
condor_startd receives notification of the match from the condor_negotiator.

Matched to Owner
This transition occurs if:
• the machine is no longer available to run jobs. This happens when the START expression

evaluates to FALSE.

• the MATCH_TIMEOUT timer expires. This occurs when a machine has been matched but not
claimed. The machine will eventually give up on the match and become available for a new
match.

• condor_schedd has attempted to claim the machine but encountered an error.

• condor_startd receives a condor_vacate command while it is in the Matched state.

Matched to Claimed
This transition occurs when the machine is successfully claimed and the job is running.

Claimed to Pre-empting
From the Claimed state, the only possible destination is the Pre-empting state. This transition
can be caused when:
• The job that has claimed the machine has completed and releases the machine

• The resource is in use. In this case, the PREEMPT expression evaluates to TRUE

Machine states and transitioning

69

• condor_startd receives a condor_vacate command.

• condor_startd is instructed to shut down.

• The machine is matched to a job with a higher priority than the currently running job.

Pre-empting to Claimed
This transition occurs when the resource is matched to a job with a better priority.

Pre-empting to Owner
This transition occurs when:
• the PREEMPT expression evaluated to TRUE while the machine was in the Claimed state

• condor_startd receives a condor_vacate command

• the START expression evalutes to FALSE and the job it was running had finished being evicted
when it entered the Pre-empting state.

Machine Activities
While a machine is in a particular state, it will also be performing an activity. The possible activities
are:

• Idle

• Benchmarking

• Busy

• Suspended

• Retiring

• Vacating

• Killing

Each of these activities has a slightly different meaning, depending on which state they occur in. This
list explains each of the possible activities for a machine in different states:

• Owner

• Idle: This is the only possible activity for a machine in the Owner state. It indicates that the
machine is not currently performing any work for MRG Grid, even though it may be working on
other unrelated tasks.

• Unclaimed

• Idle: This is the normal activity for machines in the Unclaimed state. The machine is available
to run MRG Grid tasks, but is not currently doing so.

• Benchmarking: This activity only occurs in the Unclaimed state. It indicates that benchmarks
are being run to determine the speed of the machine. How often this activity occurs can be
adjusted by changing the RunBenchmarks configuration variable.

• Matched

Chapter 9. Policy Configuration

70

• Idle: Although the machine is matched, it is still considered Idle, as it is not currently running a
job.

• Claimed

• Idle: The machine has been claimed, but the condor_starter daemon, and therefore the job,
has not yet been started. The machine will briefly return to this state when the job finishes.

• Busy: The condor_starter daemon has started and the job is running.

• Suspended: The job has been suspended. The claim is still valid, but the job is not making any
progress and MRG Grid is not currently generating a load on the machine.

• Retiring: When an active claim is about to be pre-empted, it enters retirement while it waits
for the current job to finish. The MaxJobRetirementTime configuration variable determines
how long to wait. Once the job finishes or the retirement time expires, the Preempting state is
entered.

• Preempting

• Vacating: The job that was running is attempting to exit gracefully.

• Killing: The machine has requested the currently running job to exit immediately.

9.2. The condor_startd daemon
This section discusses the condor_startd daemon. This daemon evaluates a number of
expressions in order to determine when to transition between states and activities. The most important
expressions are explained here.

The condor_startd daemon represents the machine or slot on which it is running. This daemon
is responsible for publishing characteristics about the machine in the machine's ClassAd. To see the
values for the attributes, run condor_status -l hostname from the shell prompt. On a machine
with more than one slot, the condor_startd will regard the machine as separate slots, each with its
own name and ClassAd.

Normally, the condor_negotiator evaluates expressions in the machine ClassAd against job
ClassAds to see if there is a match. By locally evaluating an expression, the machine only evaluates
the expression against its own ClassAd. If the expression references parameters that can only
be found in another ClassAd, then the expression can not be locally evaluated. In this case, the
expression will usually evaluate locally to UNDEFINED.

The START expression
The most important expression to the condor_startd daemon is the START expression. This
expression describes the conditions that must be met for a machine to run a job. This expression can
reference attributes in the machine ClassAd - such as KeyboardIdle and LoadAvg - and attributes
in a job ClassAd - such as Owner, Imagesize and Cmd (the name of the executable the job will
run). The value of the START expression plays a crucial role in determining the state and activity of a
machine.

The machine locally evaluates the IsOwner expression to determine if it is capable of running
jobs. The default IsOwner expression is a function of the START expression, so that START =?

The condor_startd daemon

71

= FALSE. Any job ClassAd attributes appearing in the START expression, and subsequently in the
IsOwner expression, are undefined in this context, and may lead to unexpected behavior. If the
START expression is modified to reference job ClassAd attributes, the IsOwner expression should
also be modified to reference only machine ClassAd attributes.

The REQUIREMENTS expression
The REQUIREMENTS expression is used for matching machines with jobs. When a machine is
unavailable for further matches, the REQUIREMENTS expression is set to FALSE. When the START
expression locally evaluates to TRUE, the machine advertises the REQUIREMENTS expression as TRUE
and does not publish the START expression.

The RANK expression
A machine can be configured to prefer certain jobs over others, through the use of the RANK
expression in the machine ClassAd. It can reference any attribute found in either the machine ClassAd
or a job ClassAd. The most common use of this expression is to configure a machine so that it prefers
to run jobs from the owner of that machine. Similarly, it is often used for a group of machines to prefer
jobs submitted by the owners of those machines.

This example demonstrates a simple application of the RANK expression

In this example there is a small research group consisting of four machines and four owners:
• The machine called tenorsax is owned by the user coltrane

• The machine called piano is owned by the user tyner

• The machine called bass is owned by the user garrison

• The machine called drums is owned by the user jones

To implement a policy that gives priority to the machines in this research group, set the RANK
expression to reference the Owner attribute, where it matches one of the people in the group:

RANK = Owner == "coltrane" || Owner == "tyner" \
|| Owner == "garrison" || Owner == "jones"

Boolean expressions evaluate to either 1 or 0 (TRUE or FALSE). In this case, if the remote job is
owned by one of the preferred users, the RANK expression will evaluate to 1. If the remote job is
owned by any other user, it would evaluate to 0. The RANK expression is evaluated as a floating point
number, so it will prefer the group users because it evaluates to a higher number.

Example 9.1. A simple application of the RANK expression in the machine ClassAd

This example demonstrates a more complex application of the RANK expression. It uses the same
basic scenario as Example 9.1, “A simple application of the RANK expression in the machine ClassAd”,
but gives the owner a higher priority on their own machine.

This example is on the machine called bass, which is owned by the user garrison. The following
entry would need to be included in a file in the local configuration directory on that machine:

RANK = (Owner == "coltrane") + (Owner == "tyner") \

Chapter 9. Policy Configuration

72

+ ((Owner == "garrison") * 10) + (Owner == "jones")

The parentheses in this expression are essential, because the + operator has higher default
precedence than ==. Using + instead of || allows the system to match some terms and not others.

If a user not in the research group is running a job on the machine called bass, the RANK expression
will evaluate to 0, as all of the boolean terms evaluate to 0. If the user jones submits a job, his job
would match this machine and the RANK expression will evaluate to 1. Therefore, the the job submitted
by jones would pre-empt the running job. If the user garrison (the owner of the machine) later
submits a job, the RANK expression will evaluate to 10 because the boolean that matches Jimmy
gets multiplied by 10. In this case, the job submitted by garrison will pre-empt the job submitted by
jones.

Example 9.2. A more complex application of the RANK expression in the machine ClassAd

The RANK expression can reference parameters other than Owner. If one machine has an enormous
amount of memory and other do not have much at all, the RANK expression can be used to run jobs
with larger memory requirements on the machine best suited to it, by using RANK = ImageSize. This
preference will always service the largest of the jobs, regardless of which user has submitted them.
Alternatively, a user could specify that their own jobs should run in preference to those with the largest
ImageSize by using RANK = (Owner == "user_name" * 1000000000000) + Imagesize.

9.3. Conditions for state and activity transitions
This section lists all the possible state and activity transitions, with descriptions of the conditions under
which each transition occurs.

Owner state
The Owner state represents a resource that is currently in use and not available to run jobs. When the
startd is first spawned, the machine will enter the Owner state. The machine remains in the Owner
state while the IsOwner expression evaluates to TRUE. If the IsOwner expression is FALSE, then the
machine will transition to Unclaimed, indicating that it is ready to begin accepting jobs.

Conditions for state and activity transitions

73

On a shared resource, the default value for the IsOwner is optimized to START =?= FALSE. This
causes the machine to remain in the Owner state as long as the START expression locally evaluates
to FALSE. If the START expression locally evaluates to TRUE or cannot be locally evaluated (in
which case, it will evaluate to UNDEFINED), the machine will transition to the Unclaimed state. For
dedicated resources, the recommended value for the IsOwner expression is FALSE.

Note
The IsOwner expression should not reference job ClassAd attributes as this would
result in an evaluation of UNDEFINED.

While in the Owner state, the startd polls the status of the machine. The frequency of this is
determined by the UPDATE_INTERVAL configuration variable. The poll performs the following actions:
• Calculates load average

• Checks the access time on files

• Calculates the free swap space

• Notes if the startd has any critical tasks that need to be performed when the machine moves out
of the Owner state

Chapter 9. Policy Configuration

74

Whenever the machine is not actively running a job, it will transition back to the Owner state. Once a
job is started, the value of IsOwner is no longer relevant and the job will either run to completion or be
preempted.

Unclaimed state
The Unclaimed state represents a resource that is not currently in use by its owner or by MRG Grid.

Possible transitions from the Unclaimed state are:
1. Owner:Idle

2. Matched:Idle

3. Claimed:Idle

When the condor_negotiator matches a machine with a job, it sends a notification of the match
to each. Normally, the machine will enter the Matched state before progressing to Claimed:Idle.
However, if the job receives the notification and initiates the claiming procedure before the machine
receives the notification, the machine will transition directly to the Claimed:Idle state.

As long as the IsOwner expression is TRUE, the machine is in the Owner State. When the IsOwner
expression is FALSE, the machine goes into the Unclaimed state. If the IsOwner expression is
not present in the configuration files, then the default value is START =?= FALSE. This causes the
machine to transition to the Owner state when the START expression locally evaluates to TRUE.

Conditions for state and activity transitions

75

Effectively, there is very little difference between the Owner and Unclaimed states. The most obvious
difference is how the resources are displayed in condor_status and other reporting tools. The
only other difference is that benchmarking will only be run on a resource that is in the Unclaimed
state. Whether or not benchmarking is run is determined by the RunBenchmarks expression. If
RunBenchmarks evaluates to TRUE while the machine is in the Unclaimed state, then the machine
will transition from the Idle activity to the Benchmarking activity. Benchmarking performs and
records two performance measures:
• MIPS (Millions of Instructions Per Second); and

• KFLOPS (thousands of FLoating-point Operations Per Second).

When the benchmark is complete the machine returns to Idle.

This example runs benchmarking every four hours while the machine is in the Unclaimed state.

A macro called BenchmarkTimer is used in this example, which records the time since the last
benchmark. When this time exceeds four hours, the benchmarks will be run again. A weighted
average is used, so the more frequently the benchmarks run, the more accurate the data will be.

BenchmarkTimer = (CurrentTime - LastBenchmark)
RunBenchmarks = $(BenchmarkTimer) >= (4 * $(HOUR))

Example 9.3. Setting benchmarks in the machine ClassAd

If RunBenchmarks is defined and set to anything other than FALSE, benchmarking will be run as
soon as the machine transitions into the Unclaimed state. To completely disable benchmarks, set
RunBenchmarks to FALSE or remove it from the configuration file.

Matched state
The Matched state occurs when the machine has been matched to a job by the negotiator, but the job
has not yet claimed the machine. Machines are in this state for a very short period before transitioning.

Chapter 9. Policy Configuration

76

When the machine is matched to a job, the machine will transition into the Claimed:Idle state.
At any time while the machine is in the Matched state, if the START expression locally evaluates to
FALSE the machine will enter the Owner state.

Machines in the Matched state will adjust the START expression so that the requirements evaluate to
FALSE. This is to prevent the machine being matched again before it has been claimed.

The startd will start a timer when a machine transitions into the Matched state. This is to prevent
the machine from staying in the Matched state for too long. The length of the timer can be adjusted
with the MATCH_TIMEOUT configuration variable, which defaults to 120 seconds (2 minutes). If the
job that was matched with the machine does not claim it within this period of time, the machine gives
up, and transitions back into the Owner state. Normally, it would then transition straight back to the
Unclaimed state to wait for a new match.

Claimed state
The Claimed state occurs when the machine has been claimed by a job. It is the most complex state,
with the most possible transitions.

When the machine first enters the Claimed state it is in the Idle activity. If a job has claimed the
machine and the claim will be activated, the machine will transition into the Busy activity and the job
started. If a condor_vacate arrives, or the START expression locally evaluates to FALSE, it will enter
the Retiring activity before transitioning to the Pre-empting state.

While in Claimed:Busy, the startd daemon will evaluate the WANT_SUSPEND expression
to determine which other expression to evaluate. If WANT_SUSPEND evaluates to TRUE, the
startd will evaluate the SUSPEND expression to determine whether or not to transition to
Claimed:Suspended. Alternatively, if WANT_SUSPEND evaluates to FALSE the startd will evaluate
the PREEMPT expression to determine whether or not to skip the Suspended state and move to
Claimed:Retiring before transitioning to the the Preempting state.

Conditions for state and activity transitions

77

While a machine is in the Claimed state, the startd daemon will poll the machine for a change in
state much more frequently than while in other states. The frequency can be adjusted by changing the
POLLING_INTERVAL configuration variable.

The condor_vacate command affects the machine when it is in the Claimed state. There are a
variety of events that may cause the startd daemon to try to suspend or kill a running job. Possible
causes could be:
• The owner has resumed using the machine

• Load from other jobs

• The startd has been instructed to shut down

• The appearance of a higher priority claim to the machine by a different MRG Grid user.

The startd can be configured to handle interruptions in different ways. Activity on the machine could
be ignored, or it could cause the job to be suspended or even killed. Desktop machines can benefit
from a configuration that goes through successively more dramatic actions to remove the job. The
least costly option to the job is to suspend it. If the owner is still using the machine after suspending
the job for a short while, then startd will attempt to vacate the job. Vanilla jobs are sent a soft kill
signal, such as SIGTERM, so that they can gracefully shut down. If the owner wants to resume using
the machine, and vacating can not be completed, the startd will progress to kill the job. Killing is a
quick death to a job. It uses a hard-kill signal that cannot be intercepted by the application. For vanilla
jobs, vacating and killing are equivalent actions.

Pre-empting state
The Pre-empting state is used to evict a running job from a machine, so that a new job can be
started. There are two possible activities while in the Pre-empting state. Which activity the machine
is in is dependent on the value of the WANT_VACATE expression. If WANT_VACATE evaluates to TRUE,
the machine will enter the Vacating activity. Alternatively, if WANT_VACATE evaluates to FALSE, the
machine will enter the Killing activity.

The main function of the Pre-empting state is to remove the condor_starter associated with
the job. If the condor_starter associated with a given claim exits while the machine is still in the
Vacating activity, then the job has successfully completed a graceful shutdown, and the application
was given the opportunity to intercept the soft kill signal.

While in the Pre-empting state the machine advertises its Requirements expression as FALSE, to
signify that it is not available for further matches. This is because it is about to transition to the Owner
state, or because it has already been matched with a job that is currently pre-empting and further
matches are not allowed until the machine has been claimed by the new job.

While the machine is in the Vacating activity, it continually evaluates the KILL expression. As soon
as it evaluates to TRUE, the machine will enter the Killing activity.

When the machine enters the Killing activity it attempts to force the condor_starter to
immediately kill the job. Once the machine has begun to kill the job, the condor_startd starts
a timer. The length of the timer defaults to 30 seconds and can be adjusted by changing the
KILLING_TIMEOUT macro. If the timer expires and the machine is still in the Killing activity, it is
assumed that an error has occured with the condor_starter and the startd will try to vacate the
job immediately by sending SIGKILL to all of the children of the condor_starter and then to the
condor_starter itself.

Chapter 9. Policy Configuration

78

Once the condor_starter has killed all the processes associated with the job and exited, and once
the schedd that had claimed the machine is notified that the claim is broken, the machine will leave
the Killing activity. If the job was pre-empted because a better match was found, the machine will
enter Claimed:Idle. If the pre-emption was caused by the machine owner, the machine will enter
the Owner state.

9.4. Defining a policy
When a transition occurs, MRG Grid records the time that the new activity or state was entered.
These times can be used to write expressions for customized transitions. To define a policy, set
expressions in the configuration file (see Chapter 2, Configuration for an introduction to configuration).
The expressions are evaluated in the context of the machine's ClassAd and a job ClassAd. The
expressions can therefore reference attributes from either ClassAd.

Warning
If you intend to change any of the settings as described in this chapter, make
sure you follow the instructions carefully and always test your changes before
implementing them. Mistakes in policy configuration can have a severe negative
impact on both the owners of machines in your pool, and the users who submit jobs
to those machines.

Default macros
The following default macros assist with writing human-readable expressions.

MINUTE
Defaults to 60

HOUR
Defaults to (60 * $(MINUTE))

StateTimer
Amount of time in the current state

Defaults to (CurrentTime - EnteredCurrentState)

ActivityTimer
Amount of time in the current activity

Defaults to (CurrentTime - EnteredCurrentActivity)

ActivationTimer
Amount of time the job has been running on this machine

Defaults to (CurrentTime - JobStart)

NonCondorLoadAvg
The difference between the system load and the MRG Grid load (equates to the load generated by
everything except MRG Grid)

Defaults to (LoadAvg - CondorLoadAvg)

Defining a policy

79

BackgroundLoad
Amount of background load permitted on the machine and still be able to start a job

Defaults to 0.3

HighLoad
If the NonCondorLoadAvg goes over this, the CPU is considered too busy, and eviction of the job
should start

Defaults to 0.5

StartIdleTime
Amount of time the keyboard must be idle before starting a job

Defaults to 15 * $(MINUTE)

ContinueIdleTime
Amount of time the keyboard must to be idle before resumption of a suspended job

Defaults to 5 * $(MINUTE)

MaxSuspendTime
Amount of time a job may be suspended before more drastic measures are taken

Defaults to 10 * $(MINUTE)

MaxVacateTime
Amount of time a job may spend attempting to exit gracefully before giving up and being killed

Defaults to 10 * $(MINUTE)

KeyboardBusy
A boolean expression that evaluates to TRUE when the keyboard is being used

Defaults to KeyboardIdle < $(MINUTE)

CPUIdle
A boolean expression that evaluates to TRUE when the CPU is idle

Defaults to $(NonCondorLoadAvg) <= $(BackgroundLoad)

CPUBusy
A boolean expression that evaluates to TRUE when the CPU is busy

Defaults to $(NonCondorLoadAvg) >= $(HighLoad)

MachineBusy
The CPU or the Keyboard is busy

Defaults to ($(CPUBusy) || $(KeyboardBusy)

CPUIsBusy
A boolean value set to the same value as CPUBusy

Chapter 9. Policy Configuration

80

CPUBusyTime
the time in seconds since CPUBusy became TRUE. Evaluates to 0 if CPUBusy is FALSE

It is preferable to suspend jobs instead of killing them. This is especially true when the job uses little
memory, when the keyboard is not being used or when the job is running in the vanilla universe. By
default, these macros will gracefully vacate jobs that have been running for more than ten minutes, or
are vanilla universe jobs:

WANT_SUSPEND = ($(SmallJob) || $(KeyboardNotBusy) || $(IsVanilla))
WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) || $(IsVanilla))

Expression Definitions
This list gives examples of typical expressions.

START
Start a job if the keyboard has been idle long enough and the load average is low enough or if the
machine is currently running a job. Note that MRG Grid will only run one job at a time, but it may
pre-empt the currently running job in favour of the new one:

START = ((KeyboardIdle > $(StartIdleTime)) \
 && ($(CPUIdle) || (State != "Unclaimed" \
 && State != "Owner")))

SUSPEND
Suspend a job if the keyboard is in use. Alternatively, suspend if the CPU has been busy for more
than two minutes and the job has been running for more than 90 seconds:

SUSPEND = ($(KeyboardBusy) || \
 ((CpuBusyTime > 2 * $(MINUTE)) \
 && $(ActivationTimer) > 90))

CONTINUE
Continue a suspended job if the CPU is idle, the Keyboard has been idle for long enough, and the
job has been suspended more than 10 seconds:

CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 10) \
 && (KeyboardIdle > $(ContinueIdleTime)))

PREEMPT
There are two conditions that signal pre-emption. The first condition is if the job is suspended,
but it has been suspended too long. The second condition is if suspension is not desired and the
machine is busy:

PREEMPT = (((Activity == "Suspended") && \
 ($(ActivityTimer) > $(MaxSuspendTime))) \
 || (SUSPEND && (WANT_SUSPEND == False)))

MaxJobRetirementTime
Do not give jobs any time to retire on their own when they are about to be pre-empted:

Defining a policy

81

MaxJobRetirementTime = 0

KILL
Kill jobs that take too long to exit gracefully:

KILL = $(ActivityTimer) > $(MaxVacateTime)

Example Policies
The following examples show how to use the default macros detailed in this chapter to create
commonly used policies.

This example shows how to set up a machine for running test jobs from a specified user.

The machine needs to behave normally unless the user coltrane submits a job. When this occurs,
the job should start execution immediately, regardless of what else is happening on the machine at
that time.

Jobs submitted by coltrane should not be suspended, vacated or killed. This is reasonable because
coltrane will only be submitting very short running programs for testing purposes.

START = ($(START)) || Owner == "coltrane"
SUSPEND = ($(SUSPEND)) && Owner != "coltrane"
CONTINUE = $(CONTINUE)
PREEMPT = ($(PREEMPT)) && Owner != "coltrane"
KILL = $(KILL)

There are no specific settings for the CONTINUE or KILL expressions. Because the jobs submitted by
coltrane will never be suspended, the CONTINUE expression is irrelevant. Similarly, because the
jobs can not be pre-empted, KILL is irrelevant.

Example 9.4. Test-job Policy

This example shows how to set up a machine to only run jobs at certain times of the day.

This is achieved through the ClockMin and ClockDay attributes. These are special attributes which
are automatically inserted by the condor_startd into its ClassAd, so they can always be referenced
in policy expressions. ClockMin defines the number of minutes that have passed since midnight.
ClockDay defines the day of the week, where Sunday = 0, Monday = 1, and so on to Saturday = 7.

To make the policy expressions easier to read, use macros to define the time periods when you want
jobs to run or not run. Regular work hours at your site could be defined as being from 0800 until 1700,
Monday through Friday.

WorkHours = ((ClockMin >= 480 && ClockMin < 1020) && \
 (ClockDay > 0 && ClockDay < 6))
AfterHours = ((ClockMin < 480 || ClockMin >= 1020) || \
 (ClockDay == 0 || ClockDay == 6))

Once these macros are defined, MRG Grid can be instructed to only start jobs after hours:

START = $(AfterHours) && $(CPUIdle) && KeyboardIdle > $(StartIdleTime)

Consider the machine busy during work hours, or if the keyboard or CPU are busy:

Chapter 9. Policy Configuration

82

MachineBusy = ($(WorkHours) || $(CPUBusy) || $(KeyboardBusy))

Avoid suspending jobs during work hours so that in the morning, if a job is running, it will be
immediately pre-empted instead of being suspended for some length of time:

WANT_SUSPEND = $(AfterHours)

By default, the MachineBusy macro is used to define the SUSPEND and PREEMPT expressions. If
you have changed these expressions, you will need to add $(WorkHours) to your SUSPEND and
PREEMPT expressions as appropriate.

Example 9.5. Time of Day Policy

This example shows how to set up a pool of machines that include desktop machines and dedicated
cluster machines, requiring different policies.

In this scenario, keyboard activity should not have any effect on the dedicated machines. It might be
necessary to log into the dedicated machines to debug a problem, or change settings, and this should
not interrupt the running jobs. Desktop machines, on the other hand, should do whatever is necessary
to remain responsive to the user.

There are many ways to achieve the desired behavior. One way is to create a standard desktop policy
and a standard non-desktop policy. The appropriate policy is then stored in a file located in the local
configuration directory for each machine. This example, however, defines one standard policy in
condor_config with a toggle that can be set in the local configuration directory.

If IsDesktop is configured, make it an attribute of the machine ClassAd:

STARTD_EXPRS = IsDesktop

If a desktop machine, only consider starting jobs if the load average is low enough or the machine is
currently running a Condor job, and the user is not active:

START = (($(CPUIdle) || (State != "Unclaimed" && State != "Owner")) \
 && (IsDesktop =!= True || (KeyboardIdle > $(StartIdleTime))))

Suspend instead of vacating or killing for small or vanilla universe jobs:

WANT_SUSPEND = ($(SmallJob) || $(JustCpu) \
 || $(IsVanilla))

When pre-empting, vacate instead of killing for jobs that have been running for longer than 10 minutes,
or vanilla universe jobs:

WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \
 || $(IsVanilla))

Suspend jobs if the CPU has been busy for more than 2 minutes and the job has been running for
more than 90 seconds. Also suspend jobs if this is a desktop and the user is active:

SUSPEND = (((CpuBusyTime > 2 * $(MINUTE)) && ($(ActivationTimer) > 90)) \
 || (IsDesktop =?= True && $(KeyboardBusy)))

Defining a policy

83

Continue jobs on a desktop machine if the CPU is idle, the job has been suspended more than 5
minutes and the keyboard has been idle for long enough:

CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 300) \
 && (IsDesktop =!= True || (KeyboardIdle > $(ContinueIdleTime))))

Pre-empt jobs if it has been suspended too long or the conditions to suspend the job has been met,
but suspension is not desired:

PREEMPT = (((Activity == "Suspended") && \
 ($(ActivityTimer) > $(MaxSuspendTime))) \
 || (SUSPEND && (WANT_SUSPEND == False)))

The following expression determines retirement time. Replace 0 with the desired amount of retirement
time for dedicated machines. The other part of the expression forces the whole expression to 0 on
desktop machines:

MaxJobRetirementTime = (IsDesktop =!= True) * 0

Kill jobs if they have taken too long to vacate gracefully:

KILL = $(ActivityTimer) > $(MaxVacateTime)

With this policy in condor_config, the local configuration directories for desktops can now be
configured with the following line:

IsDesktop = True

In all other cases, the default policy described above will ignore keyboard activity.

Example 9.6. Desktop/Non-Desktop Policy

This example shows how to prevent and disable pre-emption.

Pre-emption can result in jobs being killed. When this happens, the jobs remain in the queue and
will be automatically rescheduled. It is highly recommend designing jobs that work well in this
environment, rather than simply disabling pre-emption. Planning for pre-emption makes jobs more
robust in the face of other sources of failure. The easiest way to do this is to use the standard
universe. If a job is incompatible with the requirements of the standard universe, the job can still
gracefully shutdown and restart by intercepting the soft kill signal.

However, there can be cases where it is appropriate to force MRG Grid to never kill jobs within an
upper time limit. This can be achieved with the following policy.

Allow a job to run uninterrupted for up to two days before forcing it to vacate:

MAXJOBRETIREMENTTIME = $(HOUR) * 24 * 2

Construction of this expression can be more complex. For example, it could specify a different
retirement time for different users or different types of jobs. Additionally, the job might come with its
own definition of MAXJOBRETIREMENTTIME, but this can only cause less retirement time to be used,
never more than what the machine offers.

Chapter 9. Policy Configuration

84

The longer the retirement time that is given, the slower reallocation of resources in the pool can
become if there are long-running jobs. However, by preventing jobs from being killed, you could
decrease the number of cycles that are wasted on jobs that are killed.

Note that the use of MAXJOBRETIREMENTTIME limits the killing of jobs, but it does not prevent the
pre-emption of resource claims. Therefore, it is technically not a way of disabling pre-emption, but
simply a way of forcing pre-empting claims to wait until an existing job finishes or runs out of time.

To limit the pre-emption of resource claims, the following policy can be used. Some of these settings
apply to the execute node and some apply to the central manager, so this policy should be configured
so that it is read by both.

Disable pre-emption by machine activity:

PREEMPT = False

Disable pre-emption by user priority:

PREEMPTION_REQUIREMENTS = False

Disable pre-emption by machine rank by ranking all jobs equally:

RANK = 0

When disabling claim pre-emption, it is advised to also optimize negotiation:

NEGOTIATOR_CONSIDER_PREEMPTION = False

Without any pre-emption of resource claims, once the condor_negotiator gives the
condor_schedd a match to a machine, the condor_schedd may hold onto this claim indefinitely,
as long as the user keeps supplying more jobs to run. To avoid this behavior, force claims to be retired
after a specified period of time bys etting the CLAIM_WORKLIFE variable. This enforces a time limit,
beyond which no new jobs may be started on an existing claim. In this case, the condor_schedd
daemon is forced to go back to the condor_negotiator to request a new match. The execute
machine configuration would include a line that forces the schedd to renegotiate for new jobs after 20
minutes:

CLAIM_WORKLIFE = 1200

It is not advisable to set NEGOTIATOR_CONSIDER_PREEMPTION to False, as it can potentially lead
to some machines never being matched to jobs.

Example 9.7. Disabling Pre-emption

This example shows how to create a policy around job suspension.

When jobs with a higher priority are submitted, the executing jobs might be pre-empted. These jobs
can lose whatever forward progress they have made, and are sent back to the job queue to await
starting over again as another machine becomes available.

A policy can be created that will allow jobs to be suspended instead instead of evicted. The policy
utilizes two slots: slot1 only runs jobs identified as high priority jobs; slot2 is set to run jobs
according to the usual policy and to suspend them when slot1 is claimed. A policy for a machine

Defining a policy

85

with more than one physical CPU may be adapted from this example. Instead of having two slots, you
would have twice times the number of physical CPUs. Half of the slots would be for high priority jobs
and the other half would be for suspendable jobs.

Tell MRG Grid that the machine has two slots, even though it only has a single CPU:

NUM_CPUS = 2

slot1 is the high-priority slot, while slot2 is the background slot:

START = (SlotID == 1) && $(SLOT1_START) || \
 (SlotID == 2) && $(SLOT2_START)

Only start jobs on slot1 if the job is marked as a high-priority job:

SLOT1_START = (TARGET.IsHighPrioJob =?= TRUE)

Only start jobs on slot2 if there is no job on slot1, and if the machine is otherwise idle. Note that
the Busy activity is only in the Claimed state, and only when there is an active job:

SLOT2_START = ((slot1_Activity != "Busy") && \
 (KeyboardIdle > $(StartIdleTime)) && \
 ($(CPUIdle) || (State != "Unclaimed" && State != "Owner")))

Suspend jobs on slot2 if there is keyboard activity or if a job starts on slot1:

SUSPEND = (SlotID == 2) && \
 ((slot1_Activity == "Busy") || ($(KeyboardBusy)))

CONTINUE = (SlotID == 2) && \
 (KeyboardIdle > $(ContinueIdleTime)) && \
 (slot1_Activity != "Busy")

Note that in this example, the job ClassAd attribute IsHighPrioJob has no special meaning. It is
an invented name chosen for this example. To take advantage of the policy, a user must submit high
priority jobs with this attribute defined. The following line appears in the job's submit description file as:

+IsHighPrioJob = True

Example 9.8. Job Suspension

86

Chapter 10.

87

User Priorities and Negotiation
MRG Grid uses priorities and negotiation to allocate jobs between the machines in the pool. When a
job is advertised to the pool, it is ranked according to the user that submitted it. High-priority users will
get their jobs run before low-priority users.

Every user is identified by username@uid_domain and is assigned a priority value. The priority
value is assigned directly to the username and domain, so the same user can submit jobs from
multiple machines. The highest possible priority is 1, and the priority decreases as the number rises.
There are two priority values assigned to users:

• Real user priority (RUP), which measures the amount of resources consumed by the user.

• Effective user priority (EUP), which determines the number of resources available to the user.

Real User Priority (RUP)
RUP measures the amount of resources consumed by the user over time. Every user begins with a
RUP of 0.5 and will stabilize over time if the user consumes resources at a stable rate. For example,
if a user continuously uses exactly ten resources for a long period of time, the RUP of that user will
stabilize to 10.

The RUP will get better as the user decreases the amount of resources being consumed. The rate at
which the RUP decays can be set in the configuration files using the PRIORITY_HALFLIFE setting,
which measures in seconds. For example, if the PRIORITY_HALFLIFE is set to 86400 (1 day), and
a user who's RUP is 10 removes all their jobs and consumes no further resources, the RUP would
become 5 in one day, 2.5 in two days, and so on.

Effective User Priority (EUP)
EUP is used to determine how many resources a user can access. The EUP is related to the RUP by
a priority factor which can be defined on a per-user basis. By default, the priority factor for all users
is 1.0, and so the EUP will remain the same as the the RUP. This can be used to preferentially serve
some users over others.

The number of resources that a user can access is inversely related to the EUP of each user. For
example, Alice has an EUP of 5, Bob has an EUP of 10 and Charlie has an EUP of 20. In this case,
Alice will be able to access twice as many resources as Bob, who can access twice as many as
Charlie. However, if a user does not consume the full amount of resources they have been allocated,
the remainder will be redistributed among the remaining users.

There are two settings that can affect EUP when submitting jobs:

Nice users
A nice user gets their RUP raised by a priority factor, which is specified in the configuration file.
This results in a large EUP and subsequently a low priority for access to resources, causing the
job to run as the equivalent of a background job.

Remote Users
In some situations, users from other domains may be able to submit jobs to the local pool. It may
be preferable to treat local users preferentially over remote users. In this case, a remote user
would get their RUP raised by a priority factor, which is specified in the configuration file. This
results in a large EUP and subsequently a low priority for access to resources.

Chapter 10. User Priorities and Negotiation

88

Pre-emption
Priorities are used to ensure that users get an appropriate allocation of resources. MRG Grid can also
pre-empt jobs and reallocate them if conditions change, so that higher priority jobs are continually
pushed further up the queue.

However, too many pre-emptions can lead to a condition known as thrashing, where a new job
with a higher priority is identified every cycle. In this situation, every job gets pre-empted and
no job has a chance to finish. To avoid thrashing, conditions for pre-emption can be set using
the PREEMPTION_REQUIREMENTS setting in the configuration file. Set this variable to deny pre-
emption when the current job has been running for a relatively short period of time. This limits
the number of pre-emptions per resource, per time period. There is more information about the
PREEMPTION_REQUIREMENTS setting in Chapter 2, Configuration.

Negotiation
MRG Grid uses negotiation to match jobs with the resources capable of running them. The
condor_negotiator daemon is responsible for negotiation.

Negotiation occurs in cycles. During a negotiation cycle, the condor_negotiator daemon performs
the following actions, in this order:

1. Construct a list of all possible resources in the pool

2. Obtain a list of all job submitters in the pool

3. Sort the list of job submitters based on EUP, with the highest priority user (lowest EUP) at the top
of the list, and the lowest at the bottom.

4. Continue to perform all four steps until there are either no more resources to match, or no more
jobs to match.

Once the condor_negotiator daemon has finished the initial actions, it will list every job for
each submitter, in EUP order. Since jobs can be submitted from more than one machine, there is
further sorting. When the jobs all come from a single machine, they are sorted in order of job priority.
Otherwise, all the jobs from a single machine are sorted before sorting the jobs from the next machine.

In order to find matches, condor_negotiator will perform the following tasks for each machine in
the pool that can execute jobs:

1. If machine.requirements is false or job.requirements is false, ignore the machine

2. If the machine is in the Claimed state, but not running a job, ignore the machine

3. If the machine is not running a job, add it to the potential match list with a reason of No
Preemption

4. If the machine is running a job:

a. If the machine.RANK on the submitted job is higher than that of the running job, add this
machine to the potential match list with a reason of Rank

b. If the EUP of the submitted job is better than the EUP of the running job,
PREEMPTION_REQUIREMENTS is true, and the machine.RANK on the submitted job is higher
than the running job, add this machine to the potential match list with a reason of Priority

89

The potential match list is sorted by:

1. NEGOTIATOR_PRE_JOB_RANK

2. job.RANK

3. NEGOTIATOR_POST_JOB_RANK

4. Reason for claim

• No Preemption

• Rank

• Priority

5. PREEMPTION_RANK

6. Order in queue

The job is then assigned to the top machine on the potential match list. That machine is then removed
from the list of resources available in this negotiation cycle and the daemon goes on to find a match
for the next job.

Cluster Considerations
If a cluster has multiple jobs and one of them cannot be matched, no other jobs in that cluster will be
returned during the current negotiation cycle. This is based on an assumption that all the jobs in a
cluster will be similar. The configuration variable NEGOTIATE_ALL_JOBS_IN_CLUSTER can be used
to disable this behaviour. The definition of what makes up a cluster can be modified by use of the
SIGNIFICANT_ATTRIBUTES setting.

Group Accounting
MRG Grid keeps a running tally of resource use. This accounting information is used to calculate
priorities for the scheduling algorithms. Accounting is done on a per-user basis by default, but can also
be on a per-group basis. When done on a per-group basis, any jobs submitted by the same group will
be treated with the same priority.

When a job is submitted, the user can include an attribute that defines the accounting group. For
example, the following line in a job's submit description file indicates that the job is part of the
group_physics accounting group:

+AccountingGroup = "group_physics"

Example 10.1. Submit description file entry when using accounting groups

The value for the AccountingGroup attribute is a string. It must be enclosed in double quotation
marks and can contain a maximum of 40 characters. The name should not be qualified with a domain,
as parts of the system will add the $(UID_DOMAIN) to the string. For example, the statistics for this
accounting group might be displayed as follows:

User Name EUP
------------------------------ ---------
group_physics@example.com 0.50
mcurie@example.com 23.11

Chapter 10. User Priorities and Negotiation

90

pvonlenard@example.com 111.13
...

Example 10.2. Accounting group statistics, showing the appending of the fully qualified domain

Condor normally removes entities automatically when they are no longer relevant, however
administrators can also remove accounting groups manually, using the -delete option with the
condor_userprio daemon. This action will only work if all jobs have already been removed from the
accounting group, and the group is identified by its fully-qualified name. For example:

$ condor_userprio -delete group_physics@example.com

Example 10.3. Manually removing accounting groups

10.1. Group Quotas
In some cases, priorities based on each individual user might not be effective. Group quotas affect the
negotiation for available resources within the pool. This may be the case when different groups own
different amounts of resources, and the groups choose to combine their resources to form a pool. For
example:

The physics department owns twenty workstations, and the chemistry department owns ten
workstations. They have combined their resources to form a pool of thirty similar machines. The
physics department wants priority on any twenty of the workstations. Likewise, the chemistry
department wants priority on any ten workstations.

By creating group quotas, users are allocated not to specific machines, but to numbers of machines
(a quota). Given thirty similar machines, group quotas allow the users within the physics group to
have preference on up to twenty of the machines within the pool, and the machines can be any of the
machines that are currently available.

Example 10.4. An effective use of group quotas

In order to set group quotas, the group must be identified in the job's submit description file, using the
AccountingGroup attribute. Members of a group quota are called group users. When specifying a
group user, you will need to include the name of the group, as well the username, using the following
syntax:

+AccountingGroup = "group.user"

For example, if the user mcurie of the group_physics group was submitting a job in a pool that
implements group quotas, the submit description file would be:

+AccountingGroup = "group_physics.mcurie"

Example 10.5. Submit description file entry when using group quotas

Group names are not case-sensitive and do not require the group_ prefix. However, group names
should be unique, to avoid conflicts. Adding the group_ prefix to group names ensures against
conflicts.

Quotas are configured in terms of slots per group. The combined quotas for all groups must be equal
to or less than the amount of available slots in the pool. Any slots that are not allocated as part of a
group quota are allocated to the none group. The none group contains only those users who do not
submit jobs as part of a group.

Job Priorities

91

Changes caused by group quotas to accounting and negotiation
When using group quotas, some changes occur in how accounting and negotiation are processed.

For jobs submitted by group users, accounting is performed per group user, rather than per group or
individual user.

Negotiation is performed differently when group quotas are used. Instead of negotiating in the order
described in Negotiation, the condor_negotiator daemon will create a list of all jobs belonging to
defined groups before it lists those jobs submitted by individual submitters. If there is more than one
group in the negotiation cycle, the daemon will negotiate for the group using the smallest percentage
of resources first, and the highest percentage last. However, the same algorithm still applies to
individual submitters.

Managing configuration for group quotas
Configuring a pool can be slightly different when using group quotas. Each group can be assigned
an initial value for user priority with the GROUP_PRIO_FACTOR_ setting. Additionally, if a group is
currently allocated the entire quota of machines, and a group user has a submitted job that is not
running, the GROUP_AUTOREGROUP_ setting, if true, will allow the job to considered again within the
same negotiation cycle, along with the individual users jobs.

• GROUP_NAMES = group_physics, group_chemistry

• GROUP_QUOTA_group_physics = 20

• GROUP_QUOTA_group_chemistry = 10

• GROUP_PRIO_FACTOR_group_physics = 1.0

• GROUP_PRIO_FACTOR_group_chemistry = 3.0

• GROUP_AUTOREGROUP_group_physics = FALSE

• GROUP_AUTOREGROUP_group_chemistry = TRUE

In this example, the physics group can access 20 machines and the chemistry group can access ten
machines. The initial priority factor for users within the groups are 1.0 for the physics group and 3.0 for
the chemistry group. The GROUP_AUTOREGROUP_ settings indicate that the physics group will never
be able to access more than 20 machines, while the chemistry group could potentially get more than
ten machines.

Example 10.6. Example configuration for group quotas

10.2. Job Priorities

Job Priority
In addition to user priorities, it is also possible to specify job priorities to control the order of job
execution. Jobs can be assigned a priority level, of any integer, through the use of the condor_prio
command. Jobs with a higher number will run with a higher priority. Job priority works only on a per
user basis. It is effective when used by a single user to order their own jobs, but will not impact the
order in which they run with other jobs in the pool.

1. To find out what jobs are currently running, use the condor_q with the name of the user to query:

Chapter 10. User Priorities and Negotiation

92

$ condor_q user
-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 126.0 user 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

2. Job priority can be any integer. The default priority is 0. To change the priority use the
condor_prio with the desired priority:

$ condor_prio -p -15 126.0

3. To check that the changes have been made, use the condor_q command again:

$ condor_q user
-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 126.0 user 4/11 15:06 0+00:00:00 I -15 0.3 hello

 1 jobs; 1 idle, 0 running, 0 held

10.3. Hierarchical Fair Share (HFS)
Hierarchical Fair Share (HFS) is a feature that allows user quotas and priorities to be managed within
an administrator-defined hierarchy. MRG Grid provides the ability to specify HFS hierarchies of any
depth and breadth.

Using dynamic quotas is preferable to static quotas, due to the dynamic and flexible nature of grid
computing. When two or more children with static quotas are declared, if the children quotas add up
to more than the parent quota, the available quota will be allocated on a first-come first served basis.
Dynamic quotas can help to resolve this problem.

Setting up hierarchical fair share
1. The hierarchical groups must first be specified in the global configuration file. Groups are delimited

from subgroups by a period (.) symbol, in the same way as groups are delimited from users.
If two groups are defined as group_physics and group_chemistry, the subgroups are
defined as group_physics.lab1, group_physics.lab2, group_chemistry.lab1, and
group_chemistry.lab2. Users submit jobs to these subgroups by adding a plus (+) symbol
and the name of the accounting group to the job submit description file. For example, if user
mcurie wants to submit a job to group_physics.lab1, they would add +Accounting_Group
= "group_physics.lab1.mcurie" to their job submit description file.

Each group must also have a quota declaration. Quota declarations can be either dynamic or
static. A static quota is expressed as a single integer, representing a specific slot count. If a static
quota for a subgroup is declared, and the amount is greater than the quota available to the parent
group, the subgroup quota will be reset to the maximum available in the parent group. A dynamic
quota is specified as a fractional value between 0.0 and 1.0. This represents the fraction of the
quota allocated to the parent group, that the subgroup is able to use.

If the total quota of the subgroups within a parent group is less than the total quota for the parent
group, the remainder is available for users to submit jobs using the parent accounting group. If

Hierarchical Fair Share (HFS)

93

the total quota of the subgroups in a parent group equal the total quota for the parent group, the
parent group will not have enough quota available for users to submit jobs to the parent group.
For example, if group_physics and group_chemistry are top level groups and their quota
adds up to 0.8, there will be 0.2 quota remaining for users that are not associated with any group.
If groups group_physics.lab1 and group_physics.lab2 have quotas that sum to 1.0, then
no jobs can be submitted directly to group group_physics, only to its subgroups.

GROUP_NAMES = group_physics, group_chemistry, group_physics.lab1,
group_physics.lab2, group_physics.lab3, group_physics.lab3.team1,
group_physics.lab3.team2, group_physics.lab3.team3,
group_chemistry.lab1, group_chemistry.lab2

GROUP_QUOTA_DYNAMIC_group_physics = .4
GROUP_QUOTA_DYNAMIC_group_chemistry = .4
GROUP_QUOTA_DYNAMIC_group_chemistry.lab1 = .4
GROUP_QUOTA_DYNAMIC_group_chemistry.lab2 = .6
GROUP_QUOTA_DYNAMIC_group_physics.lab1= .2
GROUP_QUOTA_DYNAMIC_group_physics.lab2= .2
GROUP_QUOTA_DYNAMIC_group_physics.lab3= .6
GROUP_QUOTA_DYNAMIC_group_physics.lab3.team1 = .2
GROUP_QUOTA_DYNAMIC_group_physics.lab3.team2 = .2
GROUP_QUOTA_DYNAMIC_group_physics.lab3.team3 = .4

2. The autoregroup feature allows groups to use quota that is unused by other groups. To enable
autoregroup for a group, set the GROUP_AUTOREGROUP_group configuration variable to TRUE.
Autoregroup works in a hierarchy. Subgroups with the same parent get first chance at slots that
are unused by their subgroup peers. If these slots cannot be used, they are passed up the group
hierarchy, as long as autoregroup = TRUE is enabled at the higher levels:

GROUP_AUTOREGROUP_group_physics = TRUE
GROUP_AUTOREGROUP_group_physics.lab3 = TRUE
GROUP_AUTOREGROUP_group_physics.lab3.team1 = TRUE
GROUP_AUTOREGROUP_group_chemistry = TRUE
GROUP_AUTOREGROUP_group_chemistry.lab1 = TRUE
GROUP_AUTOREGROUP_group_chemistry.lab2 = TRUE

This behavior is slightly different in two situations:

• Where a job is not submitted with +AccountingGroup specified. These jobs fall into a pool
that has autoregroup = true set. These jobs will not run unless the top level group quotas
sum to less than 1.0.

• Where a job is submitted against a group that has children groups. This pool will exhibit
autoregroup = true behavior. The extent to which these submitters can claim unused slots
is determined by the parent group's autoregroup hierarchy.

3. When creating the job submit description file, specify the group and user:

executable = /bin/sleep
arguments = 600
universe = vanilla
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
+AccountingGroup = "group_physics.lab3.team1.mcurie"

Chapter 10. User Priorities and Negotiation

94

queue 100

Chapter 11.

95

The Virtual Machine Universe
Virtual machines can be operated under MRG Grid using Xen or KVM (with libvirt). MRG Grid requires
some configuration before being used with virtual machines. This chapter contains information on
getting started.

Before configuring MRG Grid to work with virtual machines, install the virtualization package according
to the vendor's instructions.

In order for MRG Grid to fully support virtual machines, the following is required:

1. The libvirtd service must be installed and running. This service is provided by the libvirt
package

2. A recent version of the mkisofs utility must be available. This utility is used to create CD-ROM
disk images, and is provided by the mkisofs package

For Xen installations, the following is also required:

1. A Xen kernel must be running on the executing machine. The running Xen kernel acts as Dom0. In
most cases, the virtual machines, called DomUs, will be started under this kernel

For more information, please refer to the Red Hat Enterprise Linux 5 Virtualization Guide

2. The pygrub program must be available. This program executes virtual machines whose disks
contain the kernel they will run. This program is provided by the xen package.

For KVM installations, the following is also required:

1. A KVM kernel module must be running on the executing machine. The running KVM kernel acts as
Dom0. All virtual machines, called DomUs, will be started under this kernel

11.1. Configuring MRG Grid for the virtual machine
universe
The configuration files for MRG Grid include various configuration settings for virtual machines. Some
settings are required, while others are optional. This section discusses only the required settings.

Initial setup
1. Install the condor-vm-gahp package:

yum install condor-vm-gahp

2. Specify the type of virtualization software that is installed, using the VM_TYPE setting:

VM_TYPE = xen

Currently, the valid options for the VM_TYPE setting are:

• xen

• kvm

Chapter 11. The Virtual Machine Universe

96

3. Specify the location of condor_vm-gahp and its configuration file, using the VM_GAHP_SERVER
settings:

VM_GAHP_SERVER = $(SBIN)/condor_vm-gahp

4. Set the location for condor_vm-gahp logs. By default, logs are written to /dev/null, effectively
disabling logging. Change the value of the VM_GAHP_LOG to enable logging:

VM_GAHP_LOG = $(LOG)/VMGahpLogs/VMGahpLog.$(USERNAME)

5. Set the complete path and filename of the script that controls the VM:

VM_SCRIPT = /path/to/filename

6. Set the maximum amount of memory that the VM is allowed to use (in MB). The value of this
parameter depends on how much memory the system administrator will allow VM universe jobs to
consume:

VM_MEMORY = 512

7. Set the LIBVIRT_XML_SCRIPT setting:

LIBVIRT_XML_SCRIPT = $(LIBEXEC)/libvirt_simple_script.awk

8. If networking is required, set the VM_NETWORKING parameter to TRUE, and specify the permitted
network types using the VM_NETWORKING_TYPE parameter:

VM_NETWORKING = TRUE
VM_NETWORKING_TYPE = nat, bridge

Optionally, the VM_NETWORKING_DEFAULT_TYPE can also be set. This will allow VM Universe
jobs to access the network, even if they have not specified a networking type in their submit
description file. To define nat as the default networking type:

VM_NETWORKING_DEFAULT_TYPE = nat

9. If bridge networking is required, the VM_NETWORKING_BRIDGE_INTERFACE setting will also need
to specified. If it is not defined, then bridge networking will be disabled on the execute node. To
specify br1 as the network device:

VM_NETWORKING_BRIDGE_INTERFACE = br1

The VM_NETWORKING_BRIDGE_INTERFACE is a string value that must be set to the
networking interface that VM Universe jobs (Xen or KVM only) will use for bridge networking.
The bridge network interface must be set up by the system administrator prior to setting
VM_NETWORKING_BRIDGE_INTERFACE.

Configuring MRG Grid for the virtual machine universe

97

Xen-specific configuration
Additional configuration is necessary for Xen.

1. Although it is not required, it can be necessary to set the default initrd image for Xen to use on
Unix-based platforms. Unlike the kernel image, the default initrd image should not be set to the
same one used to boot the system. In this case, create a new initrd image by running mkinitrd
from the shell prompt and loading the xennet and xenblk drivers into it.

2. Specify the XEN_BOOTLOADER. The bootloader allows you to select a kernel instead of specifying
the Dom0 configuration, and allows the use of the xen_kernel = included specification when
submitting a job to the VM universe. A typical bootloader is pygrub:

XEN_BOOTLOADER = /usr/bin/pygrub

3. A typical configuration file for Xen is:

VM_TYPE = xen
MAX_VM_GAHP_LOG = 1000000
VM_GAHP_DEBUG = D_FULLDEBUG
VM_MEMORY = 1024
VM_MAX_MEMORY = 1024
VM_SCRIPT = $(SBIN)/condor_vm_xen.sh
XEN_BOOTLOADER = /usr/bin/pygrub

Restarting MRG Grid with virtualization settings
1. Once the configuration options have been set, restart the condor_startd daemon on the host.

You can do this by running condor_restart. This should be performed on the central manager
machine:

$ condor_restart -subsystem startd

Note
If the condor_startd daemon is currently servicing jobs it will let them finish
running before restarting. If you want to force the condor_startd daemon to
restart and kill any running jobs, add the -fast option to the condor_restart
command.

2. The condor_startd daemon will pause while it performs the following checks:
• Exercise the virtual machine capabilities of condor_vm-gahp

• Query the properties

• Advertise the machine to the pool as VM-capable

If these steps complete successfully, condor_status will record the virtual machine type and
version number. These details can be displayed by running the following command from the shell
prompt:

Chapter 11. The Virtual Machine Universe

98

$ condor_status -vm machine_name

If this command does not display output after some time, it is likely that condor_vm-gahp is not
able to execute the virtualization software. The problem could be caused by configuration of the
virtual machine, the local installation, or a variety of other factors. Check the log file (defined in
VM_GAHP_LOG) for diagnostics.

3. The VM Universe is only available when MRG Grid is started with the root user or administrator.
These privileges are required to create a virtual machine on top of a Xen kernel, as well as to use
the libvirtd utility that controls creation and management of Xen guest virtual machines.

Chapter 12.

99

High Availability
MRG Grid can be configured to provide high availability. If a machine stops functioning because of
scheduled downtime or due to a system failure, other machines can take on key functions. The two
key functions that MRG Grid is capable of maintaining are:

• Availability of the job queue - the machine running the condor_schedd daemon; and

• Availability of the central manager - the machine running the condor_negotiator and
condor_collector daemons.

This chapter discusses how to set up high availability for both these scenarios.

12.1. High availability of the job queue
The condor_schedd daemon controls the job queue. If the job queue is not functioning then the
entire pool will be unable to run jobs. This situation can be made worse if one machine is a dedicated
submission point for jobs. When a job on the queue is executed, a condor_shadow process
runs on the machine it was submitted from. The purpose of this process is to handle all input and
output fuctionality for the job. However, if the machine running the queue becomes non-functional,
condor_shadow can not continue communication and no jobs can continue processing.

Without high availability, the job queue would persist, but further jobs would be made to wait until the
machine running the condor_schedd daemon became available again. By enabling high availability,
management of the job queue can be transferred to other designated schedulers and reduce the
chance of an outage. If jobs are required to stop without finishing, they can be restarted from the
beginning.

To enable high availability, the configuration is adjusted to specify alternate machines that can be
used to run the condor_schedd daemon. To prevent multiple instances of condor_schedd running,
a lock is placed on the job queue. When the machine running the job queue fails, the lock is lifted
and condor_schedd is transferred to another machine. Configuration variables are also used to
determine the intervals at which the lock expires, and how frequently polling for expired locks should
occur.

When a machine that is able to run the condor_schedd daemon is started, the condor_master will
attempt to discover which machine is currently running the condor_schedd. It does this by working
out which machine holds a lock. If no lock is currently held, it will assume that no condor_schedd
is currently running. It will then acquire the lock and start the condor_schedd daemon. If a lock is
currently held by another machine, the condor_schedd daemon will not be started.

The machine running the condor_schedd daemon renews the lock periodically. If the machine is not
functioning, it will fail to renew the lock, and the lock will become stale. The lock can also be released
if condor_off or condor_off -schedd is executed. When another machine that is capable of
running condor_schedd becomes aware that the lock is stale, it will attempt to acquire the lock and
start the condor_schedd.

Configuring high availability for the job queue
1. Add the following lines to the local configuration of all machines that are able to run the

condor_schedd daemon and become the single pool submission point:

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool

Chapter 12. High Availability

100

HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = $(VALID_SPOOL_FILES), SCHEDD.lock

The MASTER_HA_LIST macro identifies the condor_schedd daemon as a daemon that should
be kept running.

2. Each machine must have access to the job queue lock. This synchronizes which single machine is
currently running the condor_schedd. SPOOL identifies the location of the job queue, and needs
to be accessible by all High Availability schedulers. This is typically accomplished by placing the
SPOOL directory in a file system that is mounted on all schedulers. HA_LOCK_URL identifies the
location of the job queue lock. Like SPOOL, this needs to be accessible by all High Availablity
Schedulers, and is often found in the same location.

Always add SCHEDD.lock to the VALID_SPOOL_FILES variables. This is to prevent
condor_preen deleting the lock file because it is not aware of it.

Remote job submission
When submitting jobs remotely, the scheduler needs to be identified, using a command such as $
condor_submit -remote schedd_name myjob.submit

The command above assumes a single condor_schedd running on a single machine. When high
availability is configured, there are multiple possible condor_schedd daemons, with any one of them
providing a single submission point.

So that jobs can be successfully submitted in a high availability situation, adjust the SCHEDD_NAME
variable in the local configuration of each potential High Availability Scheduler. They will need to have
the same value on each machine that could potentially be running the condor_schedd daemon.
Ensure that the value chosen ends with the @ character. This will prevent MRG Grid from modifying
the value set for the variable.

SCHEDD_NAME = ha-schedd@

The command to submit a job is now $ condor_submit -remote had-schedd@ myjob.submit

12.2. High availability of the central manager
The condor_negotiator and condor_collector daemons are critical to a pool functioning
correctly. Both daemons usually run on the same machine, referred to as the central manager.
If a central manager machine fails, MRG Grid will not be able to match new jobs or allocate new
resources. Configuring high availability in a pool reduces the chance of an outage.

High availability allows one of multiple machines within the pool to function as the central
manager. While there can be many active condor_collector daemons, only a single, active
condor_negotiator will be running. The machine with the condor_negotiator daemon running
is the active central manager. All machines running a condor_collector daemon are idle central
managers. All submit and execute machines are configured to report to all potential central manager
machines.

Every machine that can potentially be a central manager needs to run the high availability daemon
condor_had. The daemons on each of the machines will communicate to monitor the pool and
ensure that a central manager is always available. If the active central manager stops functioning, the
condor_had daemons will detect the failure. The daemons will then select one of the idle machines
to become the new active central manager.

High availability of the central manager

101

If the outage is caused by a network partition, the idle condor_had daemons on each side of the
partition will choose a new active central manager. As long as the partition exists, there will be an
active central manager on each side. When the partition is removed and the network repaired, the
condor_had daemons will be re-organized and ensure that only one central manager is active.

It is recommended that a single machine is considered the primary central manager. If the primary
central manager stops functioning, a secondary central manager can take over. When the primary
central manager recovers, it will reclaim central management from the secondary machine. This
is particularly useful in situations where the primary central manager is a reliable machine that is
expected to have very short periods of instability. An alternative configuration allows the secondary
central manager to remain active after the failed central manager machine is restarted.

The high availability mechanism on the central manager operates by monitoring communication
between machines. Note that there is a significant difference in communications between machines
when:
1. The machine is completely down - crashed or switched off

2. The machine is functioning, but the condor_had daemon is not running

The high availability mechanism operates only when the machine is down. If the daemons are simply
not running, the system will not select a new active central manager.

The central manager machine records state information, including information about user priorities.
Should the primary central manager fail, a pool with high availability enabled would lose this
information. Operation would continue, but priorities would be re-initialized. To prevent this occurring,
the condor_replication daemon replicates the state information on all potential central manager
machines. The condor_replication daemon needs to be running on the active central manager
as well as all potential central managers.

The high availability of central manager machines is enabled through the configuration settings. It is
disabled by default. All machines in a pool must be configured appropriately in order to make the high
availability mechanism work.

The stabilization period is the time it takes for the condor_had daemons to detect a change in the
pool state and recover from this change. It is computed using the following formula:

stabilization period = 12 * [number of central managers] * $(HAD_CONNECTION_TIMEOUT)

Configuring high availability on potential central manager machines
1. Before beginning, remove any parameters from the NEGOTIATOR_HOST and CONDOR_HOST

macros:

NEGOTIATOR_HOST=
CONDOR_HOST=

2.
Note
The following settings must be the same on all potential central manager
machines:

In order to make writing other expressions simpler, define a variable for each potential central
manager in the pool.

Chapter 12. High Availability

102

CENTRAL_MANAGER1 = cm1.example.com
CENTRAL_MANAGER2 = cm2.example.com

3. List all the potential central managers in the pool:

COLLECTOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

4. Define a macro for the port number that condor_had will listen on. The port number must match
the port number used when defining HAD_LIST. This port number is arbitrary, but ensure that
there are no port number collisions with other applications:

HAD_PORT = 51450
HAD_ARGS = -p $(HAD_PORT)

5. Define a macro for port number that condor_replication will listen on. The port number must
match the port number specified for the replication daemon in REPLICATION_LIST. The port
number is arbitrary, but ensure that there are no port number collisions with other applications:

REPLICATION_PORT = 41450
REPLICATION_ARGS = -p $(REPLICATION_PORT)

6. Specify a list of addresses for the replication list. It must contain the same addresses as
those listed in HAD_LIST. Additionally, for each hostname specify the port number of the
condor_replication daemon running on that host. This parameter is mandatory and has no
default value:

REPLICATION_LIST = $(CENTRAL_MANAGER1):$(REPLICATION_PORT),$(CENTRAL_MANAGER2):
$(REPLICATION_PORT)

7. Specify a list of addresses for the high availability list. It must contain the same addresses in the
same order as the list under COLLECTOR_HOST. Additionally, for each hostname specify the port
number of the condor_had daemon running on that host. The first machine in the list will be
considered the primary central manager if HAD_USE_PRIMARY is set to TRUE:

HAD_LIST = $(CENTRAL_MANAGER1):$(HAD_PORT),$(CENTRAL_MANAGER2):$(HAD_PORT)

8. Specify the high availability daemon connection time. Recommended values are:
• 2 if the central managers are on the same subnet

• 5 if security is enabled

• 10 if the network is very slow, or to reduce the sensitivity of the high availability dameons to
network failures

HAD_CONNECTION_TIMEOUT = 2

High availability of the central manager

103

Important
Setting HAD_CONNECTION_TIMEOUT value too low can cause the condor_had
daemons to incorrectly assume that the other machines have failed. This can
result in a multiple central managers running at once. Conversely, setting the
value too high can create a delay in fail-over due to the stabilization period.

The HAD_CONNECTION_TIMEOUT value is sensitive to the network environment
and topology, and should be tuned based on those conditions.

9. Select whether or not to use the first central manager in the HAD_LIST as a primary central
manager:

HAD_USE_PRIMARY = true

10. Specify which machines have root or administrator privileges within the pool. This is normally set
to the machine where the MRG Grid administrator works, provided all users who log in to that
machine are trusted:

ALLOW_ADMINISTRATOR = $(COLLECTOR_HOST)

11. Specify which machines have access to the condor_negotiator. These are trusted central
managers. The default value is appropriate for most pools:

ALLOW_NEGOTIATOR = $(COLLECTOR_HOST)

12.
Note
The following settings can vary between machines. They are master specific
parameters:

Specify the location of executable files:

HAD = $(SBIN)/condor_had
REPLICATION = $(SBIN)/condor_replication

13. List the daemons that the master central manager should start. It should contain at least the
following five daemons:

DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION
DC_DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION

The DC_DAEMON_LIST should also include any other daemons running on the node.

14. Specify whether or not to enable the replication feature:

HAD_USE_REPLICATION = true

15. Name of the file to be replicated:

Chapter 12. High Availability

104

STATE_FILE = $(SPOOL)/Accountantnew.log

16. Specify how long (in seconds) to wait in between attempts to replicate the file:

REPLICATION_INTERVAL = 300

17. Specify how long (in seconds) transferer daemons have to complete the download/upload
process:

MAX_TRANSFERER_LIFETIME = 300

18. Specify how long (in seconds) for the condor_had to wait in between sending ClassAds to the
condor_collector:

HAD_UPDATE_INTERVAL = 300

19. Specify the master negotiator controllor and the backoff constant:

MASTER_NEGOTIATOR_CONTROLLER = HAD
MASTER_HAD_BACKOFF_CONSTANT = 360

Important
If the backoff constant value is too small, it can result in the
condor_negotiator churning. This occurs when a constant cycling of
the daemons stopping and starting prevents the condor_negotiator
from being able to run long enough to complete a negotiation cycle.
Churning causes an inability for any job to start processing. Increasing the
MASTER_HAD_BACKOFF_CONSTANT variable can help solve this problem.

20. Specify the maximum size (in bytes) of the log file:

MAX_HAD_LOG = 640000

21. Specify the debug level:

HAD_DEBUG = D_COMMAND

22. Specify the location of the log file for condor_had:

HAD_LOG = $(LOG)/HADLog

23. Specify the maximum size (in bytes) of the replication log file:

MAX_REPLICATION_LOG = 640000

24. Specify the debug level for replication:

High availability of the central manager

105

REPLICATION_DEBUG = D_COMMAND

25. Specify the location of the log file for condor_replication:

REPLICATION_LOG = $(LOG)/ReplicationLog

Configuring high availability on other machines in the pool
Machines that are not potential central managers also require configuration for high availability to
work correctly. The following is the procedure for configuring machines that are in the pool, but are not
potential central managers.

1. Firstly, remove any parameters from the NEGOTIATOR_HOST and CONDOR_HOST macros:

NEGOTIATOR_HOST=
CONDOR_HOST=

2. Define a variable for each potential central manager:

CENTRAL_MANAGER1 = cm1.example.com
CENTRAL_MANAGER2 = cm2.example.com

3. Specify a list of all potential central managers:

COLLECTOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

4. Specify which machines have access to the condor_negotiator. These are trusted central
managers. The default value is appropriate for most pools:

ALLOW_NEGOTIATOR = $(COLLECTOR_HOST)

Using a high availability pool without replication
1. Set the HAD_USE_REPLICATION configuration variable to FALSE. This will disable replication at

the configuration level.

2. Remove REPLICATION from both the DAEMON_LIST and DC_DAEMON_LIST in the configuration
file.

Disabling high availability on the central manager
1. To disable the high availability mechanism on central managers, remove the HAD, REPLICATION,

and NEGOTIATOR settings from the DAEMON_LIST configuration variable on all machines except
the primary machine. This will leave only one condor_negotiator remaining in the pool.

2. To shut down a high availability mechanism that is currently running run the following commands
from a host with root or administrator privileges on all central managers:

a. condor_off -all -subsystem negotiator

b. condor_off -all -subsystem replication

Chapter 12. High Availability

106

c. condor_off -all -subsystem had

These commands will kill all the currently running condor_had, condor_replication and
condor_negotiator daemons.

3. Run the command condor_on -subsystem negotiator on the machine where the single
condor_negotiator is going to operate.

Chapter 13.

107

Concurrency Limits
It is possible to limit the number of jobs that run simultaneously. This can be used to limit job access
to software licences, database connections, shares of overall load on a server, or the number of
concurrently run jobs by a particular user or group of users. The restriction is imposed through the use
of concurrency limits.

Concurrency limits are set when a job is submitted, by specifying the concurrency_limits
parameter in the job submit file. The concurrency_limits parameter references a value in the
configuration file. A job submit file can also reference more than one limit.

The condor_negotiator uses the information in the submit file when attempting to match the job to
a resource. Firstly, it checks that the limits have not been reached. It will then store the limits of the job
in the matched machine ClassAd.

Configuration variables for concurrency limits are located in the condor_negotiator daemon's
configuration file. The important configuration variables for concurrency limits are:

*_LIMIT
In this case, the * is the name of the limit. This variable sets the allowable number of concurrent
jobs for jobs that reference this limit in their submit file. Any number of *_LIMIT variables can be
set, as long as they all have different names

CONCURRENCY_LIMIT_DEFAULT
All limits that are not specified with *_LIMIT, will use the default limit

This example demonstrates the use of the *_LIMIT and CONCURRENCY_LIMIT_DEFAULT
configuration variables

In the following configuration file, Y_LIMIT is set to 2 and CONCURRENCY_LIMIT_DEFAULT to 1. In
this case, any job that includes the line concurrency_limits = y in the submit file will have a limit
of 2. All other jobs that have a limit other than Y will be limited to 1:

CONCURRENCY_LIMIT_DEFAULT = 1
Y_LIMIT = 2

The *_LIMIT variable can also be set without the use of CONCURRENCY_LIMIT_DEFAULT. With the
following configuration, any job that includes the line concurrency_limits = x in the submit file
will have a limit of 5. All other jobs that have a limit other than X will not be limited:

X_LIMIT = 5

Example 13.1. Using *_LIMIT and CONCURRENCY_LIMIT_DEFAULT

Creating a job submit file with concurrency limits
1. The concurrency_limits attribute references the *_LIMIT variables:

universe = vanilla
executable = /bin/sleep
arguments = 28
concurrency_limits = Y, x, z

Chapter 13. Concurrency Limits

108

queue 1

2. When the job has been submitted, condor_submit will sort the given concurrency limits and
convert them to lowercase:

$ condor_submit job
Submitting job(s).
1 job(s) submitted to cluster 28.

$ condor_q -long 28.0 | grep ConcurrencyLimits
ConcurrencyLimits = "x,y,z"

3. Concurrency limits can also be adjusted with condor_config_val. In this case, three
configuration variables need to be set. Set the ENABLE_RUNTIME_CONFIG variable to TRUE:

ENABLE_RUNTIME_CONFIG = TRUE

Allow access from a specific machine to the CONFIG access level. This allows you to change the
limit from that machine:

ALLOW_CONFIG = $(CONDOR_HOST)

List the configuration variables that can be changed. The following example allows all limits to be
changed, and new limits to be created:

NEGOTIATOR.SETTABLE_ATTRS_CONFIG = *_LIMIT

4. Once the configuration is set, change the limits from the shell prompt:

$ condor_config_val -negotiator -rset "X_LIMIT = 3"

5. After the limits have been changed, reconfigure the condor_negotiator to pick up the
changes:

$ condor_reconfig -negotiator

6. Information about all concurrency limits can be viewed at the shell prompt by using the
condor_userprio command with the -l option:

$ condor_userprio -l | grep ConcurrencyLimit
ConcurrencyLimit.p = 0
ConcurrencyLimit.q = 2
ConcurrencyLimit.x = 6
ConcurrencyLimit.y = 1
ConcurrencyLimit.z = 0

109

This command displays the current number of jobs using each limit. In the example used above,
six jobs are using the X limit, two are using the Q limit, and none are using the Z or P limits. The
limits with zero users are returned because they have been used at some point in the past. If a
limit has been configured but never used, it will not appear in the list.

Note
If jobs are currently using the X limit, and X_LIMIT value is changed to a lower
number, all of the original jobs will continue to run. However, no more matches will
be accepted against the X limit until the number of running jobs drops below the new
value.

110

Chapter 14.

111

Dynamic slots
Dynamic slots, also referred to as partitionable startd, provides the ability for slots to be marked as
partitionable. This allows more than one job to occupy a single slot at any one time. Typically, slots
have a fixed set of resources, such as associated CPUs, memory and disk space. By partitioning the
slot, those resources can be better utilized.

A partitionable slot will always appear as though it is not running a job. It will eventually show as
having no available resources, which will prevent it being matched to new jobs. Because it has been
broken up into smaller slots, these will show as running jobs directly. These dynamic slots can also be
pre-empted in the same way as ordinary slots.

The original, partionable slot and the new smaller, dynamic slots will be identified individually. The
original slot will have an attribute stating PartitionableSlot=TRUE and the dynamic slots will have
an attribute stating DynamicSlot=TRUE. These attributes can be used in a START expression to
create detailed policies.

This example shows how more than one job can be matched to a single slot through dynamic slots.

In this example, Slot1 has the following resources:
• cpu=10

• memory=10240

• disk=BIG

JobA is allocated to the slot. JobA has the following requirements:
• cpu=3

• memory=1024

• disk=10240

The portion of the slot that is being used is referred to as Slot1.1, and the slot now advertises that it
has the following resources still available:
• cpu=7

• memory=9216

• disk=BIG-10240

As each new job is allocated to Slot1, it breaks into Slot1.1, Slot1.2, and so on until the entire
resources available have been consumed by jobs.

Example 14.1. Matching multiple jobs to a single slot

Enabling dynamic slots
1. Create a file in the local configuration directory, and add the SLOT_TYPE_X_PARTITIONABLE

configuration variable, with the parameter TRUE. The X refers to the number of the slot being
configured:

SLOT_TYPE_X_PARTITIONABLE = TRUE

Chapter 14. Dynamic slots

112

2. Save the file

3. Restart the condor service:

service condor restart
Stopping condor services: [OK]
Starting condor services: [OK]

Submitting jobs to a dynamic pool
In a pool that uses dynamic slots, jobs can have extra desirable resources specified in their submit
files:

request_cpus
Defaults to 1

request_memory
Defined in megabytes

Defaults to the ImageSize or JobVMemory parameters.

request_disk
Defined in kilobytes

Defaults to the DiskUsage parameter.

This example shows a truncated job submit file, with the requested resources:

JobA:
universe = vanilla
executable = ...
...
request_cpus = 3
request_memory = 1024
request_disk = 10240
...
queue

Example 14.2. Submitting a job to a dynamic pool

Chapter 15.

113

Event Trigger
The event trigger service is used to provide diagnostic information about a MRG Grid pool. It uses
MRG Messaging to send event notifications about the state of the MRG Grid pool. In most cases, a
single event trigger daemon can manage all events for an entire MRG Grid pool.

Each trigger has text associated with it that is used to generate an event if the query conditions are
met. The event text can be a simple string, or a complex string that includes ClassAd attributes.
ClassAd attributes are specified using $(attributedname) syntax. For example, if a machine
named claimedidle has been idle for ten minutes and met the Idle for long time trigger, the
following syntax:

$(Machine) has been Claimed/Idle for $(TriggerdActivityTime) seconds

would create an event with the text:

claimedidle has been Claimed/Idle for 600 seconds

Configuring the event trigger daemon
1. Create a file in the local configuration directory on all execute nodes, and add the following lines:

STARTD_CRON_NAME = TRIGGER_DATA
STARTD_CRON_AUTOPUBLISH = If_Changed
TRIGGER_DATA_JOBLIST = GetData
TRIGGER_DATA_GETDATA_PREFIX = Triggerd
TRIGGER_DATA_GETDATA_EXECUTABLE = $(BIN)/get_trigger_data
TRIGGER_DATA_GETDATA_PERIOD = 5m
TRIGGER_DATA_GETDATA_RECONFIG = FALSE

2. Create a file in the local configuration directory, and add the following line:

DAEMON_LIST = $(DAEMON_LIST), TRIGGERD

In this configuration file, other parameters can also be set:

TRIGGERD_DEFAULT_EVAL_PERIOD
This controls the default trigger evaluation interval. If not specified, it defaults to evaluating
every ten seconds.

DATA
This sets the location for the trigger service to save the configured triggers. If not specified, it
defaults to the same directory as $(SPOOL).

3. Set the IP address and port of the AMQP broker in a file in the local configuration directory on the
host that will be running the trigger daemon:

QMF_BROKER_HOST = ip/hostname_of_broker

Chapter 15. Event Trigger

114

QMF_BROKER_PORT = broker_listen_port

If not defined, the broker port will default to 5672.

Initializing Triggers
1. Once the trigger daemon is configured, start MRG Grid. The first time the event trigger service is

run, it needs to be initialized with the default set of triggers, using the condor_trigger_config
tool:

$ /usr/sbin/condor_trigger_config -i broker

The broker parameter should be the name of the broker that communicates with the trigger
service.

2. The list of triggers added by the condor_trigger_config command are:

Trigger Name: ClassAd Query:
High CPU Usage (TriggerdLoadAvg1Min > 5)
Low Free Mem (TriggerdMemFree <= 10240)
Low Free Disk Space (/) (TriggerdFilesystem_slash_Free < 10240)
Busy and Swapping (State == \"Claimed\" && Activity == \"Busy\" &&
TriggerdSwapInKBSec > 1000 && TriggerdActivityTime > 300)
Busy but Idle (State == \"Claimed\" && Activity == \"Busy\" &&
CondorLoadAvg < 0.3 && TriggerdActivityTime > 300)
Idle for long time (State == \"Claimed\" && Activity == \"Idle\" &&
TriggerdActivityTime > 300)
dprintf Logs (TriggerdCondorLogDPrintfs != \"\")
Core Files (TriggerdCondorCoreFiles != \"\")
Logs with ERROR entries (TriggerdCondorLogCapitalError != \"\")
Logs with error entries (TriggerdCondorLogLowerError != \"\")
Logs with DENIED entries (TriggerdCondorLogCapitalDenied != \"\")
Logs with denied entries (TriggerdCondorLogLowerDenied != \"\")
Logs with WARNING entries (TriggerdCondorLogCapitalWarning != \"\")
Logs with warning entries (TriggerdCondorLogLowerWarning != \"\")
Logs with stack dumps (TriggerdCondorLogStackDump != \"\")

Adding and Removing Triggers
1. To add a trigger to the service, use the condor_trigger_config command with the -a option.

Specify the name, query, and trigger text, in the following syntax:

$ condor_trigger_config -a -n name -q query -t text broker

In the above syntax, replace name with the name of the trigger, replace query with the ClassAd
query (which must evaluate to TRUE for the trigger to run), and text with the string to be raised in
the event. The broker parameter should be the name of the broker that communicates with the
trigger service.

2. To list all triggers that are currently configured, use the condor_trigger_config command
with the -l option, in the following syntax:

115

$ condor_trigger_config -l broker

The broker parameter should be the name of the broker that communicates with the trigger
service.

3. To remove a trigger from the service, use the condor_trigger_config command with the -d
option. Specify the ID number of the trigger, in the following syntax:

$ condor_trigger_config -d ID broker

In the above syntax, replace ID with the unique ID number of the trigger. The broker parameter
should be the name of the broker that communicates with the trigger service.

116

Chapter 16.

117

Scheduling to Amazon EC2
The elastic compute cloud (EC2) is a service provided by Amazon Web Services. It provides flexible
processing power that can be used as an extension to an existing MRG Grid pool in the form of a
cloud computing environment.

In addition to the computing power of EC2, Amazon also provides storage, referred to as the simple
storage service (S3), and a simple queue service (SQS) that provides distributed message queuing
capabilities. MRG Grid applications use SQS, are stored in S3, and run in EC2.

In EC2, the cloud resource is referred to as an Amazon Machine Image (AMI). EC2 resources are
started, monitored, and cleaned up locally. The application is installed in an AMI stored in S3. Once
started, the application is responsible for the life-cycle of the job and the termination of the AMI
instance.

AMI instances running in EC2 do not have persistent storage directly available. It is advisable to
program the AMI to transfer the output from a job out of the running instance before it is shut down.

MRG Grid uses EC2 in two different ways:

• MRG/EC2 Basic

• MRG/EC2 Enhanced

MRG/EC2 Basic uses Amazon EC2 AMIs to perform jobs. AMIs are built to perform a specific job,
handle the input and output, and are responsible for shutting down when the job has completed. MRG
Grid starts and monitors the AMI during the lifetime of the job.

The MRG/EC2 Enhanced feature is an extension of MRG/EC2 Basic that allows vanilla universe
jobs to be run in Amazon's EC2 service. MRG/EC2 Enhanced uses generic AMIs to execute vanilla
universe jobs. Jobs executed with MRG/EC2 Enhanced act like any other vanilla universe job, except
the execution node is in EC2 instead of a local condor pool.

This chapter contains information on getting and setting up the EC2 Execute Node. It then goes on
to provide information on using MRG/EC2 Basic and MRG/EC2 Enhanced. It assumes that you have
already got an account with Amazon. For more information on obtaining an Amazon web services
(AWS) account, and for Amazon-specific information on EC2, including billing rates, and terms and
conditions, visit the Amazon Web Services website1.

16.1. Getting the MRG Grid Amazon EC2 Execute Node
The Red Hat Enterprise MRG Grid Amazon EC2 Execute Node products must be purchased from
Amazon. Hourly pricing and additional information can be found at http://www.redhat.com/solutions/
cloud/

1. Visit the Amazon product page2 and purchase Red Hat Enterprise MRG Grid Amazon EC2
Execute node from Amazon's DevPay service. Enter the purchase information and click on Place
your order.

2. Once payment has been completed successfully, follow the prompts to log in to the Red Hat
Network (RHN).

1 http://aws.amazon.com/

http://aws.amazon.com/
http://www.redhat.com/solutions/cloud/
http://www.redhat.com/solutions/cloud/
https://aws-portal.amazon.com/gp/aws/user/subscription/index.html?offeringCode=D6876AB2
http://aws.amazon.com/

Chapter 16. Scheduling to Amazon EC2

118

3. Activate the Amazon Cloud Subscription by completing the four steps on the screen. When the
activation has been successfully completed, an email will be sent.

Getting the MRG Grid Amazon EC2 Execute Node

119

Note
After logging into RHN a page stating This is an application to activate
Amazon Activation Keys might be displayed. If this occurs, click the refresh
button in the browser. You should then be presented with the activation page.

4. An EC2 account with Amazon web services (AWS) is required to be able to connect to the new
EC2 instance. The account can be set up from http://aws.amazon.com. You will also need a copy
of the AWS private key and certificate. These can be found in Access Identifiers under the Your
Account menu in AWS.

The required tools are available as the Amazon EC2 API Tools available from Amazon Web
Services3.

Note
For help with getting familiar with EC2, read through the AWS Getting Started
Guide4

http://aws.amazon.com
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351
http://docs.amazonwebservices.com/AWSEC2/2007-08-29/GettingStartedGuide/
http://docs.amazonwebservices.com/AWSEC2/2007-08-29/GettingStartedGuide/

Chapter 16. Scheduling to Amazon EC2

120

5. The following environment variables must be set at the shell prompt before starting:

• EC2_HOME

• PATH

• JAVA_HOME

• EC2_CERT

• EC2_PRIVATE_KEY

$ export EC2_HOME=ec2-api-tools-1.2-14611
$ export PATH=ec2-api-tools-1.2-14611/bin:$PATH
$ export JAVA_HOME=/usr/lib/jvm/jre
$ export EC2_CERT=cert-LCNPCCNJ4CQIPO6JTQL6ICZGX.pem
$ export EC2_PRIVATE_KEY=pk-LCNPCCNJ4CQIPO6JTQL6ICZGX.pem

6. Once the purchase has been completed, one of two possible Amazon Machine Image (AMI)
identification numbers will be provided. These are ami-49e70020 for 32-bit instances and
ami-5de70034 for 64-bit instances.

Once the environment and the AMI have been set up, create an SSH keypair. This can be
achieved by using the ec2-add-keypair command at the shell prompt. Save the private key
part locally:

$ ec2-add-keypair My-MRG-Grid-Key | tail -n +2 | tee My-MRG-Grid-Key.txt

The new MRG Grid instance can now be started using the ec2-run-instances command. In
this example, the key (-k) name is the name given to the SSH keypair.

$ ec2-run-instances ami-49e70020 -k My-MRG-Grid-Key
RESERVATION r-cab704a3 126065491017 default
INSTANCE i-0dcb4264 ami-49e70020 pending My-MRG-Grid-Key 0
 m1.small 2009-02-04T23:14:05+0000 us-east-1c aki-41e70028 ari-43e7002a

The EC2 instance begins as pending and waits for a place to run. Use the ec2-describe-
instances command for the status of the instance:

$ ec2-describe-instances
RESERVATION r-cab704a3 126065491017 default
INSTANCE i-0dcb4264 ami-49e70020 ec2-174-129-129-65.compute-1.amazonaws.com
 domU-12-31-39-00-C1-18.compute-1.internal running My-MRG-Grid-Key 0 A3EDFA94
 m1.small 2009-02-04T23:14:05+0000 us-east-1c aki-41e70028 ari-43e7002a

Once the instance is running, it will give you a name to which you can connect. In this case, it is
ec2-174-129-129-65.compute-1.amazonaws.com.

7. Connect to the EC2 instance using ssh.

Getting the MRG Grid Amazon EC2 Execute Node

121

Important
The connection to the EC2 instance is performed by the root user.

$ ssh -i My-MRG-Grid-Key.txt root@ec2-174-129-129-65.compute-1.amazonaws.com
The authenticity of host 'ec2-174-129-129-65.compute-1.amazonaws.com (174.129.129.65)'
 can't be established.
RSA key fingerprint is 71:14:41:cf:75:f3:2a:a2:ee:e8:8e:6e:f7:f7:07:65.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added
 'ec2-174-129-129-65.compute-1.amazonaws.com,174.129.129.65' (RSA) to the list of known
 hosts.

8. Once connected, there is a series of configuration screens. The first one is a Setup Assistant.
Provide the requested information and select the Exit button to finish.

The next screen is Setting up Software updates. This screen performs the same function as
the rhn_register command. Select Next, enter the RHN login information, and select Next
to continue through the registration process. The instance must be registered with RHN to get
access to the MRG Grid channels.

Chapter 16. Scheduling to Amazon EC2

122

9. Once the registration is completed, a root user prompt will be displayed on the EC2 instance.
Before the MRG Grid packages can be installed, the MRG Grid channels will need to be enabled
through RHN. This can be done by logging in at http://rhn.redhat.com.

http://rhn.redhat.com

Getting the MRG Grid Amazon EC2 Execute Node

123

Find the registered system and click on it to show the details. Select Alter Channel
Subscriptions. Under the Software Channel Subscriptions menu, select MRG Grid Execute
Node and MRG Messaging Base channels. Save the settings by clicking on the Change
Subscriptions button.

Chapter 16. Scheduling to Amazon EC2

124

10. Run the yum info condor command at the shell prompt to verify that you now have access to
the MRG Grid channels.

MRG/EC2 Basic

125

The instance can now be customized. Once this is completed, follow the instructions in the
Amazon Web Services Developer Guide5 to rebundle and save the customized API.

16.2. MRG/EC2 Basic
With MRG/EC2 Basic an AMI can be submitted as a job to EC2. This is useful when deploying a
complete application stack into EC2. The AMI contains the operating system and all the required
packages. EC2 will boot the image and the image can initialize the application stack on boot. MRG/
EC2 Basic knowledge is also important when using MRG/EC2 Enhanced.

When setting up MRG Grid for use with EC2 for the first time, the following steps are important:

1. Make changes to your local condor configuration file

2. Prepare the job submission file for EC2 use

3. Set up a security group on EC2 (this step is optional)

4. Submit the job

5. Check that the job is running in EC2

6. Check the image using ssh (this step is optional)

http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/

Chapter 16. Scheduling to Amazon EC2

126

Submitting jobs to MRG/EC2 Basic
1. MRG Grid is configured to work with EC2 by default. The necessary configuration settings are

in the global configuration file. There is one additional setting you may wish to add to the local
configuration:

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE_AMAZON = 10

This setting will limit the number of EC2 jobs that can be submitted at any time. AWS has an upper
limit of 20. Setting the maximum to less than 20 can help avoid problems.

2. The following is an example of a simple job submission file for MRG/EC2 Basic:

Note to submit an AMI as a job we need the grid universe
Universe = grid
grid_resource = amazon

Executable in this context is just a label for the job
Executable = my_amazon_ec2_job
transfer_executable = false

Keys provided by AWS
amazon_public_key = cert-ABCDEFGHIJKLMNOPQRSTUVWXYZ.pem
amazon_private_key = pk-AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPP.pem

The AMI ID
amazon_ami_id = ami-123a456b
amazon_user_data = Hello EC2!

The keypair file if needed for using ssh etc
amazon_keypair_file = /tmp/keypair

The security group for the job
amazon_security_groups = MY_SEC_GRP

queue

MRG/EC2 Basic requires the grid universe and the amazon grid resource. The executable is a
label that will show up in the job details when using commands such as condor_q. It is not an
executable file.

The AMI ID of the image needs to be specified in the job submission file. User data can also be
passed to the remote job if it is required. Applications that require user data can access it using
a Representational State Transfer (REST) based interface. Information on how to access image
instance data, including user data, is available from Amazon Web Services Developer Guide6.

3. EC2 will provide a keypair for access to the image if required. The amazon_keypair_file
command specifies where this will be stored.

EC2 allows users to specify one or more security groups. Security groups can specify what type of
access is available. This can include opening specific ports - e.g. port 22 for ssh access.

Advanced options
This step is optional.

http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/?AESDG-chapter-instancedata.html

MRG/EC2 Basic

127

EC2 provides several options for instance types:

• m1.small: i386 instance with 1 compute unit

• m1.large: x86_64 instance with 4 compute unit

• m1.xlarge: x86_64 instance with 8 compute units

• c1.medium: i386 instance with 5 compute units

• c1.xlarge: x86_64 instance with 20 compute units

The default instance type is m1.small and assumes an i386 architecture. For example, if the AMI
you are deploying is x86_64 then you will need to set the following value in your job submission:

amazon_instance_type = m1.large

For more information on instance types see the Amazon EC2 Developer Guide7.

Note
You could be using the wrong instance type if you see a message like this in your
job ClassAd when you run condor_q -l:

HoldReason = "The requested instance type's architecture (i386) does not
 match the architecture in the manifest for ami-bda347d4 (x86_64)"

4. This step is optional.

If ssh or other access is required, EC2 provides APIs and commands to create and modify a
security group. Download the AMI command line utilities here from the Amazon Web Services
Developer Site8. Documentation on the APIs and command line utilities are also on the Amazon
Web Services Developer Site9.

To use the command line utilities provided by AWS, you will need to set some environment
variables.

Set EC2_HOME to point to the location of the tools. The EC2 tools are normally downloaded in a
zip file, using version numbers:

export EC2_HOME=/home/myuser/ec2-api-tools-X.Y-ZZZZ

EC2 requires X509 certificates. These can be downloaded from your AWS account and set using
the following variables:

export EC2_CERT=/home/myuser/keys/cert-MPMCVULQDTBLIBUEPGBVK2LIEV6AN6GB.pem
export EC2_PRIVATE_KEY=/home/myuser/keys/pk-MPMCVULQDTBLIBUEPGBVK2LIEV6AN6GB.pem

The EC2 commands require Java, so JAVA_HOME must also be set:

http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=368&categoryID=88
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=368&categoryID=88
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1665&categoryID=118
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1665&categoryID=118

Chapter 16. Scheduling to Amazon EC2

128

export JAVA_HOME=/etc/alternatives/jre_1.5.0

Use the following commands from the bin directory to create a security group and allow ssh
access to the AMI. The following are examples. For more information see the documentation at
the Amazon Web Services Developer Guide10. To create a new group called MY_SEC_GRP and a
short description:

./ec2-add-group MY_SEC_GRP -d "My Security Group"

Open port 22 and allow ssh access:

./ec2-authorize MY_SEC_GRP -p 22

5. Submit the job using condor_submit, as normal.

6. You can check on the status of EC2 jobs, just as regular MRG Grid jobs, by using the condor_q
and condor_q -l commands. When the image has been successfully loaded in EC2 and the
job is running, the condor_q -l command will show the address of the AMI using the label
AmazonRemoteVirtualMachineName:

$ condor_q -l
AmazonRemoteVirtualMachineName = "ec2-99-111-222-44.compute-1.amazonaws.com"

Note
There are tools available for managing running APIs. One of these is the
Mozilla™ Firefox™ plugin Elasticfox11.

7. This step is optional.

If you are using ssh and have opened the appropriate port, ssh can also be used to access the
running image with a remote shell. The keypair file specified in the job is required:

$ ssh -i /tmp/keypair root@ec2-99-111-222-44.compute-1.amazonaws.com

This example contains a script for a job to be executed by an AMI. Edit the /etc/rc.local file in the
AMI and place this code at the end.

This example reads data from the user-data field, creates a a file called output.txt and transfers
that file out of the AMI before shutting down.

-- /etc/rc.local --
#!/bin/sh

USER_DATA=`curl http://169.254.169.254/2007-08-29/user-data`

http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/index.html?using- network-security.html
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=609

MRG/EC2 Enhanced

129

ARGUMENTS="${USER_DATA%;*}"
RESULTS_FILE="${USER_DATA#*;}"

mkdir /tmp/output
cd /tmp/output

/bin/echo "$ARGUMENTS" > output.txt

cd /tmp
tar czf "$RESULTS_FILE" /tmp/output

curl --ftp-pasv -u user:password -T "$RESULTS_FILE" ftp://server/output

shutdown -h -P now

Example 16.1. Creating a script to run an MRG/EC2 Basic job in an AMI

16.3. MRG/EC2 Enhanced
To use MRG/EC2 Enhanced, you will need an Amazon Web Services (AWS) account with access to
the following features:

• EC2

• SQS (Simple Queue Service)

• S3 (Simple Storage Service)

This chapter provides instructions on how to download and install the necessary RPMs and Amazon
Machine Images (AMIs) for the use and operation of the MRG Grid MRG/EC2 Enhanced feature.

Configuring an Amazon Machine Image
1. On the AMI, use yum to install the condor-ec2-enhanced package:

yum install condor-ec2-enhanced

2. Create a private key file called private key:

$ openssl genrsa -out private_key 1024

Create a public key file called public_key:

$ openssl rsa -in private_key -out public_key -pubout

Note
These keys are generated using openssl, and are not the same as the AWS keys
needed elsewhere.

Once the keys have been created, transfer the public key file to a local directory.

Chapter 16. Scheduling to Amazon EC2

130

Copy the contents of private_key into the file /root/.ec2/rsa_key on the AMI. The private
key must match the public key set in set_rsapublickey for a given route or job.

3. The following changes can be specified in any condor configuration file, however it is
recommended that they are added to a file located in the local configuration directory:

Specify the location of the condor_startd hooks:

EC2ENHANCED_HOOK_FETCH_WORK = $(LIBEXEC)/hooks/hook_fetch_work.py
EC2ENHANCED_HOOK_REPLY_FETCH = $(LIBEXEC)/hooks/hook_reply_fetch.py

4. Specify the location of the starter hooks:

EC2ENHANCED_JOB_HOOK_PREPARE_JOB = $(LIBEXEC)/hooks/hook_prepare_job.py
EC2ENHANCED_JOB_HOOK_UPDATE_JOB_INFO = $(LIBEXEC)/hooks/hook_update_job_status.py
EC2ENHANCED_JOB_HOOK_JOB_EXIT = $(LIBEXEC)/hooks/hook_job_exit.py

5. Specify the job hook keywords:

STARTD_JOB_HOOK_KEYWORD = EC2ENHANCED

6. Set the delay for fetching work and the update interval:

FetchWorkDelay = 10
STARTER_UPDATE_INTERVAL = 30

7. The caroniad daemon is used in the MRG/EC2 Enhanced AMI instance to retrieve and process
MRG Grid jobs. In order to do this caroniad communicates with Condor hooks that may or may
not be running on the same machine. The daemon is configured by editing the appropriate file in
the local configuration directory. The parameters are further described in Table 16.1, “Caroniad
configuration settings”.

Create a file in the local configuration directory, and add the following lines:

EC2E_DAEMON = $(SBIN)/caroniad
EC2E_DAEMON_IP = 127.0.0.1
EC2E_DAEMON_PORT = 10000
EC2E_DAEMON_QUEUED_CONNECTIONS = 5
EC2E_DAEMON_LEASE_TIME = 35
EC2E_DAEMON_LEASE_CHECK_INTERVAL = 30
DAEMON_LIST = $(DAEMON_LIST), EC2E_DAEMON
EC2E_DAEMON_LOG = $(LOG)/CaroniaLog
MAX_EC2E_DAEMON_LOG = 1000000

If caroniad fails to find the configuration variables in the local configuration directory, it will go on
to look in /etc/condor/caroniad.conf instead.

MRG/EC2 Enhanced

131

8. The hooks also need to be configured to communicate with caroniad. The hooks are configured
by editing the appropriate file in the local configuration directory. The parameters are further
described in Table 16.1, “Caroniad configuration settings”.

Create a file in the local configuration directory, and add the following lines:

JOB_HOOKS_IP = 127.0.0.1
JOB_HOOKS_PORT = $(EC2E_DAEMON_PORT)
JOB_HOOKS_LOG = $(LOG)/JobHooksLog
MAX_JOB_HOOKS_LOG = 10000000

If the job hooks fail to find the configuration variables in the local configuration directory, they will
go on to look in /etc/condor/job-hooks.conf instead.

9. Package the AMI. This step will vary depending on how you are building your AMI. If you have
changed an existing AMI you should use the following commands (please see the Amazon Elastic
Compute Cloud User Guide12 for more information on how to use these commands):

On the AMI instance run:

$ ec2-bundle-vol

$ ec2-upload-bundle

After uploading the bundle it must be registered. On the local machine, register the bundle using
the command:

$ ec2-register

The registration process will return an AMI ID. This ID will be needed when submitting jobs.

Configuration variable Data type Description

EC2E_DAEMON_IP IP address caroniad will listen on this IP
address.

Note
By default,
the hooks and
caroniad
will run on
the same
machine. In
this case, the
loopback IP
address is
sufficient.

http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/

Chapter 16. Scheduling to Amazon EC2

132

Configuration variable Data type Description

EC2E_DAEMON_PORT Integer The port caroniad should
listen on

EC2E_DAEMON_QUEUED_CONNECTIONSInteger The number of allowed
outstanding connections

EC2E_DAEMON_LEASE_TIME Integer The amount of time that a job
can run without performing
an update. If a job has not
performed an update within
this time frame, it is assumed
that an error has occurred and
the job will be released or re-
sent. This value must be longer
than the value specified for
STARTER_UPDATE_INTERVAL.

EC2E_DAEMON_LEASE_CHECK_INTERVALInteger The interval to wait between
checks to see if a job has had
an error

JOB_HOOKS_IP IP Address The IP address where
caroniad is listening for
connections

JOB_HOOKS_PORT Integer The port caroniad is listening
to for connections

EC2E_DAEMON_LOG String The location of the log file for
caroniad to use for logging

MAX_EC2E_DAEMON_LOG Integer The maximum size of the log
file before it will be rotated

JOB_HOOKS_LOG String The location of the log file for
the job hooks to use for logging

MAX_JOB_HOOKS_LOG Integer The maximum size of the job
hooks log before rotating

Table 16.1. Caroniad configuration settings

Download and install the MRG/EC2 Enhanced RPMs
1. The MRG/EC2 Enhanced RPMs can be downloaded using yum. You will need to ensure that you

are connected to the Red Hat Network.

Important
For further information on installing Red Hat Enterprise MRG components, see
the MRG Grid Installation Guide.

2. On the submit machine, use yum to install the condor-ec2-enhanced-hooks package:

yum install condor-ec2-enhanced-hooks

MRG/EC2 Enhanced

133

Configuring the submit machine
1. In order for the local pool to take advantage of the newly created MRG/EC2 Enhanced image,

some changes need to be made to the configuration of a submit node in the pool. A sample
configuration file for the submit machine is located at /usr/share/doc/condor-ec2-
enhanced-hooks-1.1/example/condor_config.example. Copy the required parts of this
file to the local configuration directory of the submit nodes, and edit the following lines to include
the AMI ID you received during the registration process:

set_amazonamiid = "ami-123a456b";

2. Specify the default settings for all routes, including instructions to remove a routed job if it is held
or idle for over six hours:

JOB_ROUTER_DEFAULTS = \
 [\
 MaxIdleJobs = 10; \
 MaxJobs = 200; \
\
 set_PeriodicRemove = (JobStatus == 5 && \
 HoldReason =!= "Spooling input data files") || \
 (JobStatus == 1 && (CurrentTime - QDate) > 3600*6); \
 set_requirements = true; \
 set_WantAWS = false; \
]

3. Define each routes for sending jobs. Specify a name, a list of requirements and the amazon
details:

Note
Just one route is shown here. The example configuration file at /usr/share/
doc/ec2-enhanced-hooks-1.1/example/condor_config.example goes
into further detail.

JOB_ROUTER_ENTRIES = \
[GridResource = "condor localhost $(COLLECTOR_HOST)"; \
Name = "Amazon Small"; \
requirements=target.WantAWS is true && (target.Universe is vanilla || target.Universe is
 5) && (target.WantArch is "INTEL" || target.WantArch is UNDEFINED) && (target.WantCpus
 <= 1 || target.WantCpus is UNDEFINED) && (target.WantMemory < 1.7 || target.WantMemory is
 UNDEFINED) && (target.WantDisk < 160 || target.WantDisk is UNDEFINED); \
set_gridresource = "amazon"; \
set_amazonpublickey = "<path_to_AWS_public key>"; \
set_amazonprivatekey = "<path_to_AWS_private_key>"; \
set_amazonaccesskey = "<path_to_AWS_access_key>"; \
set_amazonsecretkey = "<path_to_AWS_secret_key"; \
set_rsapublickey = "<path_to_RSA_public_key>"; \
set_amazoninstancetype = "m1.small"; \
set_amazons3bucketname = "<S3_bucket_name>"; \
set_amazonamiid = "<EC2_AMI_ID>"; \
set_remote_jobuniverse = 5; \
] \

Chapter 16. Scheduling to Amazon EC2

134

The job router entries are described as follows:

• set_amazonpublickey: The path to a file containing the AWS X.509 public key

• set_amazonprivatekey: The path to a file containing the AWS X.509 private key

• set_amazonaccesskey: The path to a file containing the AWS access key

• set_amazonsecretkey: The path to a file containing the AWS secret key

• set_rsapublickey: The path to a file containing an RSA public key. This key should match
the private key stored in the AMI

• set_amazoninstancetype: The Amazon EC2 Instance type for the AMI to use with a route

• set_amazons3bucketname: The Amazon S3 Bucket name condor will use to transfer data for
a job

• set_amazonamiid: The Amazon EC2 Instance ID to use for the route

4. Add the JOB_ROUTER to the list of daemons to run:

DAEMON_LIST = $(DAEMON_LIST) JOB_ROUTER

5. Define the polling period for the job router. It is recommended that this value be set to a low value
during testing, and a higher value when running on a large scale. This will ensure tests run faster,
but prevent using too much CPU when in production:

JOB_ROUTER_POLLING_PERIOD = 10

6. Set the maximum number of history rotations:

MAX_HISTORY_ROTATIONS = 20

7. Configure the job router hooks:

JOB_ROUTER_HOOK_KEYWORD = EC2E
EC2E_HOOK_TRANSLATE_JOB = $(LIBEXEC)/hooks/hook_translate.py
EC2E_HOOK_UPDATE_JOB_INFO = $(LIBEXEC)/hooks/hook_retrieve_status.py
EC2E_HOOK_JOB_EXIT = $(LIBEXEC)/hooks/hook_job_finalize.py
EC2E_HOOK_JOB_CLEANUP = $(LIBEXEC)/hooks/hook_cleanup.py
EC2E_ATTRS_TO_COPY = EC2RunAttempts, EC2JobSuccessful

8. Restart MRG Grid with the new configuration:

$ service condor restart
Stopping condor daemon: [OK]
Starting condor daemon: [OK]

MRG/EC2 Enhanced

135

Submitting a job to MRG/EC2 Enhanced
1. A job that uses MRG/EC2 Enhanced is similar to a usual vanilla universe job. However, some

keys need to be added to the job submit file. This submit file will cause the job to be routed to the
Amazon Small route using administrator defined credentials:

universe = vanilla
executable = /bin/date
output = date.out
log = ulog
requirements = (WantJR =!= true) && (Arch == "INTEL")
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_executable = false
+WantAWS = True
+WantArch = "INTEL"
+WantCPUs = 1
+EC2RunAttempts = 0
queue

Important
The requirements attribute for the job must include the string WantJR =!
= true. This ensures that the job is only routed to Amazon Web Services.
Typically, you would want the requirements requirements attribute should
be set to match the hardware of the AMI the job will run on. For example, if the
submit machine is x86_64 and the requirements are not specified, then the above
job will not execute because the Amazon Small AMI type is 32-bit, not 64-bit.

2. The following fields are available for routing the job to the correct AMI. If only WantAWS is defined,
then the job will be routed to the small AMI type by default.

WantAWS
Must be either TRUE or FALSE. Use EC2 for executing the job. Defaults to false

WantArch
Must be either INTEL or X86_64. Designates the architecture desired for the job. Defaults to
Intel

WantCpus
Must be an integer. Designates the number of CPUs desired for the job

WantMemory
Must be a float. Designates the amount of RAM desired for the job, in gigabytes

WantDisk
Must be an integer. Designates the amount of disk space desired for the job, in gigabytes

3. User credentials for accessing EC2 can be supplied for the submit machine by the site
administrator. If this is not the case, the submit file can be used to supply the required information,
by adding the following entries:

+AmazonAccessKey = "<path>/access_key"

Chapter 16. Scheduling to Amazon EC2

136

+AmazonSecretKey = "<path>/secret_access_key"
+AmazonPublicKey = "<path>/cert.pem"
+AmazonPrivateKey = "<path>/pk.pem"
+RSAPublicKey = "<path>/rsa_key.pub"

These credentials will only be used if the submit machine does not already have credentials
defined in condor_config for the route that the job will use.

Chapter 17.

137

Low-latency scheduling
Low-latency scheduling uses the MRG Messaging component of Red Hat Enterprise MRG to allow
jobs to execute immediately, bypassing the standard scheduling process. This means a job can begin
sooner, and reduces the latency between job submission and execution. The execute nodes in the
pool communicate directly with a MRG Messaging broker, which allows any machine capable of
sending messages to the broker to submit jobs to the pool.

Submitting a job using condor-low-latency scheduling is similar to submitting a regular Condor job,
with the main difference being that instead of using a file for submission the job's attributes are defined
in the application headers field of a MRG Messaging message.

When submitting jobs in messages using this method, it is only possible to submit one job for every
message. To submit multiple jobs of the same type, multiple messages - each containing one job -
will need to be sent to the broker. Messages must have a reply-to field set, or the jobs will not run.
They must also include a unique message ID. If data needs to be submitted with the job, it will need to
be compressed and the archive placed in the body of the message.

It is important that messages do not disappear if the broker fails. To avoid this problem, always set the
AMQP queues to be durable. Messages containing jobs should also be durable.

The caro daemon controls the communication between MRG Messaging and MRG Grid. It will look
for parameters in the condor configuration files first. It will then look for its own configuration file at
/etc/condor/carod.conf. This file controls the active broker and other options such as the
exchange name, message queue and IP information.

Low-latency scheduling also allows a pool of execute nodes to be divided into different projects or
priorities. This is achieved by providing different values for the name of the queue. For example,
instead of one single queue named grid, it could be split into two queues named grid_high and
grid_low. The client program would then be able to use the appropriate routing key to get to the
needed queue. This can also be achieved through the API.

Note
For more information on MRG Messaging and the MRG Messaging broker, see the
MRG Messaging User Guide

Installing and configuring low-latency on execute nodes
1.

Note
Because of the way that MRG Messaging handles job submission, there is no
need to configure non-execution nodes. These instructions cover installing and
configuring execute nodes only.

Important
You will require the MRG Messaging broker from the Red Hat Network in order to
use low-latency scheduling. For instructions on downloading and configuring the
MRG Messaging packages, see the MRG Messaging Installation Guide.

Chapter 17. Low-latency scheduling

138

You will require the following packages, in addition to the MRG Messaging components:

• condor-low-latency

• condor-job-hooks

• python-condorutils

Use yum to install these components:

yum install condor-low-latency

yum install condor-job-hooks

yum install python-condorutils

2. Create a file in the local configuration directory, and add the following lines:

LL_DAEMON = $(SBIN)/carod
LL_BROKER_IP = <broker ip>
LL_BROKER_PORT = 5672
LL_BROKER_QUEUE = grid
LL_DAEMON_IP = 127.0.0.1
LL_DAEMON_PORT = 10000
LL_DAEMON_QUEUED_CONNECTIONS = 5
LL_DAEMON_LEASE_TIME = 35
LL_DAEMON_LEASE_CHECK_INTERVAL = 30
JOB_HOOKS_IP = 127.0.0.1
JOB_HOOKS_PORT = $(LL_DAEMON_PORT)
DAEMON_LIST = $(DAEMON_LIST), LL_DAEMON

Startd hooks
LOW_LATENCY_HOOK_FETCH_WORK = $(LIBEXEC)/hooks/hook_fetch_work.py
LOW_LATENCY_HOOK_REPLY_FETCH = $(LIBEXEC)/hooks/hook_reply_fetch.py

Starter hooks
LOW_LATENCY_JOB_HOOK_PREPARE_JOB = $(LIBEXEC)/hooks/hook_prepare_job.py
LOW_LATENCY_JOB_HOOK_UPDATE_JOB_INFO = \
$(LIBEXEC)/hooks/hook_update_job_status.py
LOW_LATENCY_JOB_HOOK_JOB_EXIT = $(LIBEXEC)/hooks/hook_job_exit.py

STARTD_JOB_HOOK_KEYWORD = LOW_LATENCY

LL_DAEMON_LOG = $(LOG)/CaroLog
MAX_LL_DAEMON_LOG = 1000000

JOB_HOOKS_LOG = $(LOG)/JobHooksLog
MAX_JOB_HOOKS_LOG = 10000000

For a description of each of these parameters, see Table 17.1, “Low latency configuration
settings”.

3. Set the FetchWorkDelay setting. This setting controls how often the condor-low-latency feature
will look for jobs to execute, in seconds:

139

FetchWorkDelay = ifThenElse(State == "Claimed" && Activity == "Idle", 0, 10)
STARTER_UPDATE_INTERVAL = 30

4. Start the MRG Messaging broker:

service qpidd start
Starting qpidd daemon: [OK]

5. Restart the condor service:

service condor restart
Stopping condor services: [OK]
Starting condor services: [OK]

6. There are some differences between the job submit files of an ordinary job and a low latency job.
To ensure the fields are correct, a normal Condor job submission file can be translated into the
appropriate fields for the application headers by using the condor_submit command with the -
dump option:

$ condor_submit myjob.submit -dump output_file

This command produces a file named output_file. This file contains the information contained
in the myjob.submit in a format suitable for placing directly into the the application header of a
message. This method only works when queuing a single message at a time.

Important
The myjob.submit should only have one queue command with no arguments.
For example:

executable = /bin/echo
arguments = "Hello there!"
queue

Configuration variable Data type Description

LL_BROKER_IP IP Address The IP address of the broker
that carod is talking to

LL_BROKER_PORT Integer The port on
$(LL_BROKER_IP) that the
broker is listening to

LL_BROKER_QUEUE String The queue on the broker for
condor jobs

LL_DAEMON_IP IP Address The IP address of the interface
carod is using for connections

Chapter 17. Low-latency scheduling

140

Configuration variable Data type Description

LL_DAEMON_PORT Integer The port carod is listening to
for connections

LL_DAEMON_QUEUED_CONNECTIONSInteger The number of allowed
outstanding connections

LL_DAEMON_LEASE_TIME Integer The maximum amount of time
(in seconds) a job is allowed to
run without providing an update

LL_DAEMON_LEASE_CHECK_INTERVALInteger How often (in seconds) carod
is checking for lease expiration

LL_DAEMON_LOG String The location of the file carod
should use for logging

MAX_LL_DAEMON_LOG Integer The maximum size of the
carod log file before being
rotated

JOB_HOOKS_IP IP Address The IP address where carod is
listening for connections

JOB_HOOKS_PORT Integer The port carod is listening to
for connections

JOB_HOOKS_LOG String The location of the log file for
the job hooks to use for logging

MAX_JOB_HOOKS_LOG Integer The maximum size of the job
hooks log before rotating

Table 17.1. Low latency configuration settings

This example submits a simple low-latency job, by including the job details into the
application_headers field.

The following code excerpt sends a job that will sleep for 5 seconds, and then send the results to the
replyTo reply-t queue. It also ensures that the AMQP message has a unique ID.

work_headers = {}
work_headers['Cmd'] = '"/bin/sleep"'
work_headers['Arguments'] = '"5"'
work_headers['Iwd'] = '"/tmp"'
work_headers['Owner'] = '"nobody"'
work_headers['JobUniverse'] = 5
message_props = session.message_properties(application_headers=work_headers)
replyTo = str(uuid4())
message_props.reply_to = session.reply_to('amq.direct', replyTo)
message_props.message_id = uuid4()

Example 17.1. Submitting a low-latency job

Chapter 18.

141

DAGMan
MRG Grid allows jobs to be submitted and executed in parallel. However, some large-scale computing
applications require individual jobs to be processed as an orderly set of dependencies. This is used in
some simulations of financial instrument models, or complex 3D modeling.

A directed acyclic graph (DAG) is a method of expressing dependencies between jobs. It is a
specification that requires certain tasks to be completed before others. Tasks cannot loop, and there
must be always be a deterministic path between tasks.

DAGMan (DAG manager) performs workflow management within MRG Grid. Individual jobs are
treated as tasks, and each job must be completed before the next can start. The output of a job can be
used as the input for the next job.

18.1. DAGMan jobs
DAGMan jobs are submitted to the condor_schedd in the same way as ordinary MRG Grid jobs. The
condor_schedd launches the DAG job inside the scheduler universe.

Submitting and monitoring DAG jobs
DAGMan submit description files act as pointers for the individual job submit description files,
and instruct MRG Grid on the order to run the jobs. In the DAGMan submit description file, job
dependencies are expressed as PARENT-CHILD relationships. The basic configuration for DAGMan
jobs usually resembles a diamond.

In this configuration, Job A must complete successfully. Then Jobs B and C will run concurrently.
When Jobs B and C have both completed succesfully, Job D will run.

The submit description file syntax for a simple diamond-shaped DAG is:

this file is called diamond.dag
JOB A A_job.submit
JOB B B_job.submit
JOB C C_job.submit
JOB D D_job.submit
PARENT A CHILD B,C
PARENT B,C CHILD D

Chapter 18. DAGMan

142

1. Define the jobs. Each job must have a name, and a location. The location is the submit description
file for the individual job.

2. Define each of the parent/child pairs. Parent jobs are the jobs that must be run first. Child jobs
cannot be run until the parent jobs have been successfully completed. The pairs must be defined
at every level, with each level on a new line. Use commas to specify more than one job.

3. There is no need to specify the scheduler universe in the DAG submit description files. This
condition is implied by the condor_submit_dag tool.

4. When the submit description files are complete and saved to a file, the DAG can be submitted to
MRG Grid. This is done using the condor_submit_dag tool.

From the shell prompt, use the condor_submit_dag command with the name of the DAG
submit description file:

$ condor_submit_dag diamond_dag

Checking all your submit files for log file names.
This might take a while...
Done.

File for submitting this DAG to Condor : diamond_dag.condor.sub
Log of DAGMan debugging messages : diamond_dag.dagman.out
Log of Condor library output : diamond_dag.lib.out
Log of Condor library error messages : diamond_dag.lib.err
Log of the life of condor_dagman itself : diamond_dag.dagman.log

Submitting job(s).
Logging submit event(s).
1 job(s) submitted to cluster 30072.

If the job has been submitted successfully, the condor_submit_dag tool will provide a summary
of the submission, including the location of the log files.

The most important log file to note is the condor_dagman log labeled Log of the life of
condor_dagman itself and referred to as the lifetime log. This file is used to coordinate job
execution.

5. The DAG is considered invalid if it has cycles or loops in it. This will be picked up during the
DAGMan consistency checking routine, and the DAG will exit with a message reading: ERROR: a
cycle exists in the DAG.

6. There are two methods for submitting more than one DAG. If the list of DAG submit description
files are added to the condor_submit_dag command, all files will be submitted as one large
DAG submission:

$ condor_submit_dag dag_file1, dag_file2, dag_file3

When DAGs are submitted together in this way, there are two important details to note:

• All the DAGs will execute under a single condor_dagman process.

DAGMan jobs

143

• Any nodes that appear multiple times in a single submission will only be executed once.

Alternatively, run the condor_submit_dag command multiple times, specifying each individual
DAG submit description file. In this case, ensure that the DAG submit description files and job
names are all unique, to avoid log and output files being overwritten.

7. DAG jobs can be monitored using the condor_q command. By specifying the username, the
results will show only jobs submitted by that user:

$ condor_q daguser

29017.0 daguser 6/24 17:22 4+15:12:28 H 0 2.7 condor_dagman
29021.0 daguser 6/24 17:22 4+15:12:27 H 0 2.7 condor_dagman
29030.0 daguser 6/24 17:22 4+15:12:34 H 0 2.7 condor_dagman
30047.0 daguser 6/29 09:13 0+00:01:56 R 0 2.7 condor_dagman
30048.0 daguser 6/29 09:13 0+00:01:07 R 0 2.7 condor_dagman
30049.0 daguser 6/29 09:14 0+00:01:07 R 0 2.7 condor_dagman
30050.0 daguser 6/29 09:14 0+00:01:06 R 0 2.7 condor_dagman
30051.0 daguser 6/29 09:14 0+00:01:06 R 0 2.7 condor_dagman
30054.0 daguser 6/29 09:15 0+00:00:01 R 0 0.0 uname -n
30055.0 daguser 6/29 09:15 0+00:00:00 R 0 0.0 uname -n
30056.0 daguser 6/29 09:15 0+00:00:00 I 0 0.0 uname -n
30057.0 daguser 6/29 09:15 0+00:00:00 I 0 0.0 uname -n
30058.0 daguser 6/29 09:15 0+00:00:00 I 0 0.0 uname -n
30059.0 daguser 6/29 09:15 0+00:00:00 I 0 0.0 uname -n
30060.0 daguser 6/29 09:15 0+00:00:00 I 0 0.0 uname -n

15 jobs; 5 idle, 7 running, 3 held

The output of the condor_q command lists the supervising condor_dagman jobs.

8. To see extra information about DAG jobs, including how the jobs and processes relate to each
other, use the condor_q command with the -dag option:

$ condor_q -dag daguser

29017.0 daguser 6/24 17:22 4+15:12:28 H 0 2.7 condor_dagman -f -
29021.0 daguser 6/24 17:22 4+15:12:27 H 0 2.7 condor_dagman -f -
29030.0 daguser 6/24 17:22 4+15:12:34 H 0 2.7 condor_dagman -f -
30047.0 daguser 6/29 09:13 0+00:01:50 R 0 2.7 condor_dagman -f -
30057.0 |-B0 6/29 09:15 0+00:00:00 I 0 0.0 uname -n
30058.0 |-C0 6/29 09:15 0+00:00:00 I 0 0.0 uname -n
30048.0 daguser 6/29 09:13 0+00:01:01 R 0 2.7 condor_dagman -f -
30055.0 |-A1 6/29 09:15 0+00:00:00 I 0 0.0 uname -n
30049.0 daguser 6/29 09:14 0+00:01:01 R 0 2.7 condor_dagman -f -
30056.0 |-A2 6/29 09:15 0+00:00:00 I 0 0.0 uname -n
30050.0 daguser 6/29 09:14 0+00:01:00 R 0 2.7 condor_dagman -f -
30059.0 |-B3 6/29 09:15 0+00:00:00 I 0 0.0 uname -n
30060.0 |-C3 6/29 09:15 0+00:00:00 I 0 0.0 uname -n
30051.0 daguser 6/29 09:14 0+00:01:00 R 0 2.7 condor_dagman -f -
30054.0 |-A4 6/29 09:15 0+00:00:00 I 0 0.0 uname -n

15 jobs; 7 idle, 5 running, 3 held

Using the -dag option will show the DAGMan processes that are running, with their associated
node listings. In this example, Job 30047.0 is processing child nodes labelled B0 and C0. These

Chapter 18. DAGMan

144

are the names they were given in the DAG submit file. Each DAG manages its own set of nodes,
so the names of nodes can be traced back to the DAG submit file for each.

9. To remove a DAG job, use the condor_rm command with the job number. When a DAG job is
removed, all jobs associated with it will also be removed.

$ condor_rm 29017.0

10. When submitting multiple concurrent DAGs to DAGMan, it is useful to ensure that each DAG has
its own file area. The easiest way to do this is to ensure that each DAG has a dedicated directory
to store its DAG submission, log, output, and error files.

11. The DAG submit tool contains a -no_submit option. This instructs DAGman to generate a
submission file that can be used by DAGman, but does not submit the job to MRG Grid. This
is an advanced feature that allows additional editing of the original DAG submit file prior to
the submission. It can also be used by external tooling for pre-processing and deferred DAG
submissions:

$ condor_submit_dag -no_submit diamond_dag

Declaring variables
Variables can be declared in a DAG submit file, which can then be expanded at runtime. This
provides the ability to use a central location to store reusable declarations, such as directory paths, or
arguments for jobs.

DAGMan looks for the variable association based on the name of the job. The value of the variable
must be declared inside double quotation marks (").

1. In the DAG submit file, include a VARS declaration:

JOB A A_job.submit
JOB B B_job.submit
JOB C C_job.submit
JOB D D_job.submit
PARENT A CHILD B,C
PARENT B,C CHILD D
VARS A dataset=”small_data.txt”

2. The variables are referenced in the individual node submit file:

node job filename: A_job.submit
executable = A_job
log = A.log
error = A.err
arguments = $(dataset)
queue

3. When the node job A is executed, it will be launched as:

DAGMan jobs

145

A_job small_data.txt

In this example, the argument will only be passed to the A_job.submit file and not the others at
runtime.

Rescuing a DAG
In some cases, a DAG might not be able to completely execute all its node jobs. DAGMan can rescue
this work if it has generated a rescue file to hold the overall progress of the DAG. This is especially
useful for large, complex DAGs that can involve hours of resources.

When a DAG cannot proceed to conclusion due to failures at a node (or nodes), DAGMan will
terminate the execution and generate a rescue file. The rescue file will be functionally equivalent to the
original DAG. Each job that has successfully completed will be marked by the keyword DONE. Rescue
files have the same filename as the original DAG, with .rescueXXX appended, and by default are
written to the same directory as the original DAG submit file.

1. Re-submit a rescue DAG by invoking the original DAG submission command:

$ condor_submit_dag diamond_dag

2. DAGMan will check to see if there are any existing rescue DAG files and will use the latest version
available. For example, if there is a diamond_dag.rescue003 present and no file with a larger
increment, then the DAG will be recovered from that file.

This behavior can be changed on the condor_submit_dag command line by using the
command:

$ condor_submit_dag -DoRescueFrom 2 diamond_dag

This will instruct DAG rescue operations to always start from the DAG rescue file number
specified. Note that number should be input as 1, 2, or 3 and not 001, 002, or 003.

Pre-and-Post script processing
Execution of a DAG can sometimes require the setup and teardown of files and resources external to
DAG job executables. In some cases, it might be necessary to copy and decompress zipped data files
to a staging location prior to the DAG being run. Once the DAG has executed, those same resources
need to be cleaned up. This can be achieved by using the pre- and post-script processing feature of
DAGMan.

1. To run pre- and post-scripts around the core DAG job, add PRE and POST lines to the DAG submit
file:

JOB A A_job.submit
JOB B B_job.submit
JOB C C_job.submit
JOB D D_job.submit
PARENT A CHILD B,C
PARENT B,C CHILD D

Chapter 18. DAGMan

146

SCRIPT PRE C setup_data.sh $JOB
SCRIPT POST C teardown_data.sh $JOB

2. It is also possible to pass a $JOB argument in the script, which represents a job name. This can
be useful for using the job name as part of an external filename or directory.

3. Create the files referenced in the DAG submit file. The content of setup_data.sh might be
something like this:

#!/bin/csh
tar -C staging/$argv[1] -zxf /mnt/storage/$argv[1]/data.tar.gz

The content of teardown_data.sh might be:

#!/bin/csh
rm -fr staging/$argv[1]

This assumes that the node jobs will be set up to use the data from their respective staging
directories.

4. DAGMan monitors the return values of the node job itself, and also the scripts. DAGMan judges
success or failure in the following way:

• If a pre-script returns failure, neither the node job nor the post-script will be executed

• In a node without a post-script, if any one job returns a failure the entire node is considered to
have failed.

• If both the pre-script and post-script in a node return success, the entire node is considered to
have succeeded, regardless of the outcome of any one job.

Nesting DAGs
DAG jobs are static representations that have been completely defined prior to submission. These
static representations can be composed not only from individual node jobs, but also from other DAG
jobs by means of nesting. This makes it easier to manage and visualize large scale DAG jobs in a
hierarchical way. This makes it possible to focus on developing and testing smaller individual DAGs
before integrating them into a larger workflow.

1. In order to nest a DAG inside another DAG as a node, create an inner DAG:

inner.dag
JOB X X_job
JOB Y Y_job
JOB Z Z_job
PARENT X CHILD Y
PARENT Y CHILD Z

2. To nest the inner DAG inside an outer DAG, reference the inner DAG by using the SUBDAG
EXTERNAL command:

DAGMan jobs

147

outer.dag
JOB A A_job.submit
SUBDAG EXTERNAL B inner.dag
JOB C C_job.submit
JOB D D_job.submit
PARENT A CHILD B,C
PARENT B,C CHILD D

3. If a job fails within a nested DAG, a rescue file will be generated for the inner DAG. The failure of
the inner DAG results in the failure of the outer DAG, which will result in a rescue file also being
created for the outer DAG. When the outer DAG file is resubmitted using condor_submit_dag,
its rescue file will be run, which in turn will lead to the rescue file of the inner DAG also being run.

Splicing DAGs
Within nested DAGs, each individual DAG is managed by a dedicated condor_dagman process.
This additional overhead can potentially put a strain on machine resources. An alternative is to use
splicing instead of nesting. Splicing includes an external DAG definition inside another. The included
nodes become part of a larger DAG that can all be managed by a single condor_dagman process. If
one DAG fails, there will be a single rescue file that represents the state of all node jobs in the spliced
DAG.

1. To create a spliced DAG, use the SPLICE in the following syntax:

SPLICE splice name DAG file name

2. A typical spliced submit description file would look something like this:

big.dag
JOB A A_job.submit
SPLICE B inner.dag
JOB C C_job.submit
JOB D D_job.submit
PARENT A CHILD B,C

Chapter 18. DAGMan

148

PARENT B,C CHILD D

DAGMan applies implicit scoping to the names of the spliced nodes inside the new DAG. It uses a
+ character between the splice name and the original DAG job name.

Job submission templates
Environment variables can be used to create job submission templates. Templates can be customized
to provide details such as executable names and arguments.

1. Reference environment variables in a submission file using the $ENV syntax. If not done already,
ensure that the variables to be used have been set in your Bash shell as follows:

$ export MYEXE=”/bin/sleep”

$ export MYARGS=”10”

2. Create the job submission file, referencing the environment variables:

the dag job node file: dag_job.sub
executable = $ENV(MYEXE)
arguments = $ENV(MYARGS)
output = dags/out/dag_job.out.$(cluster)
error = dags/err/dag_job.err.$(cluster)
log path can't use macro
log = dags/log/diamond_dag.log
universe = vanilla
notification = NEVER
should_transfer_files = true
when_to_transfer_output = on_exit
queue

Chapter 19.

149

Application Program Interfaces (APIs)
The MRG Grid Web Service (WS) API is a tool for application developers to be able to interact with
the system. The web interface allows jobs to be submitted and managed, and also offers a two-phase
commit mechanism for reliability and fault-tolerance.

The MRG Grid daemons communicate using the SOAP XML protocol. An application using this
protocol needs to contain code that can handle the communication. The XML Web services
description language (WDSL) required by MRG Grid is included in the distribution, and can be found
at $(RELEASE_DIR)/lib/webservice. The WSDL must be run through a toolkit to produce the
language-specific routines required for communication.

19.1. Using the MRG Grid API
The application can be compiled as follows:
1. Condor must be configured to enable responses to SOAP calls. The WS interface listens on

the condor_schedd daemon's command port. To obtain a list of all the the condor_schedd
daemons in the pool that have a WS interface, use this command at the shell prompt:

$ condor_status -schedd -constraint "HasSOAPInterface=?=TRUE"

2. To determine the port number to use:

$ condor_status -schedd -constraint "HasSOAPInterface=?=TRUE" -l | grep MyAddress

3. To authorize access to the SOAP client, it is also important to set the ALLOW_SOAP and
DENY_SOAP configuration variables.

Transactions
All applications that use the API to interact with the condor_schedd daemon use transactions. The
lifetime of a transaction is limited by the API, and can be further limited by the client application or the
condor_schedd daemon.

Transactions are controlled by methods. They are initiated with a beginTransaction() method and
completed with either a commitTransaction() or an abortTransaction() method.

Some operations will have access to more information when they are performed within a transaction.
As an example of this, a getJobAds() query would have access to information about pending jobs
within the transaction. Because these jobs are not committed they would not be visible outside of
the transaction. However, transactions are designed to be ACID (Atomic, Consistent, Isolated, and
Durable). For this reason, information outside of a transaction should not be queried in order to make
a decision within the transaction.

If required, the API can also accept null transactions. A null transaction can be created by inserting the
programming language's equivalent of null in place of the transaction identifier. In a SOAP message,
the following line achieves this:

Chapter 19. Application Program Interfaces (APIs)

150

<transaction xsi:type="ns1:Transaction" xsi:nil="true"/>

Submitting jobs
A job must be described with a ClassAd. The job ClassAd is then submitted to the condor_schedd
within a transaction using the submit() method. To simplify the creation of a job ClassAd, the
createJobTemplate() method can be called. This method returns a ClassAd structure that can
then be modified to suit.

Important
For jobs that will be executed on Windows platforms, explicitly set the job ClassAd
NTDomain attribute. The owner of the job will authenticate to this NT domain. This
attribute is required but is not set by the createJobTemplate() function.

Necessary parts of the job ClassAd are the ClusterId and ProcId attributes, which uniquely
identify the cluster and the job. When the newCluster() method is called, it is assigned a
ClusterId. Every job submitted is then assigned a ProcId, starting at 0 and incrementing by one
for every job. When newCluster() is called again, it is assigned the next ClusterId and the job
numbering starts again at 0.

This example demonstrates the ClusterId and ProcId attributes.

The following list contains an ordered set of method calls, showing the assigned ClusterId and
ProcId values:
1. A call to newCluster() assigns a ClusterId of 6

2. A call to newJob() assigns a ProcId of 0 as this is the first job within the cluster

3. A call to submit() results in a job submission numbered 6.0

4. A call to newJob(), assigns a ProcId of 1

5. A call to submit() results in a job submission numbered 6.1

6. A call to newJob(), assigns a ProcId of 2

7. A call to submit() results in a job submission numbered 6.2

8. A call to newCluster(), assigns a ClusterId of 7

9. A call to newJob(), assigns a ProcId of 0 as this is the first job within the cluster.

10. A call to submit() results in a job submission numbered 7.0

11. A call to newJob() assigns a ProcId of 1

12. A call to submit() results in a job submission numbered 7.1

Example 19.1. Demonstrating the ClusterId and ProcId attributes

There is always a chance that a call to submit() will fail. Mostly this occurs when the job is in the
queue but something required by the job has not been sent and the job will not be able to be run
succesfully. Sending the information required could potentially resolve this problem. To assist in

Methods

151

determining what requirements a job has, the discoverJobRequirements() method can be called
with a job ClassAd, and will return with a list of requirements for the job.

File transfer
Often, a job submission requires the job's executable and input files to be transferred from the
machine where the application is running to the machine where the condor_schedd is running. The
executable and input files must be sent directly to the condor_schedd daemon and placed in a spool
location. This can be achieved with the declareFile() and sendFile() methods.

The declareFile() and sendFile() methods work together to transfer files to the
condor_schedd. The declareFile() method causes condor_schedd to check if the file exists
in the spool location. This prevents sending a file that already exists. The sendFile() method then
sends the required file, or parts of a file, as base64 encoded data.

The declareFile() method requires the name of the file and its size in bytes. It also accepts
optional information that relates to the hash (encryption) information for the file. When the hash type is
specified as NOHASH, the condor_schedd daemon can not reliably determine if the file exists.

Retrieving files is most useful when a job is completed. When a job is completed and waiting to be
removed, the listSpool() method provides a list of all the files for that job in the spool location. The
getFile() method then retrieves a file.

Once the closeSpool() method has been called, the condor_schedd daemon removes the job
from the queue and the spool files are no longer available. There is no requirement for the application
to invoke the closeSpool() method, which results in jobs potentially remaining in the queue forever.
The configuration variable SOAP_LEAVE_IN_QUEUE can help to mitigate this problem. It is a boolean
value, and when it evaluates to False, the job will be removed from the queue, and its information
moved into the history log.

This example demonstrates the use of the SOAP_LEAVE_IN_QUEUE configuration variable

The following line inserted in the configuration file will result in a job being removed from the queue
once it has been completed for 24 hours:

SOAP_LEAVE_IN_QUEUE = ((JobStatus==4) && ((ServerTime - CompletionDate) < (60 * 60 * 24)))

Example 19.2. Use of the SOAP_LEAVE_IN_QUEUE configuration variable

19.2. Methods

Method Description Parameters Return Value

beginTransaction Begin a transaction. duration - The
expected duration of
the transaction.

If the function
succeeds, the return
value is SUCCESS
and contains the new
transaction.

commitTransaction Commits a transaction. transaction - The
transaction to be
committed.

If the function
succeeds, the return
value is SUCCESS.

Chapter 19. Application Program Interfaces (APIs)

152

Method Description Parameters Return Value

abortTransaction Abort a transaction. transaction - The
transaction to be
aborted.

If the function
succeeds, the return
value is SUCCESS.

extendTransaction Request an extension
in duration for a
specific transaction.

transaction -
The transaction
to be extended
and duration -
The duration of the
extension.

If the function
succeeds, the return
value is SUCCESS
and contains the
transaction with the
extended duration.

Table 19.1. Methods for transaction management

beginTransaction

Begin a transaction. For example:

StatusAndTransaction beginTransaction(int duration);

commitTransaction

Commits a transaction. For example:

Status commitTransaction(Transaction transaction);

abortTransaction

Abort a transaction. For example:

Status abortTransaction(Transaction transaction);

extendTransaction

Request an extension in duration for a specific transaction. For example:

StatusAndTransaction extendTransaction(Transaction transaction, int duration);

Example 19.3. Examples of methods for transaction management

Method Description Parameters Return Value

submit Submit a job. transaction - The
transaction in which
the submission takes
place; clusterId -
The cluster identifier;
jobId - The job
identifier; jobAd - The
ClassAd describing the
job.

If the function
succeeds, the return
value is SUCCESS
and contains the
transaction with the job
requirements.

Methods

153

Method Description Parameters Return Value

createJobTemplate Request a job ClassAd,
given some of the
job requirements.
This ClassAd will be
suitable for use when
submitting the job.

clusterId - The
cluster identifier;
jobId - The job
identifier; owner - The
name to be associated
with the job; type -
The universe under
which the job will
run; command - The
command to execute
once the job has
started; arguments
- The command-
line arguments
for command;
requirements -
The requirements
expression for the
job. type can be any
one of the following:
VANILLA = 5,
SCHEDULER = 7, MPI
= 8, GRID = 9, JAVA
= 10, PARALLEL =
11, LOCALUNIVERSE
= 12 or VM = 13.

If the function
succeeds, the return
value is SUCCESS.

discoverJobRequirementsDiscover the
requirements of a job,
given a ClassAd.

jobAd - The ClassAd
of the job.

If the function
succeeds, the return
value is SUCCESS
and contains the job
requirements.

Table 19.2. Methods for job submission

submit

Submit a job. For example:

StatusAndRequirements submit(Transaction transaction, int clusterId, int jobId, ClassAd
 jobAd);

createJobTemplate

Request a job ClassAd, given some of the job requirements. This ClassAd will be suitable for use
when submitting the job. For example:

StatusAndClassAd createJobTemplate(int clusterId, int jobId, String owner, UniverseType type,
 String command, String arguments, String requirements);

discoverJobRequirements

Discover the requirements of a job, given a ClassAd. For example:

Chapter 19. Application Program Interfaces (APIs)

154

StatusAndRequirements discoverJobRequirements(ClassAd jobAd);

Example 19.4. Examples of methods for job submission

Method Description Parameters Return Value

declareFile Declare a file to be
used by a job.

transaction - The
transaction in which
the file is declared;
clusterId - The
cluster identifier;
jobId - The identifier
of the job that will use
the file; name - The
name of the file; size
- The size of the file;
hashType - The type
of hash mechanism
used to verify file
integrity; hash - An
optionally zero-length
string encoding of the
file hash. hashType
can be either NOHASH
or MD5HASH

If the function
succeeds, the return
value is SUCCESS.

sendFile Send a file that a job
may use.

transaction -
The transaction in
which this file is send;
clusterId - The
cluster identifier;
jobId - An identifier of
the job that will use the
file; name - The name
of the file being sent;
offset - The starting
offset within the file
being sent; data - The
data block being sent.
This could be the entire
file or a sub-section of
the file as defined by
offset and length.

If the function
succeeds, the return
value is SUCCESS.

getFile Get a file from a job's
spool.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster in which to
search; jobId - The
job identifier the file is

If the function
succeeds, the return
value is SUCCESS and
contains the file or a
sub-section of the file
as defined by offset
and length.

Methods

155

Method Description Parameters Return Value
associated with; name
- The name of the file
to retrieve; offset
- The starting offset
within the file being
retrieved; length -
The length from the
offset to retrieve.

closeSpool Close a job's spool.
All the files in the job's
spool can be deleted.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster identifier which
the job is associated
with; jobId - The job
identifier for which the
spool is to be removed.

If the function
succeeds, the return
value is SUCCESS.

listSpool List the files in a job's
spool.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster in which to
search; jobId - The
job identifier to search
for.

If the function
succeeds, the return
value is SUCCESS and
contains a list of files
and their respective
sizes.

Table 19.3. Methods for file transfer

declareFile

Declare a file to be used by a job. For example:

Status declareFile(Transaction transaction, int clusterId, int jobId, String name, int size,
 HashType hashType, String hash);

sendFile

Send a file that a job can use. For example:

Status sendFile(Transaction transaction, int clusterId, int jobId, String name, int offset,
 Base64 data);

getFile

Get a file from a job's spool. For example:

StatusAndBase64 getFile(Transaction transaction, int clusterId, int jobId, String name, int
 offset, int length);

Chapter 19. Application Program Interfaces (APIs)

156

closeSpool

Close a job's spool. All the files in the job's spool can be deleted. For example:

Status closeSpool(Transaction transaction, int clusterId, int jobId);

listSpool

List the files in a job's spool. For example:

StatusAndFileInfoArray listSpool(Transaction transaction, int clusterId, int jobId);

Example 19.5. Examples of methods for file transfer

Method Description Parameters Return Value

newCluster Create a new job
cluster.

transaction - The
transaction in which
this cluster is created.

If the function
succeeds, the return
value is SUCCESS and
contains the cluster ID.

removeCluster Remove a job cluster,
and all the jobs within
it.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster to remove;
reason - The reason
for the removal.

If the function
succeeds, the return
value is SUCCESS.

newJob Creates a new job
within the most recently
created job cluster.

transaction - The
transaction in which
this job is created;
clusterId - The
cluster identifier of the
most recently created
cluster.

If the function
succeeds, the return
value is SUCCESS and
contains the job ID.

removeJob Remove a job,
regardless of the job's
state.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster identifier to
search in; jobId - The
job identifier to search
for; reason - The
reason for the release;
forceRemoval - Set
if the job should be
forcibly removed.

If the function
succeeds, the return
value is SUCCESS.

Methods

157

Method Description Parameters Return Value

holdJob Put a job into the Hold
state, regardless of the
job's current state.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster in which to
search; jobId - The
job identifier to search
for; reason - The
reason for the release;
emailUser - Set if
the submitting user
should be notified;
emailAdmin - Set
if the administrator
should be notified;
systemHold - Set if
the job should be put
on hold.

If the function
succeeds, the return
value is SUCCESS.

releaseJob Release a job that has
been in the Hold state.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster in which to
search; jobId - The
job identifier to search
for; reason - The
reason for the release;
emailUser - Set if
the submitting user
should be notified;
emailAdmin - Set
if the administrator
should be notified.

If the function
succeeds, the return
value is SUCCESS.

getJobAds Find an array of job
ClassAds.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
constraint - A
string constraining the
number of ClassAds to
return.

If the function
succeeds, the return
value is SUCCESS
and contains all job
ClassAds matching the
given constraint.

getJobAd Finds a specific job
ClassAd.

transaction - An
optionally nullable
transaction, this call

If the function
succeeds, the return
value is SUCCESS and

Chapter 19. Application Program Interfaces (APIs)

158

Method Description Parameters Return Value
does not need to
occur in a transaction;
clusterId - The
cluster in which to
search; jobId - The
job identifier to search
for.

contains the requested
job ClassAd.

requestReschedule Request a
condor_reschedule
from the
condor_schedd
daemon.

If the function
succeeds, the return
value is SUCCESS.

Table 19.4. Methods for job management

newCluster

Create a new job cluster. For example:

StatusAndInt newCluster(Transaction transaction);

removeCluster

Remove a job cluster, and all the jobs within it. For example:

Status removeCluster(Transaction transaction, int clusterId, String reason);

newJob

Creates a new job within the most recently created job cluster. For example:

StatusAndInt newJob(Transaction transaction, int clusterId);

removeJob

Remove a job, regardless of the job's state. For example:

Status removeJob(Transaction transaction, int clusterId, int jobId, String reason, boolean
 forceRemoval);

holdJob

Put a job into the Hold state, regardless of the job's current state. For example:

Status holdJob(Transaction transaction, int clusterId, int jobId, string reason, boolean
 emailUser, boolean emailAdmin, boolean systemHold);

releaseJob

Release a job that has been in the Hold state. For example:

Status releaseJob(Transaction transaction, int clusterId, int jobId, String reason, boolean
 emailUser, boolean emailAdmin);

Methods

159

getJobAds

Find an array of job ClassAds. For example:

StatusAndClassAdArray getJobAds(Transaction transaction, String constraint);

requestReschedule

Request a condor_reschedule from the condor_schedd daemon. For example:

Status requestReschedule();

Example 19.6. Examples of methods for job management

Method Description Parameters Return Value

insertAd type - The type of
ClassAd to insert; ad -
The ClassAd to insert.
type can be any one
of: STARTD-AD-TYPE,
QUILL-AD-TYPE,
SCHEDD-AD-TYPE,
SUBMITTOR-AD-TYPE,
LICENSE-AD-TYPE,
MASTER-AD-TYPE,
CKPTSRVR-AD- TYPE,
COLLECTOR-AD-TYPE,
STORAGE-AD-TYPE,
NEGOTIATOR-AD-
TYPE, HAD-AD-TYPE
or GENERIC-AD-TYPE.

If the function
succeeds, the return
value is SUCCESS.

queryStartdAds Search for
condor_startd
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the
condor_startd
ClassAds matching the
given constraint.

queryScheddAds Search for
condor_schedd
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the
condor_schedd
ClassAds matching the
given constraint.

queryMasterAds Search for
condor_master
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the
condor_master
ClassAds matching the
given constraint.

querySubmittorAds Search for submitter
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the
submitter ClassAds
matching the given
constraint.

queryLicenseAds Search for license
ClassAds.

constraint - A
string constraining the

A list of all the license
ClassAds matching the
given constraint.

Chapter 19. Application Program Interfaces (APIs)

160

Method Description Parameters Return Value
number ClassAds to
return.

queryStorageAds Search for storage
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the storage
ClassAds matching the
given constraint.

queryAnyAds Search for any
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the
ClassAds matching the
given constraint.

Table 19.5. Methods for ClassAd management

insertAd

For example:

Status insertAd(ClassAdType type, ClassAdStruct ad);

queryStartdAds

Search for condor_startd ClassAds. For example:

ClassAdArray queryStartdAds(String constraint);

queryScheddAds

Search for condor_schedd ClassAds. For example:

ClassAdArray queryScheddAds(String constraint);

queryMasterAds

Search for condor_master ClassAds. For example:

ClassAdArray queryMasterAds(String constraint);

querySubmittorAds

Search for submitter ClassAds. For example:

ClassAdArray querySubmittorAds(String constraint);

queryLicenseAds

Search for license ClassAds. For example:

ClassAdArray queryLicenseAds(String constraint);

queryStorageAds

Search for storage ClassAds. For example:

Methods

161

ClassAdArray queryLicenseAds(String constraint);

queryAnyAds

Search for any ClassAds. For example:

ClassAdArray queryAnyAds(String constraint);

Example 19.7. Examples of methods for ClassAd management

Method Description Return Value

getVersionString Determine the Condor version. Returns the Condor version as
a string.

getPlatformString Determine the platform
information.

Returns the platform
information as string.

Table 19.6. Methods for version information

getVersionString

Determine the Condor version. For example:

StatusAndString getVersionString();

getPlatformString

Determine the platform information. For example:

StatusAndString getPlatformString();

Example 19.8. Examples of methods for version information

Many methods return a status, Table 19.7, “StatusCode return values” lists the possible return values:

Value Identifier Definition

0 SUCCESS No errors returned.

1 FAIL An error occurred that is not
specific to another error code

2 INVALIDTRANSACTION No such transaction exists

3 UNKNOWNCLUSTER The specified cluster is not the
currently active one

4 UNKNOWNJOB The specified job does not
exist, or can not be found.

5 UNKNOWNFILE The specified file does not
exist, or can not be found.

6 INCOMPLETE The request is incomplete.

7 INVALIDOFFSET The specified offset is invalid.

8 ALREADYEXISTS For this job, the specified file
already exists

Table 19.7. StatusCode return values

162

Chapter 20.

163

Frequently Asked Questions
Q: How do I download MRG Grid?

A: MRG Grid is available through the Red Hat Network. For full instructions on downloading and
installing MRG Grid, read the MRG Grid Installation Guide available from the Red Hat Enterprise
MRG documentation page1.

Q: What platforms are supported?

A: MRG Grid is supported under most recent versions of Red Hat Enterprise Linux. Full information
is available from the Red Hat Enterprise MRG hardware page2.

Q: Can I access the source code?

A: Yes! The source code is made available in the source RPM distributed by Red Hat. MRG Grid
source code is distributed under the Apache ASL 2.0 license3.

Q: MRG Grid sends me too much email. What should I do with it all?

A: You should not ignore all the mail sent to you, but you can dramatically reduce the amount you
get. When jobs are submitted, ensure they contain the following line:

Notification = Error

This will make sure that you only receive an email if an error has occurred. Note that this means
you will not receive emails when a job completes successfully.

Q: My job starts but exits right away with signal 9. What's wrong?

A: This error occurs most often when a shared library is missing. If you know which file is missing,
you can re-install it on all machines that might execute the job. Alternatively, re-link your program
so that it contains all the information it requires.

Q: None or only some of my jobs are running, even though there's resources available in the pool.
How can I fix this?

A: Firstly, you will need to discover where the problem lies. Try these steps to work out what is
wrong:

1. Run condor_q -analyze and condor_q -better to check the output they give you

2. Look at the User Log file. This is the file that you specified as log = path/to/
filename.log in the submit file. From this file you should be able to tell if the jobs are
starting to run, or if they are exiting before they begin.

3. Look at the SchedLog on the submit machine after it has performed the negotiation for the
user. If a user doesn't have a high enough enough priority to access more resources, then
this log will contain a message that says Lost priority, no more jobs.

http://redhat.com/docs/en-US/Red_Hat_Enterprise_MRG
http://redhat.com/docs/en-US/Red_Hat_Enterprise_MRG
http://www.redhat.com/mrg/hardware/
http://www.apache.org/licenses/LICENSE-2.0

Chapter 20. Frequently Asked Questions

164

4. Check the ShadowLog on the submit machine for warnings or errors. If jobs are successfully
being matched with machines, they still might be failing when they try to execute. This can
be caused by file permission problems or similar errors.

5. Look at the NegotiatorLog during the negotiation for the user. Look for messages about
priority or errors such as No more machines.

Another common problem that will stop jobs running is if the submit machine does not have
adequate swap space. This will produce an error in the SCHEDD_LOG file:

[date] [time] Swap space estimate reached! No more jobs can be run!
[date] [time] Solution: get more swap space, or set RESERVED_SWAP = 0
[date] [time] 0 jobs matched, 1 jobs idle

The amount of swap space on the submit machine is calculated by the system. Serious errors
can occur in a situation where a machine has a lot of physical memory and little or no swap
space. Because physical memory is not considered, Condor might calculate that it has little or no
swap space, and so it will not run the submitted jobs.

You can check how much swap space has been calculated as being available, by running the
following command from the shell prompt:

$ condor_status -schedd [hostname] -long | grep VirtualMemory

If the value in the output is 0, then you will need to tell the system that it has some swap space.
This can be done in two ways:

1. Configure the machine with some more actual swap space; or

2. Disable the check. Define the amount of reserved swap space for the submit machine as
0, and change the RESERVED_SWAP configuration variable to 0. You will need to perform
condor_restart on the submit machine to pick up the changes.

Q: I submitted a job, but now my requirements expression has extra things in it that I didn't put
there. How did they get there and why do I need them?

A: This occurs automatically, and are extensions that are required by Condor. This is a list of the
things that are automatically added:

• If arch and opsys are not specified in the submit description file, they will be added. It will
insert the same platform details as the machine from which the job was submitted.

• The expression Memory * 1024 > ImageSize is automatically added. This makes sure
that the job runs on a machine with at least as much physical memory as the memory footprint
of the job.

• If the Disk >= DiskUsage is not specified, it will be added. This makes sure that the job will
only run on a machine with enough disk space for the job's local input and output.

• A pool administrator can request that certain expressions are added to submit files. This is
done using the following configuration variables:

165

• APPEND_REQUIREMENTS

• APPEND_REQ_VANILLA

• APPEND_REQ_STANDARD

Q: What signals get sent to my jobs when they are pre-empted or killed, or when I remove them
from the queue? Can I tell Condor which signals to send?

A: The signal jobs are sent can be set in the submit description file, by adding either of the following
lines:

remove_kill_sig = SIGWHATEVER

kill_sig = SIGWHATEVER

If no signal is specified, the SIGTERM signal will be used. In the case of a hard kill, the SIGKILL
signal is sent instead.

Q: Why does the time output from condor_status appear as [?????]?

A: Collecting time data from an entire pool of machines can cause errant timing calculations if the
system clocks of those machines differ. If a time is calculated as negative, it will be displayed as
[?????]. This can be fixed by synchronizing the time on all machines in the pool, using a tool
such as NTP (Network Time Protocol).

Q: Condor commands are running very slowly. What is going on?

A: Some Condor commands will react slowly if they expect to find a condor_collector daemon,
but can not find one. If you are not running a condor_collector daemon, change the
COLLECTOR_HOST configuration variable to nothing:

COLLECTOR_HOST=

Q: If I submit jobs under NFS, they fail a lot. What's going on?

A: If the directory you are using when you run condor_submit is automounted under NFS
(Network File System), Condor might try to unmount the volume before the job has completed.

To fix the problem, use the initialdir command in your submit description file with a
reference to the stable access point. For example, if the NFS automounter is configured to
mount a volume at /a/myserver.company.com/vol1/user whenever the directory /home/
user is accessed, add this line to the submit description file:

initialdir = /home/user

Q: Why is my Java job completing so quickly?

Chapter 20. Frequently Asked Questions

166

A: The java universe executes the Java program's main() method and waits for it to return. When
it returns, Condor considers your job to have been completed. This can happen inadvertantly
if the main() method is starting threads for processing. To avoid this, ensure you join() all
threads spawned in the main() method.

Q: Are there any special configuration macros I can use?

A: Yes. Use this command at the shell prompt to find out what they are:

$ env CONDOR_CONFIG=ONLY_ENV condor_config_val -dump

Q: I can submit a job through the web service interface of condor using the SOAP API, and then
remove the job from the pool using condor_rm. But when I check that the job has been
removed, condor_q reports the status as X. How do I remove the job completely?

A: Jobs are marked as completed using the closeSpool method. If the closeSpool is not
invoked, jobs can remain in the queue forever. Use the SOAP_LEAVE_IN_QUEUE configuration
variable to fix this problem. A good option is to set the SOAP_LEAVE_IN_QUEUE variable to
invoke the closeSpool method once the job has been completed for 24 hours, like this:

SOAP_LEAVE_IN_QUEUE = ((JobStatus==4) && ((ServerTime - CompletionDate) < (60 * 60 *
 24)))

Q: I tried to submit a Linux job to a Linux central manager using a node running Windows. Why
didn't it work?

A: Submitting Linux jobs from a node running Windows to a Linux central manager is currently not
supported. Submit the job from a machine running Linux instead.

Q: My log files contain errors saying PERMISSION DENIED. What does that mean?

A: This can happen if the configuration variables ALLOW_* and DENY_* are not configured
correctly. Check these parameters and set ALLOW_* and DENY_* as appropriate.

Q: What happens if the central manager crashes?

A: If the central manager crashes, jobs that are already running will continue as normal. Queued
jobs will remain in the queue but will not begin running until the central manager is restarted and
begins matchmaking again.

Q: The condor daemons are running, but I get no output when I run condor_status. What is
wrong?

A: Check the collector log. You should see a message similar to this:

DaemonCore: PERMISSION DENIED to host 128.105.101.15:9618 for command 0
 (UPDATE_STARTD_AD)

This type of error is caused when permissions are configured correctly. Try the following:

167

• Ensure that DNS inverse lookup works on your machines (when you type in an IP address,
you machine can find the domain name). If it is not working, either fix the DNS problem itself,
or set the DEFAULT_DOMAIN_NAME setting in the configuration file

• Use numeric IP addresses instead of domain names when setting the ALLOW_WRITE and
DENY_WRITE configuration macros

• If the problem is caused by being too restrictive, try using wildcards when defining the
address. For example, instead of using:

ALLOW_WRITE = condor.your.domain.com

try using:

ALLOW_WRITE = *.your.domain.com

Q: How do I stop my job moving to different CPUs?

A: You will need to define which slot you want the job to run on. You can do this using
either numactl or taskset. If you are running jobs from within your own program, use
sched_setaffinity and pthred_{,attr_}setaffinity to achieve the same result.

Q: I have a High Availability setup, but sometimes the schedd keeps on trying to start but exits with
a status 0. Why is this happening?

A: In an High-Available Scheduler setup with 2 nodes (Node A and Node B), Condor will start
on Node A and brings up the schedd, before it starts on Node B. On node B, the schedd
continually attempts to start and exits with status 0.

This can be caused by the two nodes using different HA schedd names. In this case, the
schedd on Node B will continually try to start, but will not be able to because of lock conflicts.

This problem can be solved by using the same name for the schedd on both nodes. This will
make the schedd on Node B realize that one is already running, and it doesn't need to start.
Change the SCHEDD_NAME configuration entry on both nodes so that the name is identical.

Note that this configuration will allow other schedulers to run on other nodes besides the HA
SCHEDD_NAME. So you can have HA (on two nodes) and other schedds elsewhere.

Q: When I use a custom kill signal, the condor_startd crashes. Why does this happen?

A: When you try to kill a job with a custom signal, it can sometimes cause a race condition to
occur between the starter and the startd. This happens when the startd communicates with the
starter using procd. The startd will always wait the value specified in the killing_timeout
parameter before hard-killing the starter. However, by default the starter will wait for the value
specified in the killing_timeout-1 configuration variable before attempting to hard-kill
the job. This means that it is sometimes possible for the startd to be attempting to hard-kill the
starter, while the starter is cleaning up and exiting. It causes the starter to stop communicating
with the procd, which makes the startd suffer a communication failure, and then crash.

This can be handled in two ways:

Chapter 20. Frequently Asked Questions

168

1. Set STARTD.USE_PROCD = FALSE and STARTER.USE_PROCD = FALSE in the
configuration settings. This is the most reliable way to handle the situation.

2. All jobs that use a custom kill signal should have kill_sig_timeout set to a reasonable
time in the submit description file. This will require adjustment, as the timing can be
dependent on the jobs running, and the load on the startd. Also, kill_sig_timeout
cannot be a larger value than killing_timeout-1.

Chapter 21.

169

More Information
Reporting Bugs
Follow these instructions to enter a bug report:

1. You will need a Bugzilla1 account. You can create one at Create Bugzilla Account2.

2. Once you have a Bugzilla account, log in and click on Enter A New Bug Report3.

3. You will need to identify the product (Red Hat Enterprise MRG), the version (1.3), and
whether the bug occurs in the software (component=grid) or in the documentation
(component=Grid_Installation_Guide).

Further Reading
Red Hat Enterprise MRG and MRG Grid Product Information

http://www.redhat.com/mrg

MRG Grid User Guide and other Red Hat Enterprise MRG manuals
http://docs.redhat.com/docs/en-US/index.html

Condor Manual
http://www.cs.wisc.edu/condor/manual/

Red Hat Knowledgebase
https://access.redhat.com/knowledge/search

https://bugzilla.redhat.com/index.cgi
https://bugzilla.redhat.com/createaccount.cgi
https://bugzilla.redhat.com/enter_bug.cgi
http://www.redhat.com/mrg
http://docs.redhat.com/docs/en-US/index.html
http://www.cs.wisc.edu/condor/manual/
https://access.redhat.com/knowledge/search

170

171

Appendix A. Configuration options
This section describes individual variables used to configure all parts of the MRG Grid system.
General information about the configuration files and their syntax can be found in Chapter 2,
Configuration

A.1. Pre-defined configuration macros
MRG Grid provides pre-defined configuration macros to help simplify configuration. These settings are
determined automatically and cannot be overwritten.

FULL_HOSTNAME
The fully qualified hostname of the local machine (domain name and hostname)

HOSTNAME
The hostname of the local machine

IP_ADDRESS
The local machine's IP address as an ASCII string

TILDE
The full path to the home directory of the user running MRG Grid, if the user exists on the local
machine. By default, this will be the condor user.

Subsystems
The subsystem name of the daemon or tool that is evaluating the macro. This is a unique string which
identifies a given daemon within the MRG Grid system. Some possible subsystem names are:

• STARTD

• SCHEDD

• MASTER

• COLLECTOR

• NEGOTIATOR

• KBDD

• SHADOW

• STARTER

• GRIDMANAGER

• HAD

• REPLICATION

• JOB_ROUTER

Appendix A. Configuration options

172

A.2. Static pre-defined configuration macros
These settings are determined automatically and cannot be overwritten.

ARCH
Defines the string used to identify the architecture of the local machine to MRG Grid. This allows
jobs to be submitted for a given platform and MRG Grid will force them to run on the correct
machines

OPSYS
Defines the string used to identify the operating system of the local machine to MRG Grid. If it is
not defined in the configuration file, MRG Grid will automatically insert the operating system of the
current machine as determined by the uname command

UNAME_ARCH
The architecture as reported by the uname command's machine field

UNAME_OPSYS
The operating system as reported by the uname command's sysname field

PID
The process ID of the daemon or tool

PPID
The process ID of the daemon or tool's parent process

USERNAME
The name of the user running the daemon or tool. For daemons started as the root user, but
running under another user, that username will be used instead of root

A.3. System Wide Configuration File Variables
These settings affect all parts of the MRG Grid system.

FILESYSTEM_DOMAIN
Defaults to the fully qualified hostname of the current machine.

UID_DOMAIN
Defaults to the fully qualified hostname of the current machine it is evaluated on.

COLLECTOR_HOST
The host name of the machine where the condor_collector is running for the pool.
COLLECTOR_HOST must be defined for the pool to work properly.

This setting can also be used to specify the network port of the condor_collector. The port
is separated from the host name by a colon. To set the network port to 1234, use the following
syntax:

COLLECTOR_HOST = $(CONDOR_HOST):1234

If no port is specified, the default port of 9618 is used.

System Wide Configuration File Variables

173

CONDOR_VIEW_HOST
The host name of the machine where the CondorView server is running. This service is optional,
and requires additional configuration to enable it. If CONDOR_VIEW_HOST is not defined, no
CondorView server is used.

RELEASE_DIR
The full path to the MRG Grid release directory, which holds the bin, etc, lib and sbin
directories. There is no default value for RELEASE_DIR.

BIN
The directory where user-level programs are installed.

LIB
The directory where libraries used to link jobs for MRG Grid's standard universe are stored.

LIBEXEC
The directory where support commands are placed. Do not add this directory to a user or system-
wide path.

INCLUDE
The directory where header files are placed.

SBIN
The directory where system binaries and administrative tools are installed. The directory defined at
SBIN should also be in the path of users acting as administrators.

LOCAL_DIR
The location of the local Condor directory on each machine in your pool. One common option is to
use the condor user's home directory which may be specified with $(TILDE), in this format:

LOCAL_DIR = $(TILDE)

On machines with a shared file system, where the directory is shared among all machines in your
pool, use the $(HOSTNAME) macro and have a directory with many sub-directories, one for each
machine in your pool. For example:

LOCAL_DIR = $(tilde)/hosts/$(hostname)

or:

LOCAL_DIR = $(release_dir)/hosts/$(hostname)

LOG
The directory where each daemon writes its log files. The names of the log files themselves are
defined with other macros, which require the $(LOG) macro.

SPOOL
The directory where files used by condor_schedd are stored, including the job queue file and
the initial executables of any jobs that have been submitted. If a given machine executes jobs but
does not submit them, it does not require a SPOOL directory.

Appendix A. Configuration options

174

EXECUTE
The scratch directory for the local machine. The scratch directory is used as the destination for
input files that were specified for transfer. It also serves as the job's working directory if the job is
using file transfer mode and no other working directory is specified. If a given machine submits
jobs but does not execute them, it does not require an EXECUTE directory. To customize the
execute directory independently for each batch slot, use SLOTx_EXECUTE.

REQUIRE_LOCAL_CONFIG_FILE
A boolean value that defaults to true. This will cause MRG Grid to exit with an error if any file
listed in LOCAL_CONFIG_FILE cannot be located. If the value is set to false, MRG Grid will ignore
any local configuration files that cannot be located and continue. If LOCAL_CONFIG_FILE is not
defined, and REQUIRE_LOCAL_CONFIG_FILE has not been explicitly set to false, an error will be
caused.

CONDOR_IDS
The User ID (UID) and Group ID (GID) for Condor daemons to use when run by the root user. This
value can also be set using the CONDOR_IDS environment variable. The syntax is:

CONDOR_IDS = UID.GID

To set a UID of 1234 and a GID of 5678, use the following setting:

CONDOR_IDS = 1234.5678

If CONDOR_IDS is not set and the daemons are run by the root user, MRG Grid will search for a
condor user on the system, and use that UID and GID.

CONDOR_ADMIN
An email address for MRG Grid to send messages about any errors that occur in the pool, such as
a daemon failing.

CONDOR_SUPPORT_EMAIL
The email address to be included in the footer of all email sent out by MRG Grid. The footer reads:

Email address of the local MRG Grid administrator: admin@example.com

If this setting is not defined, MRG Grid will use the address specified in CONDOR_ADMIN.

MAIL
The full path to a text based email client, such as /bin/mail. The email client must be able
to accept mail messages and headers as standard input (STDIN) and use the -s command to
specify a subject for the message. On all platforms, the default shipped with MRG Grid should
work. This setting will only need to be changed if the installation is in a non-standard location. The
condor_schedd will not function unless MAIL is defined.

RESERVED_SWAP
The amount (in megabytes) of memory swap space reserved for use by the machine. MRG Grid
will stop initializing processes if the amount of available swap space falls below this level. The
default value is 5MB.

System Wide Configuration File Variables

175

RESERVED_DISK
The amount (in megabytes) of disk space reserved for use by the machine. When reporting, MRG
Grid will subtract this amount from the total amount of available disk space. The default value is
0MB (zero megabytes).

LOCK
MRG Grid creates lock files in order to synchronize access to various log files. If the local Condor
directory is not on a local partition, be sure to set the LOCK entry to avoid problems with file
locking.

The user and group that MRG Grid runs as need to have write access to the directory that
contains the lock files. If no value for LOCK is provided, the value of LOG is used.

HISTORY
The location of the history file, which stores information about all jobs that have completed
on a given machine. This setting is used by condor_schedd to append information, and
condor_history the user-level program used to view the file. The default value is $(SPOOL)/
history. If not defined, no history file will be kept.

ENABLE_HISTORY_ROTATION
A boolean value that defaults to true. When false, the history file will not be rotated, and the history
will continue to grow in size until it reaches the limits defined by the operating system. The rotated
files are stored in the same directory as the history file. Use MAX_HISTORY_LOG to define the size
of the file and MAX_HISTORY_ROTATIONS to define the number of files to use when rotation is
enabled.

MAX_HISTORY_LOG
Defines the maximum size (in bytes) for the history file, before it is rotated. Default value is
20,971,520 bytes (20MB). This parameter is only used if history file rotation is enabled.

MAX_HISTORY_ROTATIONS
Defines how many files to use for rotation. Defaults to 2. In this case, there may be up to three
history files at any one time - two backups and the history file that is currently being written. The
oldest file will removed first on rotation.

MAX_JOB_QUEUE_LOG_ROTATIONS
The job queue database file is periodically rotated in order to save disk space. This option controls
how many rotated files are saved. Defaults to 1. In this case, there may be up to two history files at
any one time - the backup which has been rotated out of use, and the history file that is currently
being written. The oldest file will be removed first on rotation.

NO_DNS
A boolean value that defaults to false. When true, MRG Grid constructs hostnames automatically
using the machine's IP address and DEFAULT_DOMAIN_NAME.

DEFAULT_DOMAIN_NAME
The domain name for the machine. This value is appended to the hostname in order to create a
fully qualified hostname. This value should be set in the global configuration file, as MRG Grid
can depend on knowing this value in order to locate the local configuration files. The default value
is an example, and must be changed to a valid domain name. This variable only operates when
NO_DNS is set to true.

Appendix A. Configuration options

176

EMAIL_DOMAIN
Defines the domain to use for email. If a job is submitted and the user has not specified
notify_user in the submit description file, MRG Grid will send any email about that job to
username@UID_DOMAIN. If all the machines share a common UID domain, but email to this
address will not work, you will need to define the correct domain to use. In many cases, you can
set EMAIL_DOMAIN to FULL_HOSTNAME.

CREATE_CORE_FILES
A boolean value that is undefined by default, in order to allow the default operating system value
to take precedence. If set to true, the Condor daemons will create core files in the LOG directory in
the case of a segmentation fault (segfault). When set to false no core files will be created. When
left undefined, it will retain the setting that was in effect when the Condor daemons were started.
Core files are used primarily for debugging purposes.

ABORT_ON_EXCEPTION
A boolean value that defaults to false. When set to true MRG Grid will abort on a fatal internal
exception. If CREATE_CORE_FILES is also true, MRG Grid will create a core file when an
exception occurs.

Q_QUERY_TIMEOUT
The amount of time (in seconds) that condor_q will wait when trying to connect to
condor_schedd, before causing a timeout error. Defaults to 20 seconds.

DEAD_COLLECTOR_MAX_AVOIDANCE_TIME
For pools where High Availability is in use. Defines the maximum time (in seconds) to wait in
between checks for a failed primary condor_collector daemon. If connections to the dead
daemon take very little time to fail, new query attempts become more frequent. Defaults to 3600 (1
hour).

NETWORK_MAX_PENDING_CONNECTS
The maximum number of simultaneous network connection attempts. condor_schedd can try to
connect to large numbers of startds when claiming them. The negotiator may also connect to
large numbers of startds when initiating security sessions. Defaults to 80% of the process file
descriptor limit, except on Windows operating systems, where the default is 1600.

WANT_UDP_COMMAND_SOCKET
A boolean value that defaults to true. When true, Condor daemons will create a UDP command
socket in addition to the required TCP command socket. When false, only the TCP command
socket will be created. If you modify this setting, you will need to restart all Condor daemons.

MASTER_INSTANCE_LOCK
The name of the lock file to prevent multiple condor_master daemons from starting. This is
useful when using shared file systems like NFS, where the lock files exist on a local disk. Defaults
to $(LOCK)/InstanceLock. The $(LOCK) macro can be used to specify the location of all lock
files, not just the condor_master instance lock. If $(LOCK) is undefined, the master log itself will
be locked.

SHADOW_LOCK
The lock file to be used for access to the ShadowLog file. It must be a separate file from the
ShadowLog, since the ShadowLog might be rotated and access will need to be synchronized
across rotations. This macro is defined relative to the $(LOCK) macro.

Logging configuration variables

177

LOCAL_QUEUE_BACKUP_DIR
The directory to use to back up the local queue. This directory must be located on a non-network
filesystem.

LOCAL_XACT_BACKUP_FILTER
Defines whether or not to back up transactions based on whether or not the commit was
successful. When set to ALL local transaction backups will always be kept. When set to NONE
local transaction backups will never be kept. When set to FAILED local transaction backups will be
kept for transactions that have failed to commit.

To retain backups, LOCAL_QUEUE_BACKUP_DIR must be set to a valid directory and
LOCAL_XACT_BACKUP_FILTER must be set to something other than NONE.

X_CONSOLE_DISPLAY
The name of the display that the condor kbdd daemon should monitor. Defaults to :0.0.

A.4. Logging configuration variables
These variables control logging. Many of these variables apply to each of the possible subsystems. In
each case, replace the word SUBSYSTEM with the name of the appropriate subsystem.

SUBSYSTEM_LOG
The name of the log file for a given subsystem. For example, STARTD_LOG gives the location of
the log file for the condor_startd daemon.

MAX_SUBSYSTEM_LOG
The maximum size a log file is allowed to grow to, in bytes. Each log file will grow to the specified
length, then be saved to a file with the suffix .old. The .old files are overwritten each time
the log is saved, thus the maximum space devoted to logging for any one program will be twice
the maximum length of its log file. A value of 0 specifies that the file may grow without bounds.
Deafults to 1MB.

TRUNC_SUBSYSTEM_LOG_ON_OPEN
When TRUE, the log will be restarted with an empty file every time the program is run. When
FALSE new entries will be appended. Defaults to FALSE.

SUBSYSTEM_LOCK
Specifies the lock file used to synchronize additions to the log file. It must be a separate file from
the SUBSYSTEM_LOG file, since that file can be rotated and synchronization should occur across
log file rotations. A lock file is only required for log files which are accessed by more than one
process. Currently, this includes only the SHADOW subsystem. This macro is defined relative to
the LOCK macro.

FILE_LOCK_VIA_MUTEX
This setting is for Windows platforms only. When TRUE logs are able to be locked using a mutex
instead of by file locking. This can correct problems on Windows platforms where processes
starve waiting for a lock on a log file. Defaults to TRUE on Windows platforms. Always set to
FALSE on Unix platforms.

ENABLE_USERLOG_LOCKING
When TRUE the job log specified in the submit description file is locked before being written to.
Defaults to TRUE.

Appendix A. Configuration options

178

TOUCH_LOG_INTERVAL
The time interval between daemons creating (using the touch command) log files, in seconds.
The change in last modification time for the log file is useful when a daemon restarts after failure
or shut down. The last modification date is printed, and it provides an upper bound on the length of
time that the daemon was not running. Defaults to 60 seconds.

LOGS_USE_TIMESTAMP
Formatting of the current time at the start of each line in the log files. When TRUE, Unix Epoch
Time is used. When FALSE, the time is printed in the local timezone using the syntax:

[Month]/[Day]/[Year] [Hour]:[Minute]:[Second]

Defaults to FALSE.

SUBSYSTEM_DEBUG
The Condor daemons are all capable of producing different levels of output. All daemons default to
D_ALWAYS. This logs all messages. Settings are a comma or space-separated list of these values:
• D_ALL

The most verbose logging option. This setting generates an extremely large amount of output.

• D_FULLDEBUG

Verbose output. Only very frequent log messages for very specific debugging purposes are
excluded.

• D_DAEMONCORE

Logs messages that specific to DaemonCore, such as timers the daemons have set and the
commands that are registered.

• D_PRIV

Logs messages about privilege state switching.

• D_COMMAND

With this flag set, any daemon that uses DaemonCore will print out a log message whenever a
command is received. The name and integer of the command, whether the command was sent
via UDP or TCP, and where the command was sent from are all logged.

• D_LOAD

The condor_startd records the load average on the machine where it is running. Both the
general system load average, and the load average being generated by MRG Grid activity
are determined. With this flag set, the condor_startd will log a message with the current
state of both of these load averages whenever it computes them. This flag only affects the
condor_startd subsystem.

• D_KEYBOARD

Logs messages related to the values for remote and local keyboard idle times. This flag only
affects the condor_startd subsystem.

Logging configuration variables

179

• D_JOB

Logs the contents of any job ClassAd that the condor_schedd sends to claim the
condor_startd. This flag only affects the condor_startd subsystem.

• D_MACHINE

Logs the contents of any machine ClassAd that the condor_schedd sends to claim the
condor_startd. This flag only affects the condor_startd subsystem.

• D_SYSCALLS

Logs remote syscall requests and return values.

• D_MATCH

Logs messages for every match performed by the condor_negotiator.

• D_NETWORK

All daemons will log a message on every TCP accept, connect, and close, and on every UDP
send and receive.

• D_HOSTNAME

Logs verbose messages explaining how host names, domain names and IP addresses have
been resolved.

• D_SECURITY

Logs messages regarding secure network communications. Includes messages about
negotiation of a socket authentication mechanism, management of a session key cache, and
messages about the authentication process.

• D_PROCFAMILY

Logs messages regarding management of families of processes. A process family is defined as
a process and all descendents of that process.

• D_ACCOUNTANT

Logs messages regarding the computation of user priorities.

• D_PROTOCOL

Log messages regarding the protocol for the matchmaking and resource claiming framework.

• D_PID

This flag is used to change the formatting of all log messages that are printed. If D_PID is set,
the process identifier (PID) of the process writing each line to the log file will be recorded.

• D_FDS

This flag is used to change the formatting of all log messages that are printed. If D_FDS is set,
the file descriptor that the log file was allocated will be recorded.

Appendix A. Configuration options

180

ALL_DEBUG
Used to make all subsystems share a debug flag. For example, to turn on all debugging in all
subsystems, set ALL_DEBUG = D_ALL.

TOOL_DEBUG
Uses the same values (debugging levels) as SUBSYSTEM_DEBUG to describe the amount of
debugging information sent to STDERR for Condor tools.

SUBMIT_DEBUG
Uses the same values (debugging levels) as SUBSYSTEM_DEBUG to describe the amount of
debugging information sent to STDERR for condor_submit.

SUBSYSTEM_[LEVEL]_LOG
This is the name of a log file for messages at a specific debug level for a specific subsystem. If
the debug level is included in SUBSYSTEM_DEBUG, then all messages of this debug level will be
written both to the SUBSYSTEM_LOG file and the SUBSYSTEM_[LEVEL]_LOG file.

MAX_SUBSYSTEM_[LEVEL]_LOG
Similar to MAX_SUBSYSTEM_LOG.

TRUNC_SUBSYSTEM_[LEVEL]_LOG_ON_OPEN
Similar to TRUNC_SUBSYSTEM_LOG_ON_OPEN.

EVENT_LOG
The full path and file name of the event log. There is no default value for this variable, so no event
log will be written if it is not defined.

MAX_EVENT_LOG
Controls the maximum length in bytes to which the event log will be allowed to grow. The log file
will grow to the specified length, then be saved to a file with the suffix .old. The .old files are
overwritten each time the log is saved. A value of 0 allows the file to grow continuously. Defaults to
1MB.

EVENT_LOG_USE_XML
When TRUE, events are logged in XML format. Defaults to FALSE.

EVENT_LOG_JOB_AD_INFORMATION_ATTRS
A comma-separated list of job ClassAd attributes. When evaluated, these values form a new
event of JobAdInformationEvent. This new event is placed in the event log in addition to each
logged event.

A.5. DaemonCore Configuration Variables
ALLOW...

All macros that begin with either ALLOW or DENY are settings for host-based security.

ENABLE_RUNTIME_CONFIG
The condor_config_val tool has an option -rset for dynamically setting run time
configuration values (which only effect the in-memory configuration variables). Because of
the potential security implications of this feature, by default, Condor daemons will not honor
these requests. To use this functionality, administrators must specifically enable it by setting
ENABLE_RUNTIME_CONFIG to True, and specify what configuration variables can be changed

DaemonCore Configuration Variables

181

using the SETTABLE_ATTRS... family of configuration options (described below). This setting
defaults to False.

ENABLE_PERSISTENT_CONFIG
The condor_config_val tool has a -set option for dynamically setting persistent
configuration values. These values override options in the normal configuration files. Because
of the potential security implications of this feature, by default, Condor daemons will not
honor these requests. To use this functionality, administrators must specifically enable it by
setting ENABLE_PERSISTENT_CONFIG to True, creating a directory where the Condor
daemons will hold these dynamically-generated persistent configuration files (declared using
PERSISTENT_CONFIG_DIR, described below) and specify what configuration variables can be
changed using the SETTABLE_ATTRS... family of configuration options (described below). This
setting defaults to False.

PERSISTENT_CONFIG_DIR
Directory where daemons should store dynamically-generated persistent configuration files (used
to support condor_config_val -set) This directory should only be writable by root, or the
user the Condor daemons are running as (if non-root). There is no default, administrators that wish
to use this functionality must create this directory and define this setting. This directory must not
be shared by multiple MRG Grid installations, though it can be shared by all Condor daemons
on the same host. Keep in mind that this directory should not be placed on an NFS mount where
``root-squashing'' is in effect, or else Condor daemons running as root will not be able to write to
them. A directory (only writable by root) on the local file system is usually the best location for this
directory.

SETTABLE_ATTRS...
All macros that begin with SETTABLE_ATTRS or SUBSYSTEM_SETTABLE_ATTRS are settings
used to restrict the configuration values that can be changed using the condor_config_val
command.

SHUTDOWN_GRACEFUL_TIMEOUT
Determines how long to allow daemons to try to gracefully shut down before they do a hard
shutdown. It is defined in terms of seconds. The default is 1800 (30 minutes).

SUBSYSTEM_ADDRESS_FILE
A complete path to a file that is to contain an IP address and port number for a daemon. Every
Condor daemon that uses DaemonCore has a command port where commands are sent. The
IP/port of the daemon is put in that daemon's ClassAd, so that other machines in the pool can
query the condor_collector (which listens on a well-known port) to find the address of a given
daemon on a given machine. When tools and daemons are all executing on the same single
machine, communications do not require a query of the condor_collector daemon. Instead,
they look in a file on the local disk to find the IP/port. This macro causes daemons to write the IP/
port of their command socket to a specified file. In this way, local tools will continue to operate,
even if the machine running the condor_collector crashes. Using this file will also generate
slightly less network traffic in the pool, since tools including condor_q and condor_rm do not
need to send any messages over the network to locate the condor_schedd daemon. This macro
is not necessary for the condor_collector daemon, since its command socket is at a well-
known port.

The macro is named by substituting SUBSYSTEM with the appropriate subsystem string.

Appendix A. Configuration options

182

SUBSYSTEM_DAEMON_AD_FILE
A complete path to a file that is to contain the ClassAd for a daemon. When the daemon
sends a ClassAd describing itself to the condor_collector, it will also place a copy of
the ClassAd in this file. Currently, this setting only works for the condor_schedd (that is
SCHEDD_DAEMON_AD_FILE).

SUBSYSTEM_ATTRS
Allows any DaemonCore daemon to advertise arbitrary expressions from the configuration file in
its ClassAd. Give the comma-separated list of entries from the configuration file you want in the
given daemon's ClassAd. Frequently used to add attributes to machines so that the machines can
discriminate between other machines in a job's rank and requirements.

The macro is named by substituting SUBSYSTEM with the appropriate subsystem string.

NOTE: The condor_kbdd does not send ClassAds, so this entry does not affect it. The
condor_startd, condor_schedd, condor_master and condor_collector do send
ClassAds, so those would be valid subsystems to set this entry for.

Because of the different syntax of the configuration file and ClassAds, a little extra work is required
to get a given entry into a ClassAd. In particular, ClassAds require quote marks (") around strings.
Numeric values and boolean expressions can go in directly. For example, if the condor_startd
is to advertise a string macro, a numeric macro, and a boolean expression, do something similar
to:

STRING = This is a string
NUMBER = 666
BOOL1 = True
BOOL2 = CurrentTime >= $(NUMBER) || $(BOOL1)
MY_STRING = "$(STRING)"
STARTD_ATTRS = MY_STRING, NUMBER, BOOL1, BOOL2

DAEMON_SHUTDOWN
Whenever a daemon is about to publish a ClassAd update to the condor_collector, it will
evaluate this expression. If it evaluates to True, the daemon will gracefully shut itself down,
exit with the exit code 99, and will not be restarted by the condor_master (as if it sent itself
a condor_off command). The expression is evaluated in the context of the ClassAd that is
being sent to the condor_collector, so it can reference any attributes that can be seen with
condor_status -long [-daemon_type] (for example; condor_status -long [-
master] for the condor_master). Since each daemon's ClassAd will contain different attributes,
administrators should define these shutdown expressions specific to each daemon. For example:

STARTD.DAEMON_SHUTDOWN = when to shutdown the startd
MASTER.DAEMON_SHUTDOWN = when to shutdown the master

Normally, these expressions would not be necessary. If they are not defined, they default to
FALSE.

NOTE: This functionality does not work in conjunction with the high availability feature. If you
enable high availability for a particular daemon, you should not define this expression.

DAEMON_SHUTDOWN_FAST
Identical to DAEMON_SHUTDOWN (defined above), except the daemon will use the fast shutdown
mode (as if it sent itself a condor_off command using the -fast option).

Network-Related Configuration File Entries

183

USE_CLONE_TO_CREATE_PROCESSES
This setting controls how a Condor daemon creates a new process under certain versions of
Linux. If set to True (the default value), the clone system call is used. Otherwise, the fork
system call is used. clone provides scalability improvements for daemons using a large amount
of memory (e.g. a condor_schedd with a lot of jobs in the queue). Currently, the use of clone is
available on Linux systems other than IA-64, but not when GCB is enabled.

NOT_RESPONDING_TIMEOUT
When a Condor daemon's parent process is another Condor daemon, the child daemon will
periodically send a short message to its parent stating that it running. If the parent does not
receive this message after a proscribed period, it assumes that the child process is hung. It then
kills and restarts the child process. This parameter controls how long the parent waits before
killing the child. It is defined in terms of seconds and defaults to 3600 (1 hour). The child sends its
messages at an interval of one third of this value.

SUBSYSTEM_NOT_RESPONDING_TIMEOUT
Identical to NOT_RESPONDING_TIMEOUT, but controls the timeout for a specific type of daemon.
For example, SCHEDD_NOT_RESPONDING_TIMEOUT controls how long the condor_schedd's
parent daemon will wait without receiving a message from the condor_schedd before killing it.

NOT_RESPONDING_WANT_CORE
A boolean parameter with a default value of false. This parameter is for debugging purposes
on UNIX systems, and controls the behavior of the parent process when it determines that a
child process is not responding. If NOT_RESPONDING_WANT_CORE is true, the parent will send
a SIGABRT instead of SIGKILL to the child process. If the child process is configured with
CREATE_CORE_FILES enabled, the child process will then generate a core dump.

LOCK_FILE_UPDATE_INTERVAL
An integer value representing seconds, controlling how often valid lock files should have their on
disk timestamps updated. Updating the timestamps prevents administrative programs, such as
tmpwatch, from deleting long lived lock files. If set to a value less than 60, the update time will
be 60 seconds. The default value is 28800, which is 8 hours. This variable only takes effect at the
start or restart of a daemon.

A.6. Network-Related Configuration File Entries
BIND_ALL_INTERFACES

For systems with multiple network interfaces, if this configuration setting is False, network
sockets will only bind to the IP address specified with NETWORK_INTERFACE (described below). If
set to True, the default value, MRG Grid will listen on all interfaces. However, currently MRG Grid
is still only able to advertise a single IP address, even if it is listening on multiple interfaces. By
default, it will advertise the IP address of the network interface used to contact the collector, since
this is the most likely to be accessible to other processes which query information from the same
collector.

CCB_ADDRESS
This is the address of a condor_collector that will serve as this daemon's Condor Connection
Broker (CCB). Multiple addresses may be listed (separated by commas and/or spaces) for
redundancy. The CCB server must authorize this daemon at DAEMON level for this configuration
to succeed. It is highly recommended to also configure PRIVATE_NETWORK_NAME if you configure
CCB_ADDRESS so communications originating within the same private network do not need to go
through CCB.

Appendix A. Configuration options

184

SUBSYSTEM_MAX_FILE_DESCRIPTORS
This setting is identical to MAX_FILE_DESCRIPTORS, but it only applies to a specific subsystem. If
the subsystem-specific setting is unspecified, MAX_FILE_DESCRIPTORS is used.

MAX_FILE_DESCRIPTORS
This specifies the maximum number of file descriptors the Condor daemons are allowed to use.
File descriptors are a system resource used for open files and for network connections. Condor
daemons that make many simultaneous network connections may require an increased number of
file descriptors.

After adjusting this configuration variable, restart MRG Grid to pick up the changes. Note that if
MRG Grid is running as root, the limit can only be increased above the hard limit (on maximum
open files) on inherited files.

NETWORK_INTERFACE
For systems with multiple network interfaces, if this configuration setting is not defined, all
network sockets will bind to the first interface found. To bind to a specific network interface other
than the first one, this NETWORK_INTERFACE should be set to the IP address to use. When
BIND_ALL_INTERFACES is set to True (the default), this setting simply controls what IP address
a given host will advertise.

PRIVATE_NETWORK_NAME
If two Condor daemons are trying to communicate with each other, and they both belong to
the same private network, this setting will allow them to communicate directly using the private
network interface, instead of having to use CCB or the Generic Connection Broker (GCB) or to go
through a public IP address.

Each private network should be assigned a unique network name. This string can have any
form, but it must be unique for a particular private network. If another Condor daemon or tool is
configured with the same PRIVATE_NETWORK_NAME, it will attempt to contact this daemon using
the PrivateIpAddr attribute from the classified ad. Even for sites using CCB or GCB, this is an
important optimization, since it means that two daemons on the same network can communicate
directly, without having to go through the broker.

If CCB/GCB is enabled, and the PRIVATE_NETWORK_NAME is defined, the PrivateIpAddr will
be defined automatically. Otherwise, you can specify a particular private IP address to use by
defining the PRIVATE_NETWORK_INTERFACE setting (described below). There is no default for
this setting.

PRIVATE_NETWORK_INTERFACE
In systems with multiple network interfaces, if this configuration setting and
PRIVATE_NETWORK_NAME are both defined, Condor daemons will advertise some additional
attributes in their ClassAds to help other Condor daemons and tools in the same private network
to communicate directly.

The PRIVATE_NETWORK_INTERFACE defines what IP address a given multi-homed machine
should use for the private network. If another Condor daemon or tool is configured with the same
PRIVATE_NETWORK_NAME, it will attempt to contact this daemon using the IP address specified
here.

Sites using CCB or the Generic Connection Broker (GCB) only need to define the
PRIVATE_NETWORK_NAME, and the PRIVATE_NETWORK_INTERFACE will be defined
automatically. Unless CCB/GCB is enabled, there is no default for this setting.

Network-Related Configuration File Entries

185

HIGHPORT
Specifies an upper limit of given port numbers to use, to create a range of available port numbers.
If this macro is not explicitly specified, then the port numbers available will not be restricted,
and system-assigned port numbers will be used. For this macro to work, both HIGHPORT and
LOWPORT (given below) must be defined.

LOWPORT
Specifies a lower limit of given port numbers, to create a range of available port numbers. If this
macro is not explicitly specified, then the port numbers available will not be restricted, and system-
assigned port numbers will be used. For this macro to work, both HIGHPORT (given above) and
LOWPORT must be defined.

IN_LOWPORT
An integer value that specifies a lower limit of given port numbers for use on incoming connections
(listening ports), to create a range of available port numbers. This range implies the use of both
IN_LOWPORT and IN_HIGHPORT. A range of port numbers less than 1024 may be used for
daemons running as root. Do not specify IN_LOWPORT in combination with IN_HIGHPORT such
that the range crosses the port 1024 boundary. Applies only to Unix machine configuration. Use of
IN_LOWPORT and IN_HIGHPORT overrides any definition of LOWPORT and HIGHPORT.

IN_HIGHPORT
An integer value that specifies an upper limit of given port numbers for use on incoming
connections (listening ports), to create a range of available port numbers. This range implies
the use of both IN_LOWPORT and IN_HIGHPORT. A range of port numbers less than 1024
may be used for daemons running as root. Do not specify IN_LOWPORT in combination with
IN_HIGHPORT such that the range crosses the port 1024 boundary. Applies only to Unix machine
configuration. Use of IN_LOWPORT and IN_HIGHPORT overrides any definition of LOWPORT and
HIGHPORT.

OUT_LOWPORT
An integer value that specifies a lower limit of given port numbers for use on outgoing connections,
to create a range of available port numbers. This range implies the use of both OUT_LOWPORT and
OUT_HIGHPORT. A range of port numbers less than 1024 is inappropriate, as not all daemons and
tools will be run as root. Applies only to Unix machine configuration. Use of OUT_LOWPORT and
OUT_HIGHPORT overrides any definition of LOWPORT and HIGHPORT.

OUT_HIGHPORT
An integer value that specifies a upper limit of given port numbers for use on outgoing
connections, to create a range of available port numbers. This range implies the use of both
OUT_LOWPORT and OUT_HIGHPORT. A range of port numbers less than 1024 is inappropriate, as
not all daemons and tools will be run as root. Applies only to Unix machine configuration. Use of
OUT_LOWPORT and OUT_HIGHPORT overrides any definition of LOWPORT and HIGHPORT.

UPDATE_COLLECTOR_WITH_TCP
This setting defaults to False. If your site needs to use TCP connections to send ClassAd
updates to your collector set to this to True. At this time, this setting only affects the main
condor_collector for the site. If enabled, also define COLLECTOR_SOCKET_CACHE_SIZE at
the central manager, so that the collector will accept TCP connections for updates, and will keep
them open for reuse. For large pools, it is also necessary to ensure that the collector has a high
enough file descriptor limit (e.g. using MAX_FILE_DESCRIPTORS).

Appendix A. Configuration options

186

TCP_UPDATE_COLLECTORS
The list of collectors which will be updated with TCP instead of UDP. If not defined, no collectors
use TCP instead of UDP.

SUBSYSTEM_TIMEOUT_MULTIPLIER
An integer value that defaults to 1. This value multiplies configured timeout values for all targeted
subsystem communications, thereby increasing the time until a timeout occurs. This configuration
variable is intended for use by developers for debugging purposes, where communication
timeouts interfere.

NONBLOCKING_COLLECTOR_UPDATE
A boolean value that defaults to True. When True, the establishment of TCP connections to the
condor_collector daemon for a security-enabled pool are done in a nonblocking manner.

NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACT
A boolean value that defaults to True. When True, the establishment of TCP connections from
the condor_negotiator daemon to the condor_startd daemon for a security-enabled pool
are done in a nonblocking manner.

NET_REMAP_ENABLE
A boolean variable, that when defined to True, enables a network remapping service. The service
to use is controlled by NET_REMAP_SERVICE. This boolean value defaults to False.

NET_REMAP_SERVICE
If NET_REMAP_ENABLE is defined to True, this setting controls what network remapping service
should be used. Currently, the only value supported is GCB. The default is undefined.

NET_REMAP_INAGENT
A comma or space-separated list of IP addresses for GCB brokers. Upon start up, the
condor_master chooses one at random from among the working brokers in the list. There is no
default if not defined.

NET_REMAP_ROUTE
Hosts with the GCB network remapping service enabled that would like to use a GCB routing table
GCB broker specify the full path to their routing table with this setting. There is no default value if
undefined.

MASTER_WAITS_FOR_GCB_BROKER
This boolean variable determines the behavior of the condor_master with GCB enabled. It
defaults to True.

When MASTER_WAITS_FOR_GCB_BROKER is True; if there is no GCB broker working when the
condor_master starts, or if communications with a GCB broker fail, the condor_master waits
while attempting to find a working GCB broker.

When MASTER_WAITS_FOR_GCB_BROKER is False; if no GCB broker is working when
the condor_master starts the condor_master fails and exits without restarting. If the
condor_master has successfully communicated with a GCB broker at start-up but the
communication fails, the condor_master kills all its children, exits, and restarts.

Shared File System Configuration File Macros

187

A.7. Shared File System Configuration File Macros
UID_DOMAIN

A further check attempts to assure that the submitting machine can not lie about its UID_DOMAIN.
The submit machine's claimed value for UID_DOMAIN is compared to its fully qualified name. If the
two do not end the same, then the submit machine is presumed to be lying about its UID_DOMAIN.
In this case, the job will run as user nobody. For example; a job submission to the pool from
flippy.example.com, claiming a UID_DOMAIN of flipper.example.com, will run the job as
the user nobody. Because of this verification, UID_DOMAIN must be a real domain name.

Also see SOFT_UID_DOMAIN below for information about a further check that are performed
before running a job as a specific user.

Note: An administrator could set UID_DOMAIN to *. This will match all domains, but it produces a
serious security risk. It is not recommended.

An administrator can also leave UID_DOMAIN undefined. This will force jobs to always run as user
nobody. However, if vanilla jobs are run as user nobody, then files that need to be accessed by
the job will need to be marked as world readable/writable so the user nobody can access them.

When e-mail is sent about a job, it uses the address user@$(UID_DOMAIN). If UID_DOMAIN is
undefined, the e-mail is sent to user@submitmachinename.

TRUST_UID_DOMAIN
When a job is about to launch, MRG Gridit ensures that the UID_DOMAIN of a given submit
machine is a substring of that machine's fully-qualified host name. The default setting of
TRUST_UID_DOMAIN is False as this test is a security precaution. At some sites, however,
there may be multiple UID spaces that do not clearly correspond to Internet domain names and in
these cases administrators may wish to use names which are not substrings of the host names to
describe the UID domains.

In order for this measure to work, the UID_DOMAIN check must not occur. If the
TRUST_UID_DOMAIN setting is True, this test will not occur, and whatever UID_DOMAIN is
presented by the submit machine will be trusted.

SOFT_UID_DOMAIN
A boolean variable that defaults to False when not defined. When a job is run as a particular
user (instead of as user nobody), it verifies that the UID given for the user is in the password file
and matches the given user name. However, under installations that do not have every user in
every machine's password file, this check will fail and the execution attempt will be aborted. For
this check not to occur, set this configuration variable to True. The job will then be run under the
user's UID.

SLOTx_USER
The name of a user to be used instead of user nobody as part of a solution that plugs a security
hole whereby a lurker process can prey on a subsequent job run as user name nobody. x is an
integer associated with slots.

STARTER_ALLOW_RUNAS_OWNER
This is a boolean expression (evaluated with the job ad as the target) that determines whether
the job may run under the job owner's account (True) or whether it will run as SLOTx_USER
or nobody (False). In Unix, this defaults to True. In Windows, it defaults to False. The job
ClassAd may also contain an attribute RunAsOwner which is logically ANDed with the starter's
boolean value. Under Unix, if the job does not specify it, this attribute defaults to True. Under

Appendix A. Configuration options

188

Windows, it defaults to False. In Unix, if the UID_DOMAIN of the machine and job do not match,
there is no possibility to run the job as the owner so this setting has no effect.

DEDICATED_EXECUTE_ACCOUNT_REGEXP
This is a regular expression (i.e. a string matching pattern) that matches the account name(s) that
are dedicated to running jobs on the execute machine and which will never be used for more than
one job at a time. The default matches no account name. If you have configured SLOTx_USER
to be a different account for each slot, and no non-condor processes will ever be run by these
accounts, then this pattern should match the names of all SLOTx_USER accounts.

Jobs run under a dedicated execute account are reliably tracked, whereas other jobs might spawn
processes that are not detected. Therefore, a dedicated execution account provides more reliable
tracking of CPU usage by the job and it also guarantees that when the job exits, no "lurker"
processes are left behind. When the job exits, all processes owned by the dedicated execution
account will attempt to be killed.

For example:

SLOT1_USER = cndrusr1
SLOT2_USER = cndrusr2
STARTER_ALLOW_RUNAS_OWNER = False
DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

You can tell if the starter is in fact treating the account as a dedicated account, because it will print
a line such as the following in its log file:

Tracking process family by login "cndrusr1"

FILESYSTEM_DOMAIN
The FILESYSTEM_DOMAIN macro is an arbitrary string that is used to decide if two machines
(a submitting machine and an execute machine) share a file system. Although the macro name
contains the word DOMAIN, the macro is not required to be a domain name (however, it often is).

This implementation is not ideal; machines may share some file systems but not others. There is
currently no way to express this automatically. You can express the need to use a particular file
system by adding additional attributes to your machines and submit files.

Note that if you do not set FILESYSTEM_DOMAIN, it defaults to setting the macro's value to
be the fully qualified host name of the local machine. Since each machine will have a different
FILESYSTEM_DOMAIN, they will not be considered to have shared file systems.

IGNORE_NFS_LOCK_ERRORS
When set to True, all errors related to file locking errors from NFS are ignored. Defaults to False,
not ignoring errors.

A.8. condor_master Configuration File Macros
DAEMON_LIST

This macro determines what daemons the condor_master will start and monitor. The list is a
comma or space separated list of subsystem names. For example:

DAEMON_LIST = MASTER, STARTD, SCHEDD

condor_master Configuration File Macros

189

DC_DAEMON_LIST
A list delimited by commas and/or spaces that lists the daemons in DAEMON_LIST which use the
Condor DaemonCore library. The condor_master must differentiate between daemons that
use DaemonCore and those that do not, so it uses the appropriate inter-process communication
mechanisms.

A daemon may be appended to the default DC_DAEMON_LIST value by placing the plus character
(+) before the first entry in the DC_DAEMON_LIST definition. For example:

DC_DAEMON_LIST = +NEW_DAEMON

SUBSYSTEM
Once you have defined which subsystems you want the condor_master to start, you must
provide it with the full path to each of these binaries. For example:

MASTER = $(SBIN)/condor_master
STARTD = $(SBIN)/condor_startd
SCHEDD = $(SBIN)/condor_schedd

These are most often defined relative to the $(SBIN) macro.

The macro is named by substituting SUBSYSTEM with the appropriate subsystem string as defined
in previous sections.

DAEMONNAME_ENVIRONMENT
For each subsystem defined in DAEMON_LIST, you may specify changes to the environment that
daemon is started with by setting DAEMONNAME_ENVIRONMENT, where DAEMONNAME is the name
of a daemon listed in DAEMON_LIST. It should use the same syntax for specifying the environment
as the environment specification in a condor_submit file. For example, if you wish to redefine
the TMP and CONDOR_CONFIG environment variables seen by the condor_schedd, you could
place the following in the config file:

SCHEDD_ENVIRONMENT = "TMP=/new/value CONDOR_CONFIG=/special/config"

When the condor_schedd was started by the condor_master, it would see the specified
values of TMP and CONDOR_CONFIG.

SUBSYSTEM_ARGS
This macro allows the specification of additional command line arguments for any process
spawned by the condor_master. List the desired arguments using the same syntax as the
arguments specification in a condor_submit submit file, with one exception: do not escape
double-quotes when using the old-style syntax (this is for backward compatibility). Set the
arguments for a specific daemon with this macro, and the macro will affect only that daemon.
Define one of these for each daemon the condor_master is controlling. For example, set
$(STARTD_ARGS) to specify any extra command line arguments to the condor_startd.

The macro is named by substituting SUBSYSTEM with the appropriate subsystem string.

PREEN
In addition to the daemons defined in DAEMON_LIST, the condor_master also starts up a
special process called condor_preen to clean out junk files that have been left behind. This
macro determines where the condor_master finds the condor_preen binary. This macro can
be commented out to prevent condor_preen from running.

Appendix A. Configuration options

190

PREEN_ARGS
This macro controls how condor_preen behaves by allowing the specification of command-line
arguments. This macro works as SUBSYSTEM_ARGS does. The difference is that you must specify
this macro for condor_preen if you want it to do anything. condor_preen takes action only
because of command line arguments. The -m switch will instruct MRG Grid to send e-mail about
files that should be removed. -r means you want condor_preen to actually remove these files.

PREEN_INTERVAL
This macro determines how often condor_preen should be started. It is defined in terms of
seconds and defaults to 86400 (once a day).

PUBLISH_OBITUARIES
When a daemon crashes, the condor_master can send e-mail to the address specified by
CONDOR_ADMIN with an obituary letting the administrator know that the daemon died, the cause
of death (which signal or exit status it exited with), and (optionally) the last few entries from that
daemon's log file. If you want obituaries, set this macro to True.

OBITUARY_LOG_LENGTH
This macro controls how many lines of the log file are part of obituaries. This macro has a default
value of 20 lines.

START_MASTER
If this setting is defined and set to False the condor_master will exit as soon as it starts.
This setting is useful if the boot scripts for your entire pool are centralized but you do not want
MRG Grid to run on certain machines. This entry is most effectively used in a file in the local
configuration directory, not a global configuration file.

START_DAEMONS
This macro is similar to the START_MASTER macro described above. This macro, however, does
not force the condor_master to exit; instead preventing it from starting any of the daemons
listed in the DAEMON_LIST. The daemons may be started later with a condor_on command.

MASTER_UPDATE_INTERVAL
This macro determines how often the condor_master sends a ClassAd update to the
condor_collector. It is defined in seconds and defaults to 300 (every 5 minutes).

MASTER_CHECK_NEW_EXEC_INTERVAL
This macro controls how often the condor_master checks the timestamps of the running
daemons. If any daemons have been modified, the master restarts them. It is defined in seconds
and defaults to 300 (every 5 minutes).

MASTER_NEW_BINARY_DELAY
Once the condor_master has discovered a new binary, this macro controls how long it waits
before attempting to execute it. This delay exists because the condor_master might notice
a new binary while it is in the process of being copied, in which case trying to execute it yields
unpredictable results. The entry is defined in seconds and defaults to 120 (2 minutes).

SHUTDOWN_FAST_TIMEOUT
This macro determines the maximum amount of time daemons are given to perform their fast
shutdown procedure before the condor_master kills them outright. It is defined in seconds and
defaults to 300 (5 minutes).

condor_master Configuration File Macros

191

MASTER_BACKOFF_CONSTANTand MASTER_name_BACKOFF_CONSTANT
When a daemon crashes, condor_master uses an exponential back off delay before restarting
it (see the "Backoff Delays" section below for details on how these parameters work together).
These settings define the constant value of the expression used to determine how long to wait
before starting the daemon again (and, effectively becomes the initial backoff time). It is an integer
in units of seconds, and defaults to 9 seconds.

$(MASTER_name_BACKOFF_CONSTANT) is the daemon-specific form of
MASTER_BACKOFF_CONSTANT; if this daemon-specific macro is not defined for a specific
daemon, the non-daemon-specific value will used.

MASTER_BACKOFF_FACTOR and MASTER_name_BACKOFF_FACTOR
When a daemon crashes, condor_master uses an exponential back off delay before restarting
it; (see the "Backoff Delays" section below for details on how these parameters work together).
This setting is the base of the exponent used to determine how long to wait before starting the
daemon again. It defaults to 2 seconds.

$(MASTER_name_BACKOFF_FACTOR) is the daemon-specific form of
MASTER_BACKOFF_FACTOR; if this daemon-specific macro is not defined for a specific daemon,
the non-daemon-specific value will used.

MASTER_BACKOFF_CEILING and MASTER_name_BACKOFF_CEILING
When a daemon crashes, condor_master uses an exponential back off delay before restarting
it; (see the "Backoff Delays" section below for details on how these parameters work together).
This entry determines the maximum amount of time you want the master to wait between attempts
to start a given daemon. (With 2.0 as the $(MASTER_BACKOFF_FACTOR), 1 hour is obtained in
12 restarts). It is defined in terms of seconds and defaults to 3600 (1 hour).

$(MASTER_name_BACKOFF_CEILING) is the daemon-specific form of
MASTER_BACKOFF_CEILING; if this daemon-specific macro is not defined for a specific daemon,
the non-daemon-specific value will used.

MASTER_RECOVER_FACTOR and MASTER_name_RECOVER_FACTOR
A macro to set how long a daemon needs to run without crashing before it is considered
recovered. Once a daemon has recovered, the number of restarts is reset, so the exponential
back off returns to its initial state. The macro is defined in terms of seconds and defaults to 300 (5
minutes).

$(MASTER_name_RECOVER_FACTOR) is the daemon-specific form of
MASTER_RECOVER_FACTOR; if this daemon-specific macro is not defined for a specific daemon,
the non-daemon-specific value will used.

SUBSYSTEM_USERID
Specifies the userid under which a subsystem should run.

Backoff Delays
When a daemon crashes, condor_master will restart the daemon after a delay (a back off). The
length of this delay is based on how many times it has been restarted, and gets larger after each
crash. The equation for calculating this backoff time is given by:

t = c + kn

Appendix A. Configuration options

192

Where t is the calculated time, c is the constant defined by MASTER_BACKOFF_CONSTANT, k is the
factor defined by MASTER_BACKOFF_FACTOR, and n is the number of restarts already attempted (0 for
the first restart, 1 for the next, etc.).

With default values, after the first crash, the delay would be t = 9 + 20, giving 10 seconds (remember, n
= 0). If the daemon keeps crashing, the delay increases.

For example, take the MASTER_BACKOFF_FACTOR (which defaults to 2) to the power the number of
times the daemon has restarted, and add MASTER_BACKOFF_CONSTANT (which defaults to 9). Thus:
• 1st crash: n = 0, so: t = 9 + 20 = 9 + 1 = 10 seconds

• 2nd crash: n = 1, so: t = 9 + 21 = 9 + 2 = 11 seconds

• 3rd crash: n = 2, so: t = 9 + 22 = 9 + 4 = 13 seconds

And so on...

• 9th crash: n = 8, so: t = 9 + 28 = 9 + 256 = 265 seconds

until, after 13 crashes, it would be:

• 13th crash: n = 12, so: t = 9 + 212 = 9 + 4096 = 4105 seconds

This last result is higher than the MASTER_BACKOFF_CEILING, which defaults to 3600, so the
daemon would be restarted after only 3600 seconds, not 4105. The condor_master tries again
every hour (since the numbers would get larger and would always be capped by the ceiling). Should
the daemon stay alive for the time set in MASTER_RECOVER_FACTOR (defaults to 5 minutes), the
count of how many restarts this daemon has performed is reset to 0.

Important
The default settings work quite well, you will probably not need to change them.

MASTER_NAME
Defines a unique name given for a condor_master daemon on a machine. For a
condor_master running as root, it defaults to the fully qualified host name. When not running as
root, it defaults to the user that instantiates the condor_master, concatenated with an at symbol
(@), concatenated with the fully qualified host name. If more than one condor_master is running
on the same host, then the MASTER_NAME for each condor_master must be defined to uniquely
identify the separate daemons.

A defined MASTER_NAME is presumed to be of the form identifying-
string@full.host.name. If the string does not include an @ sign, one will be appended,
followed by the fully qualified host name of the local machine. The identifying-string portion
may contain any alphanumeric ASCII characters or punctuation marks, except the @ sign.
We recommend that the string does not contain the : (colon) character, since that might cause
problems with certain tools. The string will not be modified if it contains an @ sign. This is useful
for remote job submissions under the high availability of the job queue.

If the MASTER_NAME setting is used, and the condor_master is configured to spawn
a condor_schedd, the name defined with MASTER_NAME takes precedence over the
SCHEDD_NAME setting. Since the assumption is that there is only one instance of the

condor_master Configuration File Macros

193

condor_startd running on a machine, the MASTER_NAME is not automatically propagated to the
condor_startd. However, in situations where multiple condor_startd daemons are running
on the same host, the STARTD_NAME should be set to uniquely identify the condor_startd
daemons.

If a Condor daemon master, schedd or startd) has been given a unique name, all tools
that need to contact that daemon can be told what name to use via the -name command-line
option.

MASTER_ATTRS
This macro is described in Section A.5, “DaemonCore Configuration Variables” under
SUBSYSTEM_ATTRS.

MASTER_DEBUG
This macro is described in Section A.4, “Logging configuration variables” as SUBSYSTEM_DEBUG.

MASTER_ADDRESS_FILE
This macro is described in Section A.5, “DaemonCore Configuration Variables” as
SUBSYSTEM_ADDRESS_FILE.

ALLOW_ADMIN_COMMANDS
If set to NO for a given host, this macro disables administrative commands, such as
condor_restart, condor_on and condor_off, to that host.

MASTER_INSTANCE_LOCK
Defines the name of a file for the condor_master daemon to lock in order to prevent multiple
condor_masters from starting. This is useful when using shared file systems like NFS which do
not technically support locking in the case where the lock files reside on a local disk. If this macro
is not defined, the default file name will be LOCK/InstanceLock. LOCK can instead be defined
to specify the location of all lock files, not just the condor_master's InstanceLock. If LOCK is
undefined, then the master log itself is locked.

ADD_WINDOWS_FIREWALL_EXCEPTION
When set to False, the condor_master will not automatically add MRG Grid to the Windows
Firewall list of trusted applications. Such trusted applications can accept incoming connections
without interference from the firewall. This only affects machines running Windows XP SP2 or
higher. The default is True.

WINDOWS_FIREWALL_FAILURE_RETRY
An integer value (default value is 60) that represents the number of times the condor_master
will retry to add firewall exceptions. When a Windows machine boots up, MRG Grid starts up
by default as well. Under certain conditions, the condor_master may have difficulty adding
exceptions to the Windows Firewall because of a delay in other services starting up. Examples
of services that may possibly be slow are the SharedAccess service, the Netman service, or the
Workstation service. This configuration variable allows administrators to set the number of times
(once every 10 seconds) that the condor_master will retry to add firewall exceptions. A value of
0 means that it will retry indefinitely.

USE_PROCESS_GROUPS
A boolean value that defaults to True. When False, Condor daemons on UNIX machines will
not create new sessions or process groups. Process groups help to track the descendants of
processes that have been created. This can cause problems when MRG Grid is run under another
job execution system.

Appendix A. Configuration options

194

A.9. condor_startd Configuration File Macros
START

A boolean expression that, when True, indicates that the machine is willing to start running a job.
START is considered when the condor_negotiator daemon is considering evicting the job to
replace it with one that will generate a better rank for the condor_startd daemon, or a user with
a higher priority.

SUSPEND
A boolean expression that, when True, causes a running job to be suspended. The machine may
still be claimed, but the job makes no further progress, and no load is generated on the machine.

PREEMPT
A boolean expression that, when True, causes a currently running job to be stopped.

WANT_HOLD
A boolean expression that defaults to False. When True and the value of PREEMPT
becomes True, the job is put on hold for the reason (optionally) specified by the variables
WANT_HOLD_REASON and WANT_HOLD_SUBCODE. As usual, the job owner may specify
periodic_release and/or periodic_remove expressions to react to specific hold states automatically.
The attribute HoldReasonCode in the job ClassAd is set to the value 21 when WANT_HOLD is
responsible for putting the job on hold.

Here is an example policy that puts jobs on hold that use too much virtual memory:

VIRTUAL_MEMORY_AVAILABLE_MB = (VirtualMemory*0.9)
MEMORY_EXCEEDED = ImageSize/1024 > $(VIRTUAL_MEMORY_AVAILABLE_MB)
PREEMPT = ($(PREEMPT)) || ($(MEMORY_EXCEEDED))
WANT_SUSPEND = ($(WANT_SUSPEND)) && ($(MEMORY_EXCEEDED)) =!= TRUE
WANT_HOLD = ($(MEMORY_EXCEEDED))
WANT_HOLD_REASON = \
 ifThenElse($(MEMORY_EXCEEDED), \
 "Your job used too much virtual memory.", \
 undefined)

WANT_HOLD_REASON
An expression that defines a string utilized to set the job ClassAd attribute HoldReason when a
job is put on hold due to WANT_HOLD. If not defined or if the expression evaluates to Undefined, a
default hold reason is provided.

WANT_HOLD_SUB_CODE
An expression that defines an integer value utilized to set the job ClassAd attribute
HoldReasonSubCode when a job is put on hold due to WANT_HOLD. If not defined or if the
expression evaluates to Undefined, the value is set to 0. Note that HoldReasonCode is always
set to 21.

CONTINUE
A boolean expression that, when True, causes a previously suspended job to continue executed.

KILL
A boolean expression that, when True, causes the execution of a currently running job to stop
without delay.

condor_startd Configuration File Macros

195

RANK
A floating point value that is used to compare potential jobs. A larger value for a specific job ranks
that job above others with lower values for RANK.

WANT_SUSPEND
A boolean expression that, when True, will evaluate the SUSPEND expression.

WANT_VACATE
A boolean expression that, when True, defines that a preempted job is to be vacated, instead of
killed.

IS_OWNER
A boolean expression that defaults to being defined as

IS_OWNER = (START =?= FALSE)

Used to describe the state of the machine with respect to its use by its owner. Job ClassAd
attributes are not used in defining IS_OWNER, as they would be Undefined.

STARTER
This macro holds the full path to the condor_starter binary that the condor_startd should
spawn. It is normally defined relative to $(SBIN).

POLLING_INTERVAL
When a condor_startd enters the claimed state, this macro determines how often the state of
the machine is polled to check the need to suspend, resume, vacate or kill the job. It is defined in
terms of seconds and defaults to 5.

UPDATE_INTERVAL
Determines how often the condor_startd should send a ClassAd update to the
condor_collector. The condor_startd also sends update on any state or activity change,
or if the value of its START expression changes. This macro is defined in terms of seconds and
defaults to 300 (5 minutes).

UPDATE_OFFSET
An integer value representing the number of seconds that the condor_startd should wait
before sending its initial update, and the first update after a condor_reconfig command is
sent to the condor_collector. The time of all other updates sent after this initial update is
determined by UPDATE_INTERVAL. Thus, the first update will be sent after UPDATE_OFFSET
seconds, and the second update will be sent after UPDATE_OFFSET + UPDATE_INTERVAL. This
is useful when used in conjunction with the RANDOM_INTEGER macro for large pools, to spread
out the updates sent by a large number of condor_startd daemons. Defaults to 0.

The example configuration:

startd.UPDATE_INTERVAL = 300
startd.UPDATE_OFFSET = $RANDOM_INTEGER(0,300)

would cause the initial update to occur at a random number of seconds falling between 0 and 300,
with all further updates occurring at fixed 300 second intervals following the initial update.

Appendix A. Configuration options

196

MAXJOBRETIREMENTTIME
An integer value representing the number of seconds a preempted job will be allowed to run
before being evicted. The default value of 0 (when the configuration variable is not present)
implements the expected policy that there is no retirement time.

CLAIM_WORKLIFE
If provided, this expression specifies the number of seconds after which a claim will stop accepting
additional jobs.

Once the negotiator gives a schedd a claim to a slot the schedd will, by default, keep running
jobs on that slot (as long as it has jobs with matching requirements) without returning the slot to
the unclaimed state and renegotiating for machines. The solution is to use CLAIM_WORKLIFE
to force the claim to stop running additional jobs after a certain amount of time. Once
CLAIM_WORKLIFE expires, any existing job may continue to run as usual, but once it finishes or is
preempted, the claim is closed.

The default value for CLAIM_WORKLIFE is -1, which is treated as an infinite claim worklife so
claims may be held indefinitely (as long as they are not preempted and the schedd does not
relinquish them). A value of 0 has the effect of not allowing more than one job to run per claim,
since it immediately expires after the first job starts running.

This macro may be useful if you want to force periodic renegotiation of resources without
preemption having to occur.

MAX_CLAIM_ALIVES_MISSED
This setting controls how many keep alive messages can be missed by the condor_startd
before it considers a resource claim by a condor_schedd no longer valid. The default is 6.

The condor_schedd sends periodic keep alive updates to each condor_startd. If the
condor_startd does not receive any keep alive messages it assumes that something has gone
wrong with the condor_schedd and that the resource is not being effectively used. Once this
happens the condor_startd considers the claim to have timed out. It releases the claim and
starts advertising itself as available for other jobs. As keep alive messages are sent via UDP and
are sometimes dropped by the network, the condor_startd has some tolerance for missed
keep alive messages. If a few keep alive messages are not recieved, the condor_startd will
not immediately release the claim. This macro sets the number of missed messages that will be
tolerated.

STARTD_HAS_BAD_UTMP
When the condor_startd is computing the idle time of all the users of the machine (both local
and remote), it checks the utmp file to find all the currently active ttys, and only checks access
time of the devices associated with active logins. Unfortunately, on some systems, utmp is
unreliable, and the condor_startd might miss keyboard activity by doing this. So, if your utmp
is unreliable, set this macro to True and the condor_startd will check the access time on all tty
and pty devices.

CONSOLE_DEVICES
This macro allows the condor_startd to monitor console (keyboard and mouse) activity
by checking the access times on special files in /dev. Activity on these files shows up as
ConsoleIdle time in the condor_startd's ClassAd. Give a comma-separated list of the
names of devices considered the console, without the /dev/ portion of the path name. The defaults
vary from platform to platform, and are usually correct.

condor_startd Configuration File Macros

197

One possible exception to this is on Linux systems where "mouse" is used as one of the entries.
Most Linux installations put in a soft link from /dev/mouse that points to the appropriate device (for
example, /dev/psaux for a PS/2 bus mouse, or /dev/tty00 for a serial mouse connected to
com1). However, if your installation does not have this soft link, you will need to either add it or
change this macro to point to the right device.

STARTD_JOB_EXPRS
When the machine is claimed by a remote user the condor_startd can also advertise arbitrary
attributes from the job ClassAd in the machine ClassAd. List the attribute names to be advertised.

Note: Since these are already ClassAd expressions, do not do anything unusual with strings. This
setting defaults to "JobUniverse".

STARTD_SENDS_ALIVES
A boolean value that defaults to False, such that the condor_schedd daemon sends keep alive
signals to the condor_startd daemon. When True, the condor_startd daemon sends keep
alive signals to the condor_schedd daemon, reversing the direction. This may be useful if the
condor_startd daemon is on a private network or behind a firewall.

STARTD_SHOULD_WRITE_CLAIM_ID_FILE
The condor_startd can be configured to write out the ClaimId for the next available claim on all
slots to separate files. This boolean attribute controls whether the condor_startd should write
these files. The default value is True.

STARTD_CLAIM_ID_FILE
This macro controls what file names are used if the above
STARTD_SHOULD_WRITE_CLAIM_ID_FILE is True. By default, the ClaimId will be written into a
file in the LOG directory called .startd_claim_id.slotX, where X is the value of SlotID, the
integer that identifies a given slot on the system, or 1 on a single-slot machine. If you define your
own value for this setting, you should provide a full path, and the .slotX portion of the file name
will be automatically appended.

NUM_CPUS

Important
This option is intended for advanced users and is disabled by default.

This macro is an integer value which can be used to lie to the condor_startd daemon about
how many CPUs a machine has. When set, it overrides automatic detection of CPUs.

Enabling this can allow multiple jobs to run on a single-CPU machine by having that machine
treated like an SMP machine with multiple CPUs, each running different jobs. Alternatively, an
SMP machine may advertise more slots than it has CPUs. However, lying in this manner will affect
the performance of the jobs, since now multiple jobs will will compete with each other on the same
CPU.

If lying about the CPUs in a given machine, you should use the STARTD_ATTRS setting to
advertise the fact in the machine's ClassAd. This will allow jobs submitted in the pool to specify if
they do not want to be matched with machines that are only offering these fractional CPUs.

Appendix A. Configuration options

198

Note: This setting cannot be changed with a simple reconfigure, either by sending a SIGHUP
or by using the condor_reconfig command. To change this macro you must restart the
condor_startd daemon. The command is:

condor_restart -subsystem startd

MAX_NUM_CPUS
An integer value used as a ceiling for the number of CPUs detected on a machine. This value is
ignored if NUM_CPUS is set. If set to zero, there is no ceiling. If not defined, the default value is
zero, and thus there is no ceiling.

Note that this setting cannot be changed with a simple reconfigure, either by sending a SIGHUP or
by using the condor_reconfig command. To change this, restart the condor_startd daemon
for the change to take effect. The command will be:

condor_restart -startd

COUNT_HYPERTHREAD_CPUS
This macro controls how hyper-threaded processors are treated. When set to True (the default),
it includes virtual CPUs in the default value of NUM_CPUS. On dedicated cluster nodes, counting
virtual CPUs can sometimes improve total throughput at the expense of individual job speed.
However, counting them on desktop workstations can interfere with interactive job performance.

MEMORY
Normally, the amount of physical memory available on your machine will be automatically
detected. Define MEMORY to state how much physical memory (in MB) your machine has,
overriding the automatic value.

RESERVED_MEMORY
By default, all the physical memory of the machine as considered available to be used by jobs. If
RESERVED_MEMORY is defined, this value is subtracted from the amount of memory advertised as
available.

STARTD_NAME
Used to give an alternative value to the Name attribute in the condor_startd's ClassAd. This
esoteric configuration macro might be used in the situation where there are two condor_startd
daemons running on one machine, and each reports to the same condor_collector. Different
names will distinguish the two daemons. See the description of MASTER_NAME in section
Section A.8, “condor_master Configuration File Macros ” for defaults and composition of valid
Condor daemon names.

RUNBENCHMARKS
Specifies when to run benchmarks. Benchmarks will be run when the machine is in the Unclaimed
state and this expression evaluates to True. If RunBenchmarks is specified and set to anything
other than False, additional benchmarks will be run when the condor_startd initially starts.
To disable start up benchmarks, set RunBenchmarks to False, or comment it out of the
configuration file.

DedicatedScheduler
A string that identifies the dedicated scheduler this machine is managed by.

condor_startd Configuration File Macros

199

STARTD_RESOURCE_PREFIX
A string which specifies what prefix to give the unique resources that are advertised on SMP
machines. The default value of this prefix is slot. This setting enables sites to define what string
the condor_startd will use to name the individual resources on an SMP machine if they prefer
to use something other than slot.

SLOTS_CONNECTED_TO_CONSOLE
An integer which indicates how many of the machine slots the condor_startd is representing
should be "connected" to the console (that is slots that notice when there is console activity). This
defaults to all slots (N in a machine with N CPUs).

SLOTS_CONNECTED_TO_KEYBOARD
An integer which indicates how many of the machine slots the condor_startd is representing
should be "connected" to the keyboard (for remote tty activity, as well as console activity). Defaults
to 1.

DISCONNECTED_KEYBOARD_IDLE_BOOST
If there are slots not connected to either the keyboard or the console, the total idle time reported
will be the time since the condor_startd was spawned plus the value of this macro. It defaults
to 1200 seconds (20 minutes).

This ensures the slot is available to jobs as soon as the condor_startd starts up (if the slot
is configured to ignore keyboard activity), instead of having to wait for 15 minutes (which is the
default time a machine must be idle before a job will start) or more.

If you do not want this boost, set the value to 0. Increase this macro's value if you change your
START expression to require more than 15 minutes before a job starts, but you still want jobs to
start right away on some of your SMP nodes.

STARTD_SLOT_ATTRS
The list of ClassAd attribute names that should be shared across all slots on the same machine.
For each attribute in the list, the attribute's value is taken from each slot's machine ClassAd and
placed into the machine ClassAd of all the other slots within the machine. For example, if the
configuration file for a 2-slot machine contains:

STARTD_SLOT_ATTRS = State, Activity, EnteredCurrentActivity

then the machine ClassAd for both slots will contain attributes that will be of the form:

slot1_State = "Claimed"
slot1_Activity = "Busy"
slot1_EnteredCurrentActivity = 1075249233
slot2_State = "Unclaimed"
slot2_Activity = "Idle"
slot2_EnteredCurrentActivity = 1075240035

MAX_SLOT_TYPES
The maximum number of different slot types.This macro defaults to 10 (you should only need to
change this setting if you define more than 10 separate slot types).

Note: this is the maximum number of different slot types, not of actual slots.

Appendix A. Configuration options

200

SLOT_TYPE_N
This setting defines a given slot type, by specifying what part of each shared system resource
(like RAM, swap space, etc) this kind of slot gets. This setting has no effect unless you also define
NUM_SLOTS_TYPE_N. N can be any integer from 1 to the value of MAX_SLOT_TYPES, such as
SLOT_TYPE_1.

SLOT_TYPE_N_PARTITIONABLE
A boolean variable that defaults to False. When set to True, this slot permits dynamic slots.

NUM_SLOTS_TYPE_N
This macro controls how many of a given slot type are actually reported. There is no default.

NUM_SLOTS
This macro controls how many slots will be reported if your SMP machine is being evenly divided
and the slot type settings described above are not being used. The default is one slot for each
CPU. This setting can be used to reserve some CPUs on an SMP which would not be reported
to the pool. You cannot use this parameter to advertise more slots than there are CPUs on the
machine. To do that, use NUM_CPUS.

ALLOW_VM_CRUFT
A boolean value that is set and used internally, currently defaulting to True. When True, MRG
Grid looks for configuration variables named with the previously used string VM after searching
unsuccessfully for variables named with the currently used string SLOT. When False, it does not
look for variables named with the previously used string VM after searching unsuccessfully for the
string SLOT.

STARTD_CRON_NAME
Defines a logical name to be used in the formation of related configuration macro names. While
not required, this macro makes other macros more readable and maintainable. A common
example is:

STARTD_CRON_NAME = HAWKEYE

This example allows the naming of other related macros to contain the string "HAWKEYE" in their
name.

STARTD_CRON_CONFIG_VAL
This configuration variable can be used to specify the condor_config_val program which the
modules (jobs) should use to get configuration information from the daemon. If this is provided, a
environment variable by the same name with the same value will be passed to all modules.

If STARTD_CRON_NAME is defined, then this configuration macro name is changed from
STARTD_CRON_CONFIG_VAL to $(STARTD_CRON_NAME)_CONFIG_VAL. Example:

HAWKEYE_CONFIG_VAL = /usr/local/condor/bin/condor_config_val

STARTD_CRON_AUTOPUBLISH
Optional setting that determines if the condor_startd should automatically publish a new
update to the condor_collector after any of the cron modules produce output.

condor_startd Configuration File Macros

201

Important
Enabling this setting can greatly increase the network traffic in a pool, especially
when many modules are executed or if they are run in short intervals.

There are three possible values for this setting:

never
This default value causes the condor_startd to not automatically publish updates based
on any cron modules. Instead, updates rely on the usual behavior for sending updates, which
is periodic, based on the UPDATE_INTERVAL configuration setting, or whenever a given slot
changes state.

always
Causes the condor_startd to always send a new update to the condor_collector
whenever any module exits.

if_changed
Causes the condor_startd to only send a new update to the condor_collector
if the output produced by a given module is different than the previous output of the
same module. The only exception is the LastUpdate attribute (automatically set for
all cron modules to be the timestamp when the module last ran), which is ignored when
STARTD_CRON_AUTOPUBLISH is set to if_changed.

Be aware that STARTD_CRON_AUTOPUBLISH does not honor the STARTD_CRON_NAME setting
described above. Even if STARTD_CRON_NAME is defined, STARTD_CRON_AUTOPUBLISH will
have the same name.

STARTD_CRON_JOBLIST
This configuration variable is defined by a white space separated list of job names (called
modules) to run. Each of these is the logical name of the module. This name must be unique (no
two modules may have the same name).

If STARTD_CRON_NAME is defined, then this configuration macro name is changed from
STARTD_CRON_JOBLIST to $(STARTD_CRON_NAME)_JOBLIST.

STARTD_CRON_ModuleName_PREFIX
Specifies a string which is prepended to all attribute names that the specified module generates.
For example, if a prefix is set as "xyz_", and an individual attribute is named abc", the resulting
attribute would be xyz_abc. Although it can be quoted the prefix can contain only alpha-numeric
characters.

If STARTD_CRON_NAME is defined, then this configuration macro name is changed from
STARTD_CRON_ModuleName_PREFIX to $(STARTD_CRON_NAME)_ModuleName_PREFIX.

STARTD_CRON_ModuleName_EXECUTABLE
Used to specify the full path to the executable to run for this module. Note that multiple modules
may specify the same executable (although they need to have different names).

If STARTD_CRON_NAME is defined, then this configuration macro
name is changed from STARTD_CRON_ModuleName_EXECUTABLE to
$(STARTD_CRON_NAME)_ModuleName_EXECUTABLE.

Appendix A. Configuration options

202

STARTD_CRON_ModuleName_PERIOD
The period specifies time intervals at which the module should be run. For periodic modules,
this is the time interval that passes between starting the execution of the module. The value may
be specified in seconds (append value with the character 's'), in minutes (append value with
the character 'm'), or in hours (append value with the character 'h'). For example, 5m starts the
execution of the module every five minutes. If no character is appended to the value, seconds are
used as a default. The minimum valid value of the period is 1 second.

For "Wait For Exit" mode, the value has a different meaning; in this case the period specifies the
length of time after the module ceases execution before it is restarted.

If STARTD_CRON_NAME is defined, this configuration macro name is changed from
STARTD_CRON_ModuleName_PERIOD to $(STARTD_CRON_NAME)_ModuleName_PERIOD.

STARTD_CRON_ModuleName_MODE
Used to specify the "Mode" in which the module operates. Legal values are "WaitForExit" and
"Periodic" (the default).

The default "Periodic" mode is used for most modules. In this mode, the module is expected to be
started by the condor_startd daemon, gather and publish its data, and then exit.

The "WaitForExit' mode is used to specify a module which runs in the "Wait For Exit" mode. In this
mode, the condor_startd daemon interprets the "period" differently. In this case, it refers to the
amount of time to wait after the module exits before restarting it. With a value of 1, the module is
kept running nearly continuously.

In general, "Wait For Exit" mode is for modules that produce a periodic stream of updated data,
but it can be used for other purposes as well.

STARTD_CRON_ModuleName_RECONFIG
The "ReConfig" macro is used to specify whether a module can handle HUP signals, and should
be sent a HUP signal, when the condor_startd daemon is reconfigured. The module is
expected to reread its configuration at that time. A value of "True" enables this setting, and "False"
disables it.

If STARTD_CRON_NAME is defined, then this configuration macro name is changed from
STARTD_CRON_ModuleName_RECONFIG to:

$(STARTD_CRON_NAME)_ModuleName_RECONFIG.

STARTD_CRON_ModuleName_KILL
The "Kill" macro is applicable on for modules running in the "Periodic" mode. Possible values are
"True" and "False" (the default).

If STARTD_CRON_NAME is defined, then this configuration macro name is changed from
STARTD_CRON_ModuleName_KILL to $(STARTD_CRON_NAME)_ModuleName_KILL.

This macro controls the behavior of the condor_startd when it detects that the module's
executable is still running when it is time to start the module for a run. If enabled, the
condor_startd will kill and restart the process in this condition. If not enabled, the existing
process is allowed to continue running.

STARTD_CRON_ModuleName_ARGS
The command line arguments to pass to the module to be executed.

condor_startd Configuration File Macros

203

If STARTD_CRON_NAME is defined, then this configuration macro name is changed from
STARTD_CRON_ModuleName_ARGS to $(STARTD_CRON_NAME)_ModuleName_ARGS.

STARTD_CRON_ModuleName_ENV
The environment string to pass to the module. The syntax is the same as that of
DAEMONNAME_ENVIRONMENT.

If STARTD_CRON_NAME is defined, then this configuration macro name is changed from
STARTD_CRON_ModuleName_ENV to $(STARTD_CRON_NAME)_ModuleName_ENV.

STARTD_CRON_ModuleName_CWD
The working directory in which to start the module.

If STARTD_CRON_NAME is defined, then this configuration macro name is changed from
STARTD_CRON_ModuleName_CWD to $(STARTD_CRON_NAME)_ModuleName_CWD.

STARTD_CRON_ModuleName_OPTIONS
A colon separated list of options. Not all combinations of options make sense; when a nonsense
combination is listed, the last one in the list is followed.

If STARTD_CRON_NAME is defined, then this configuration macro name is changed from
STARTD_CRON_ModuleName_OPTIONS to $(STARTD_CRON_NAME)_ModuleName_OPTIONS.

• The "WaitForExit" option enables the "Wait For Exit" mode (see above).

• The "ReConfig" option enables the "Reconfig" setting (see above).

• The "NoReConfig" option disables the "Reconfig" setting (see above).

• The "Kill" option enables the "Kill" setting (see above).

• The "NoKill" option disables the "Kill" setting (see above).

STARTD_CRON_JOBS
The list of the modules to execute. In Hawkeye, this is usually named HAWKEYE_JOBS. This
configuration variable is defined by a white space or newline separated list of jobs (called
modules) to run, where each module is specified using the format:

modulename:prefix:executable:period[:options]

Each of these fields can be surrounded by matching quote characters (single quote or double
quote, but they must match). This allows colon and white space characters to be specified. For
example, the following specifies an executable name with a colon and a space in it:

foo:foo_:"c:/some dir/foo.exe":10m

These individual fields are described below:

• modulename: The logical name of the module. This must be unique (no two modules may have
the same name). See STARTD_CRON_JOBLIST.

• prefix: See STARTD_CRON_ModuleName_PREFIX.

• executable: See STARTD_CRON_ModuleName_EXECUTABLE.

Appendix A. Configuration options

204

• period: See STARTD_CRON_ModuleName_PERIOD.

• Several options are available. Using more than one of these options for one module
does not make sense. If this happens, the last one in the list is followed. See
STARTD_CRON_ModuleName_OPTIONS.

• The "Continuous" option is used to specify a module which runs in continuous mode (as
described above). See the "WaitForExit" and "ReConfig" options which replace "Continuous".

This option is now deprecated, and its functionality has been replaced by the new
"WaitForExit" and "ReConfig" options, which together implement the capabilities of
"Continuous".

• The "WaitForExit" option

See the discussion of "WaitForExit" in STARTD_CRON_ModuleName_OPTIONS above.

• The "ReConfig" option

See the discussion of "ReConfig" in STARTD_CRON_ModuleName_OPTIONS above.

• The "NoReConfig" option

See the discussion of "NoReConfig" in STARTD_CRON_ModuleName_OPTIONS above.

• The "Kill" option

See the discussion of "Kill" in STARTD_CRON_ModuleName_OPTIONS above.

• The "NoKill" option

See the discussion of "NoKill" in STARTD_CRON_ModuleName_OPTIONS above.

NOTE: The configuration file parsing logic will strip white space from the beginning and end
of continuation lines. Thus, a job list like below will be misinterpreted and will not work as
expected:

Hawkeye Job Definitions
HAWKEYE_JOBS =\
 JOB1:prefix_:$(MODULES)/job1:5m:nokill\
 JOB2:prefix_:$(MODULES)/job1_co:1h
HAWKEYE_JOB1_ARGS =-foo -bar
HAWKEYE_JOB1_ENV = xyzzy=somevalue
HAWKEYE_JOB2_ENV = lwpi=somevalue

Instead, write this as below:

Hawkeye Job Definitions
HAWKEYE_JOBS =

Job 1
HAWKEYE_JOBS = $(HAWKEYE_JOBS) JOB1:prefix_:$(MODULES)/job1:5m:nokill
HAWKEYE_JOB1_ARGS =-foo -bar
HAWKEYE_JOB1_ENV = xyzzy=somevalue

Job 2
HAWKEYE_JOBS = $(HAWKEYE_JOBS) JOB2:prefix_:$(MODULES)/job2:1h

condor_startd Configuration File Macros

205

HAWKEYE_JOB2_ENV = lwpi=somevalue

STARTD_COMPUTE_AVAIL_STATS
A boolean that determines if the condor_startd computes resource availability statistics. The
default is False.

If STARTD_COMPUTE_AVAIL_STATS = True, the condor_startd will define the following
ClassAd attributes for resources:

• AvailTime

The proportion of the time (between 0.0 and 1.0) that this resource has been in a state other
than Owner.

• LastAvailInterval

The duration (in seconds) of the last period between Owner states.

The following attributes will also be included if the resource is not in the Owner state

• AvailSince

The time at which the resource last left the Owner state. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

• AvailTimeEstimate

Based on past history, an estimate of how long the current period between Owner states will
last.

STARTD_AVAIL_CONFIDENCE
A floating point number representing the confidence level of the condor_startd daemon's
AvailTime estimate. By default, the estimate is based on the 80th percentile of past values (that is,
the value is initially set to 0.8).

STARTD_MAX_AVAIL_PERIOD_SAMPLES
An integer that limits the number of samples of past available intervals stored by the
condor_startd to limit memory and disk consumption. Each sample requires 4 bytes of memory
and approximately 10 bytes of disk space.

JAVA
The full path to the Java interpreter (the Java Virtual Machine).

JAVA_MAXHEAP_ARGUMENT
An incomplete command line argument to the Java interpreter (the Java Virtual Machine) to
specify the switch name for the Maxheap Argument. This is used to construct the maximum heap
size for the Java Virtual Machine. For example, the value for the Sun JVM is -Xmx.

JAVA_CLASSPATH_ARGUMENT
The command line argument to the Java interpreter (the Java Virtual Machine) that specifies the
Java Classpath. Classpath is a Java-specific term that denotes the list of locations (.jar files and/
or directories) where the Java interpreter can look for the Java class files that a Java program
requires.

Appendix A. Configuration options

206

JAVA_CLASSPATH_SEPARATOR
The single character used to delimit constructed entries in the Classpath for the given operating
system and Java Virtual Machine. If not defined, the operating system is queried for its default
Classpath separator.

JAVA_CLASSPATH_DEFAULT
A list of path names to .jar files to be added to the Java Classpath by default. The comma and/or
space character delimits list entries.

JAVA_EXTRA_ARGUMENTS
A list of additional arguments to be passed to the Java executable.

SLOTN_JOB_HOOK_KEYWORD
The keyword used to define which set of hooks a particular compute slot should invoke. Note that
the "N" in "SLOTN" should be replaced with the slot identification number, for example, on slot1,
this setting would be called SLOT1_JOB_HOOK_KEYWORD. There is no default keyword. Sites
that wish to use these job hooks must explicitly define the keyword (and the corresponding hook
paths).

STARTD_JOB_HOOK_KEYWORD
The keyword used to define which set of hooks a particular condor_startd should invoke. This
setting is only used if a slot-specific keyword is not defined for a given compute slot. There is no
default keyword. Sites that wish to use these job hooks must explicitly define the keyword (and the
corresponding hook paths).

HOOK_FETCH_WORK
The full path to the program to invoke whenever the condor_startd wants to fetch work. The
actual configuration setting must be prefixed with a hook keyword. There is no default.

HOOK_REPLY_CLAIM
The full path to the program to invoke whenever the condor_startd finishes fetching a job and
decides what to do with it. The actual configuration setting must be prefixed with a hook keyword.
There is no default.

HOOK_EVICT_CLAIM
The full path to the program to invoke whenever the condor_startd needs to evict a fetched
claim. The actual configuration setting must be prefixed with a hook keyword. There is no default.

FetchWorkDelay
An expression that defines the number of seconds that the condor_startd should wait
after an invocation of HOOK_FETCH_WORK completes before the hook should be invoked
again. The expression is evaluated in the context of the slot ClassAd, and the ClassAd of the
currently running job (if any). The expression must evaluate to an integer. If not defined, the
condor_startd will wait 300 seconds (five minutes) between attempts to fetch work.

HIBERNATE_CHECK_INTERVAL
An integer number of seconds that determines how often the condor_startd checks to see
if the machine is ready to enter a low power state. The default value is 0, which disables the
check. If not 0, the HIBERNATE expression is evaluated within the context of each slot at the given
interval. If used, a value 300 (5 minutes) is recommended.

As a special case, the interval is ignored when the machine has just returned from a low power
state (excluding shutdown (5)). In order to avoid machines from volleying between a running state

condor_startd Configuration File Macros

207

and a low power state, an hour of uptime is enforced after a machine has been woken. After the
hour has passed, regular checks resume.

HIBERNATE
A string expression that represents lower power state. When this state name evaluates to a valid
non-"NONE" state (see below), causes the machine to be put into a low power state given by the
evaluation of the expression. The following names are supported (and are not case sensitive):

• "NONE", "0": No-op: do not enter a low power state

• "S1", "1", "STANDBY", "SLEEP": On Windows, Sleep (standby)

• "S2", "2": On Windows, Sleep (standby)

• "S3", "3", "RAM", "MEM": Sleep (standby)

• "S4", "4", "DISK", "HIBERNATE": Hibernate

• "S5", "5", "SHUTDOWN": Shutdown (soft-off)

The HIBERNATE expression is written in terms of the S-states as defined in the Advanced
Configuration and Power Interface (ACPI) specification. The S-states take the form Sn, where n
is an integer in the range 0 to 5, inclusive. The number that results from evaluating the expression
determines which S-state to enter. The n from Sn notation was adopted because at this junction in
time it appears to be the standard naming scheme for power states on several popular Operating
Systems, including various flavors of Windows and Linux distributions. The other strings ("RAM",
"DISK", etc.) are provided for ease of configuration.

Since this expression is evaluated in the context of each slot on the machine, any one slot
has veto power over the other slots. If the evaluation of HIBERNATE in one slot evaluates to
"NONE" or "0", then the machine will not be placed into a low power state. On the other hand,
if all slots evaluate to a non-zero value, but differ in value, then the largest value is used as the
representative power state.

Strings that do not match any in the table above are treated as "NONE".

LINUX_HIBERNATION_METHOD
A string that can be used to override the default search used on Linux platforms to detect the
hibernation method to use. The default behavior orders its search with:

1. Detect and use the pm-utils command line tools. The corresponding string is defined with "pm-
utils".

2. Detect and use the directory in the virtual file system /sys/power. The corresponding string is
defined with "/sys".

3. Detect and use the directory in the virtual file system /proc/ACPI. The corresponding string is
defined with "/proc".

To override this ordered search behavior, and force the use of one particular method, set
LINUX_HIBERNATION_METHOD to one of the defined strings.

Appendix A. Configuration options

208

OFFLINE_LOG
The full path and file name of a file that stores machine ClassAds for every hibernating machine.
This forms a persistent storage of these ClassAds, in case the condor_collector daemon
crashes.

To avoid condor_preen removing this log, place it in a directory other than the directory defined
by SPOOL. Alternatively, if this log file is to go in the directory defined by SPOOL, add the file to the
list given by VALID_SPOOL_FILES.

OFFLINE_EXPIRE_ADS_AFTER
An integer number of seconds specifying the lifetime of the persistent machine ClassAd
representing a hibernating machine. Defaults to the largest 32-bit integer.

A.10. condor_schedd Configuration File Entries
SHADOW

This macro determines the full path of the condor_shadow binary that the condor_schedd
spawns. It is normally defined in terms of $(SBIN).

START_LOCAL_UNIVERSE
A boolean value that defaults to True. The condor_schedd uses this macro to determine
whether to start a local universe job. At intervals determined by SCHEDD_INTERVAL, the
condor_schedd daemon evaluates this macro for each idle local universe job that it has.
For each job, if the START_LOCAL_UNIVERSE macro is True, then the job's Requirements
expression is evaluated. If both conditions are met, then the job is allowed to begin execution.

The following example only allows 10 local universe jobs to execute concurrently. The attribute
TotalLocalJobsRunning is supplied by condor_schedd's ClassAd:

START_LOCAL_UNIVERSE = TotalLocalJobsRunning < 10

STARTER_LOCAL
The complete path and executable name of the condor_starter to run for local universe jobs.
This variable's value is defined in the initial configuration provided as:

STARTER_LOCAL = $(SBIN)/condor_starter

This variable would only be modified or hand added into the configuration for a pool to be
upgraded from one running a version of MRG Grid that existed before the local universe to one
that includes the local universe, but without using the newer configuration files.

START_SCHEDULER_UNIVERSE
A boolean value that defaults to True. The condor_schedd uses this macro to determine
whether to start a scheduler universe job. At intervals determined by SCHEDD_INTERVAL,
the condor_schedd daemon evaluates this macro for each idle scheduler universe job that
it has. For each job, if the START_SCHEDULER_UNIVERSE macro is True, then the job's
Requirements expression is evaluated. If both conditions are met, then the job is allowed to
begin execution.

The following example only allows 10 scheduler universe jobs to execute concurrently. The
attribute TotalSchedulerJobsRunning is supplied by the condor_schedd ClassAd:

condor_starter Configuration File Entries

209

START_SCHEDULER_UNIVERSE = TotalSchedulerJobsRunning < 10

A.11. condor_starter Configuration File Entries
These settings affect the condor_starter.

JOB_RENICE_INCREMENT
When the condor_starter spawns a job, it can set a nice level. This is a mechanism that
allows users to assign processes a lower priority. This can mean that those processes do not
interfere with interactive use of the machine.

The integer value of the nice level is set by the condor_starter daemon just before each job
runs. The range of allowable values are integers in the range of 0 to 19, with 0 being the highest
priority and 19 the lowest. If the integer value is outside this range, then a value greater than 19 is
auto-decreased to 19 and a value less than 0 is treated as 0. The default value is 10.

STARTER_LOCAL_LOGGING
This macro determines whether the starter should do local logging to its own log file, or send
debug information back to the ShadowLog. It defaults to True.

STARTER_DEBUG
This setting refers to the level of information sent to the log. See Section A.4, “Logging
configuration variables” for more information.

STARTER_UPDATE_INTERVAL
The number of seconds to wait between ClassAd updates. This value is sent to the
condor_startd and condor_shadow daemons. Defaults to 300 seconds (5 minutes).

STARTER_UPDATE_INTERVAL_TIMESLICE
A floating point value, specifying the highest fraction of time that the condor_starter daemon
should spend collecting monitoring information about the job. If monitoring takes a long time, the
condor_starter will monitor less frequently than specified. The default value is 0.1.

USER_JOB_WRAPPER
The full path to an executable or script. This macro is used to specify a wrapper script to handle
the execution of all user jobs. If specified, the job will never be run directly. The program specified
will be invoked instead. The command-line arguments passed to this program are the full path
to the actual job to be executed, and all the command line parameters to pass to the job. This
wrapper program will ultimately replace its image with the user job. This means that it must
execute the user job, instead of forking it.

STARTER_JOB_ENVIRONMENT
Used to set the default environment that is inherited by jobs. It uses the same syntax as the
environment settings in the job submit file. If the same environment variable is assigned by this
macro and by the user in the submit file, the user settings takes precedence.

JOB_INHERITS_STARTER_ENVIRONMENT
A boolean value. When TRUE, jobs will inherit all environment variables from the
condor_starter. When both the user job and STARTER_JOB_ENVIRONMENT define an
environment variable, the user's job definition takes precedence. This variable does not apply to
standard universe jobs. Defaults to FALSE

Appendix A. Configuration options

210

STARTER_UPLOAD_TIMEOUT
An integer value that specifies the number of seconds to wait when transferring files back to the
submit machine, before declaring a network timeout. Increase this value if the disk on the submit
machine cannot keep up with large bursts of activity, such as many jobs all completing at the same
time. The default value is 300 seconds (5 minutes).

ENFORCE_CPU_AFFINITY
A boolean value. When FALSE, the CPU affinity of jobs and their descendents is not enforced.
When TRUE, CPU affinity will be maintained, and finely tuned affinities can be specified using
SLOTX_CPU_AFFINITY. Defaults to FALSE

SLOTX_CPU_AFFINITY
A comma separated list of cores. The specified cores are those to which a job running on SLOTX
will show affinity. This setting will work only if ENFORCE_CPU_AFFINITY is set to TRUE.

SCHEDD_CLUSTER_INITIAL_VALUE
Specifies the first cluster ID number to be assigned. Defaults to 1. If the job cluster ID reaches the
value set by SCHEDD_CLUSTER_MAXIMUM_VALUE and wraps around, the job cluster ID will be
reset to the value of SCHEDD_CLUSTER_INITIAL_VALUE.

If the job_queue.log file is removed, cluster IDs will be assigned starting from
SCHEDD_CLUSTER_INITIAL_VALUE after system restart.

SCHEDD_CLUSTER_MAXIMUM_VALUE
An upper bound on the job cluster ID. If this parameter is set to a value (M), the maximum job
cluster ID assigned to any job will be (M-1). When the maximum ID is reached, job IDs will wrap
around back to SCHEDD_CLUSTER_INITIAL_VALUE. The default value is 0, which will not set a
maximum cluster ID.

Warning
It is important to ensure that the number of jobs in the queue at any one time
is less than the value of this parameter. If too many jobs are queued at once,
duplicate cluster IDs could be assigned. Additionally, it is important that a job is
never submitted with a cluster ID the same as an already running job. Duplicate
cluster IDs will result in a corrupted job queue.

SCHEDD_CLUSTER_INCREMENT_VALUE
Specifies the increment to use when assigning new cluster ID numbers. Defaults to 1.

For example, if SCHEDD_CLUSTER_INITIAL_VALUE is set to 2, and
SCHEDD_CLUSTER_INCREMENT_VALUE is set to 2, the cluster ID numbers will be {2, 4,
6, ...}.

A.12. Example configuration files
This section contains complete default configuration files.

This is the default global configuration file. It is located at /etc/condor/condor_config and is
usually the same for all installations. Do not change this file. To customize the configuration, edit files
in the local configuration directory instead.

Example configuration files

211

##
##
###
N O T I C E: D O N O T E D I T T H I S F I L E
###
Customization should be done via the LOCAL_CONFIG_DIR.
###
##
##

##
##
condor_config
##
This is the global configuration file for condor. Any settings
found here * * s h o u l d b e c u s t o m i z e d i n
a l o c a l c o n f i g u r a t i o n f i l e. * *
##
The local configuration files are located in LOCAL_CONFIG_DIR, set
below.
##
For a basic configuration, you may only want to start by
customizing CONDOR_HOST and DAEMON_LIST.
##
Note: To double-check where a configuration variable is set from
you can use condor_config_val -v -config <variable name>,
e.g. condor_config_val -v -config CONDOR_HOST.
##
The file is divided into four main parts:
Part 1: Settings you likely want to customize
Part 2: Settings you may want to customize
Part 3: Settings that control the policy of when condor will
start and stop jobs on your machines
Part 4: Settings you should probably leave alone (unless you
know what you're doing)
##
Please read the INSTALL file (or the Install chapter in the
Condor Administrator's Manual) for detailed explanations of the
various settings in here and possible ways to configure your
pool.
##
Unless otherwise specified, settings that are commented out show
the defaults that are used if you don't define a value. Settings
that are defined here MUST BE DEFINED since they have no default
value.
##
Unless otherwise indicated, all settings which specify a time are
defined in seconds.
##
##

##
##
##
#
##
#
#
#
#
#####
##

Appendix A. Configuration options

212

Part 1: Settings you likely want to customize:
##
##

What machine is your central manager?
CONDOR_HOST = central-manager-hostname.your.domain

##--
Pathnames:
##--
Where have you installed the bin, sbin and lib condor directories?
RELEASE_DIR = /usr

Where is the local condor directory for each host?
This is where the local config file(s), logs and
spool/execute directories are located
LOCAL_DIR = $(TILDE)
#LOCAL_DIR = $(RELEASE_DIR)/hosts/$(HOSTNAME)

Looking for LOCAL_CONFIG_FILE? You will not find it here. Instead
put a file in the LOCAL_CONFIG_DIR below. It is a more extensible
means to manage configuration. The order in which configuration
files are read from the LOCAL_CONFIG_DIR is lexicographic. For
instance, config in 00MyConfig will be overridden by config in
97MyConfig.

Where are optional machine-specific local config files located?
Config files are included in lexicographic order.
No default.
LOCAL_CONFIG_DIR = $(ETC)/config.d

If the local config file is not present, is it an error?
WARNING: This is a potential security issue.
If not specificed, the default is True
#REQUIRE_LOCAL_CONFIG_FILE = TRUE

##--
Mail parameters:
##--
When something goes wrong with condor at your site, who should get
the email?
CONDOR_ADMIN = root@$(FULL_HOSTNAME)

Full path to a mail delivery program that understands that "-s"
means you want to specify a subject:
MAIL = /bin/mail

##--
Network domain parameters:
##--
Internet domain of machines sharing a common UID space. If your
machines don't share a common UID space, set it to
UID_DOMAIN = $(FULL_HOSTNAME)
to specify that each machine has its own UID space.
UID_DOMAIN = $(FULL_HOSTNAME)

Internet domain of machines sharing a common file system.
If your machines don't use a network file system, set it to
FILESYSTEM_DOMAIN = $(FULL_HOSTNAME)
to specify that each machine has its own file system.
FILESYSTEM_DOMAIN = $(FULL_HOSTNAME)

This macro is used to specify a short description of your pool.
It should be about 20 characters long. For example, the name of

Example configuration files

213

the UW-Madison Computer Science Condor Pool is ``UW-Madison CS''.
COLLECTOR_NAME = My Pool - $(CONDOR_HOST)

##
##

#####
#
#
#####
#
#
#######

Part 2: Settings you may want to customize:
(it is generally safe to leave these untouched)
##
##

##
The user/group ID <uid>.<gid> of the "Condor" user.
(this can also be specified in the environment)
Note: the CONDOR_IDS setting is ignored on Win32 platforms
#CONDOR_IDS=x.x

##--
Flocking: Submitting jobs to more than one pool
##--
Flocking allows you to run your jobs in other pools, or lets
others run jobs in your pool.

To let others flock to you, define FLOCK_FROM.

To flock to others, define FLOCK_TO.

FLOCK_FROM defines the machines where you would like to grant
people access to your pool via flocking. (i.e. you are granting
access to these machines to join your pool).
FLOCK_FROM =
An example of this is:
#FLOCK_FROM = somehost.friendly.domain, anotherhost.friendly.domain

FLOCK_TO defines the central managers of the pools that you want
to flock to. (i.e. you are specifying the machines that you
want your jobs to be negotiated at -- thereby specifying the
pools they will run in.)
FLOCK_TO =
An example of this is:
#FLOCK_TO = central_manager.friendly.domain, condor.cs.wisc.edu

FLOCK_COLLECTOR_HOSTS should almost always be the same as
FLOCK_NEGOTIATOR_HOSTS (as shown below). The only reason it would be
different is if the collector and negotiator in the pool that you are
flocking too are running on different machines (not recommended).
The collectors must be specified in the same corresponding order as
the FLOCK_NEGOTIATOR_HOSTS list.
FLOCK_NEGOTIATOR_HOSTS = $(FLOCK_TO)
FLOCK_COLLECTOR_HOSTS = $(FLOCK_TO)
An example of having the negotiator and the collector on different
machines is:
#FLOCK_NEGOTIATOR_HOSTS = condor.cs.wisc.edu, condor-negotiator.friendly.domain
#FLOCK_COLLECTOR_HOSTS = condor.cs.wisc.edu, condor-collector.friendly.domain

##--

Appendix A. Configuration options

214

Host/IP access levels
##--
Please see the administrator's manual for details on these
settings, what they're for, and how to use them.

What machines have administrative rights for your pool? This
defaults to your central manager. You should set it to the
machine(s) where whoever is the condor administrator(s) works
(assuming you trust all the users who log into that/those
machine(s), since this is machine-wide access you're granting).
ALLOW_ADMINISTRATOR = $(CONDOR_HOST)

If there are no machines that should have administrative access
to your pool (for example, there's no machine where only trusted
users have accounts), you can uncomment this setting.
Unfortunately, this will mean that administering your pool will
be more difficult.
#DENY_ADMINISTRATOR = *

What machines should have "owner" access to your machines, meaning
they can issue commands that a machine owner should be able to
issue to their own machine (like condor_vacate). This defaults to
machines with administrator access, and the local machine. This
is probably what you want.
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)

Read access. Machines listed as allow (and/or not listed as deny)
can view the status of your pool, but cannot join your pool
or run jobs.
NOTE: By default, without these entries customized, you
are granting read access to the whole world. You may want to
restrict that to hosts in your domain. If possible, please also
grant read access to "*.cs.wisc.edu", so the Condor developers
will be able to view the status of your pool and more easily help
you install, configure or debug your Condor installation.
It is important to have this defined.
ALLOW_READ = *
#ALLOW_READ = *.your.domain, *.cs.wisc.edu
#DENY_READ = *.bad.subnet, bad-machine.your.domain, 144.77.88.*

Write access. Machines listed here can join your pool, submit
jobs, etc. Note: Any machine which has WRITE access must
also be granted READ access. Granting WRITE access below does
not also automatically grant READ access; you must change
ALLOW_READ above as well.
##
You must set this to something else before Condor will run.
This most simple option is:
ALLOW_WRITE = *
but note that this will allow anyone to submit jobs or add
machines to your pool and is a serious security risk.

ALLOW_WRITE = $(FULL_HOSTNAME)
#ALLOW_WRITE = *.your.domain, your-friend's-machine.other.domain
#DENY_WRITE = bad-machine.your.domain

Are you upgrading to a new version of Condor and confused about
why the above ALLOW_WRITE setting is causing Condor to refuse to
start up? If you are upgrading from a configuration that uses
HOSTALLOW/HOSTDENY instead of ALLOW/DENY we recommend that you
convert all uses of the former to the latter. The syntax of the
authorization settings is identical. They both support
unauthenticated IP-based authorization as well as authenticated
user-based authorization. To avoid confusion, the use of

Example configuration files

215

HOSTALLOW/HOSTDENY is discouraged. Support for it may be removed
in the future.

Negotiator access. Machines listed here are trusted central
managers. You should normally not have to change this.
ALLOW_NEGOTIATOR = $(CONDOR_HOST)
Now, with flocking we need to let the SCHEDD trust the other
negotiators we are flocking with as well. You should normally
not have to change this either.
ALLOW_NEGOTIATOR_SCHEDD = $(CONDOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS)

Config access. Machines listed here can use the condor_config_val
tool to modify all daemon configurations. This level of host-wide
access should only be granted with extreme caution. By default,
config access is denied from all hosts.
#ALLOW_CONFIG = trusted-host.your.domain

Flocking Configs. These are the real things that Condor looks at,
but we set them from the FLOCK_FROM/TO macros above. It is safe
to leave these unchanged.
ALLOW_WRITE_COLLECTOR = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_WRITE_STARTD = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_READ_COLLECTOR = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_READ_STARTD = $(ALLOW_READ), $(FLOCK_FROM)

##--
Security parameters for setting configuration values remotely:
##--
These parameters define the list of attributes that can be set
remotely with condor_config_val for the security access levels
defined above (for example, WRITE, ADMINISTRATOR, CONFIG, etc).
Please see the administrator's manual for futher details on these
settings, what they're for, and how to use them. There are no
default values for any of these settings. If they are not
defined, no attributes can be set with condor_config_val.

Do you want to allow condor_config_val -rset to work at all?
This feature is disabled by default, so to enable, you must
uncomment the following setting and change the value to "True".
Note: changing this requires a restart not just a reconfig.
#ENABLE_RUNTIME_CONFIG = False

Do you want to allow condor_config_val -set to work at all?
This feature is disabled by default, so to enable, you must
uncomment the following setting and change the value to "True".
Note: changing this requires a restart not just a reconfig.
#ENABLE_PERSISTENT_CONFIG = False

Directory where daemons should write persistent config files (used
to support condor_config_val -set). This directory should *ONLY*
be writable by root (or the user the Condor daemons are running as
if non-root). There is no default, administrators must define this.
Note: changing this requires a restart not just a reconfig.
#PERSISTENT_CONFIG_DIR = /full/path/to/root-only/local/directory

Attributes that can be set by hosts with "CONFIG" permission (as
defined with ALLOW_CONFIG and DENY_CONFIG above).
The commented-out value here was the default behavior of Condor
prior to version 6.3.3. If you don't need this behavior, you
should leave this commented out.
#SETTABLE_ATTRS_CONFIG = *

Attributes that can be set by hosts with "ADMINISTRATOR"

Appendix A. Configuration options

216

permission (as defined above)
#SETTABLE_ATTRS_ADMINISTRATOR = *_DEBUG, MAX_*_LOG

Attributes that can be set by hosts with "OWNER" permission (as
defined above) NOTE: any Condor job running on a given host will
have OWNER permission on that host by default. If you grant this
kind of access, Condor jobs will be able to modify any attributes
you list below on the machine where they are running. This has
obvious security implications, so only grant this kind of
permission for custom attributes that you define for your own use
at your pool (custom attributes about your machines that are
published with the STARTD_ATTRS setting, for example).
#SETTABLE_ATTRS_OWNER = your_custom_attribute, another_custom_attr

You can also define daemon-specific versions of each of these
settings. For example, to define settings that can only be
changed in the condor_startd's configuration by hosts with OWNER
permission, you would use:
#STARTD_SETTABLE_ATTRS_OWNER = your_custom_attribute_name

##--
Network filesystem parameters:
##--
Do you want to use NFS for file access instead of remote system
calls?
#USE_NFS = False

Do you want to use AFS for file access instead of remote system
calls?
#USE_AFS = False

##--
Checkpoint server:
##--
Do you want to use a checkpoint server if one is available? If a
checkpoint server isn't available or USE_CKPT_SERVER is set to
False, checkpoints will be written to the local SPOOL directory on
the submission machine.
#USE_CKPT_SERVER = True

What's the hostname of this machine's nearest checkpoint server?
#CKPT_SERVER_HOST = checkpoint-server-hostname.your.domain

Do you want the starter on the execute machine to choose the
checkpoint server? If False, the CKPT_SERVER_HOST set on
the submit machine is used. Otherwise, the CKPT_SERVER_HOST set
on the execute machine is used. The default is true.
#STARTER_CHOOSES_CKPT_SERVER = True

##--
Miscellaneous:
##--
Try to save this much swap space by not starting new shadows.
Specified in megabytes.
#RESERVED_SWAP = 0

What's the maximum number of jobs you want a single submit machine
to spawn shadows for? The default is a function of $(DETECTED_MEMORY)
and a guess at the number of ephemeral ports available.

Example 1:
#MAX_JOBS_RUNNING = 10000

Example configuration files

217

Example 2:
This is more complicated, but it produces the same limit as the default.
First define some expressions to use in our calculation.
Assume we can use up to 80% of memory and estimate shadow private data
size of 800k.
#MAX_SHADOWS_MEM = ceiling($(DETECTED_MEMORY)*0.8*1024/800)
Assume we can use ~21,000 ephemeral ports (avg ~2.1 per shadow).
Under Linux, the range is set in /proc/sys/net/ipv4/ip_local_port_range.
#MAX_SHADOWS_PORTS = 10000
Under windows, things are much less scalable, currently.
Note that this can probably be safely increased a bit under 64-bit windows.
#MAX_SHADOWS_OPSYS = ifThenElse(regexp("WIN.*","$(OPSYS)"),200,100000)
Now build up the expression for MAX_JOBS_RUNNING. This is complicated
due to lack of a min() function.
#MAX_JOBS_RUNNING = $(MAX_SHADOWS_MEM)
#MAX_JOBS_RUNNING = \
ifThenElse($(MAX_SHADOWS_PORTS) < $(MAX_JOBS_RUNNING), \
$(MAX_SHADOWS_PORTS), \
$(MAX_JOBS_RUNNING))
#MAX_JOBS_RUNNING = \
ifThenElse($(MAX_SHADOWS_OPSYS) < $(MAX_JOBS_RUNNING), \
$(MAX_SHADOWS_OPSYS), \
$(MAX_JOBS_RUNNING))

Maximum number of simultaneous downloads of output files from
execute machines to the submit machine (limit applied per schedd).
The value 0 means unlimited.
#MAX_CONCURRENT_DOWNLOADS = 10

Maximum number of simultaneous uploads of input files from the
submit machine to execute machines (limit applied per schedd).
The value 0 means unlimited.
#MAX_CONCURRENT_UPLOADS = 10

Condor needs to create a few lock files to synchronize access to
various log files. Because of problems we've had with network
filesystems and file locking over the years, we HIGHLY recommend
that you put these lock files on a local partition on each
machine. If you don't have your LOCAL_DIR on a local partition,
be sure to change this entry. Whatever user (or group) condor is
running as needs to have write access to this directory. If
you're not running as root, this is whatever user you started up
the condor_master as. If you are running as root, and there's a
condor account, it's probably condor. Otherwise, it's whatever
you've set in the CONDOR_IDS environment variable. See the Admin
manual for details on this.
LOCK = /var/lock/condor

If you don't use a fully qualified name in your /etc/hosts file
(or NIS, etc.) for either your official hostname or as an alias,
Condor wouldn't normally be able to use fully qualified names in
places that it'd like to. You can set this parameter to the
domain you'd like appended to your hostname, if changing your host
information isn't a good option. This parameter must be set in
the global config file (not the LOCAL_CONFIG_FILE from above).
#DEFAULT_DOMAIN_NAME = your.domain.name

If you don't have DNS set up, Condor will normally fail in many
places because it can't resolve hostnames to IP addresses and
vice-versa. If you enable this option, Condor will use
pseudo-hostnames constructed from a machine's IP address and the
DEFAULT_DOMAIN_NAME. Both NO_DNS and DEFAULT_DOMAIN must be set in
your top-level config file for this mode of operation to work

Appendix A. Configuration options

218

properly.
#NO_DNS = True

Condor can be told whether or not you want the Condor daemons to
create a core file if something really bad happens. This just
sets the resource limit for the size of a core file. By default,
we don't do anything, and leave in place whatever limit was in
effect when you started the Condor daemons. If this parameter is
set and "True", we increase the limit to as large as it gets. If
it's set to "False", we set the limit at 0 (which means that no
core files are even created). Core files greatly help the Condor
developers debug any problems you might be having.
#CREATE_CORE_FILES = True

When Condor daemons detect a fatal internal exception, they
normally log an error message and exit. If you have turned on
CREATE_CORE_FILES, in some cases you may also want to turn on
ABORT_ON_EXCEPTION so that core files are generated when an
exception occurs. Set the following to True if that is what you
want.
#ABORT_ON_EXCEPTION = False

Condor Glidein downloads binaries from a remote server for the
machines into which you're gliding. This saves you from manually
downloading and installing binaries for every architecture you
might want to glidein to. The default server is one maintained at
The University of Wisconsin. If you don't want to use the UW
server, you can set up your own and change the following to
point to it, instead.
GLIDEIN_SERVER_URLS = \
 http://www.cs.wisc.edu/condor/glidein/binaries

List the sites you want to GlideIn to on the GLIDEIN_SITES. For example,
if you'd like to GlideIn to some Alliance GiB resources,
uncomment the line below.
Make sure that $(GLIDEIN_SITES) is included in ALLOW_READ and
ALLOW_WRITE, or else your GlideIns won't be able to join your pool.
This is _NOT_ done for you by default, because it is an even better
idea to use a strong security method (such as GSI) rather than
host-based security for authorizing glideins.
#GLIDEIN_SITES = *.ncsa.uiuc.edu, *.cs.wisc.edu, *.mcs.anl.gov
#GLIDEIN_SITES =

If your site needs to use UID_DOMAIN settings (defined above) that
are not real Internet domains that match the hostnames, you can
tell Condor to trust whatever UID_DOMAIN a submit machine gives to
the execute machine and just make sure the two strings match. The
default for this setting is False, since it is more secure this
way.
Default is False
TRUST_UID_DOMAIN = True

If you would like to be informed in near real-time via condor_q when
a vanilla/standard/java job is in a suspension state, set this attribute to
TRUE. However, this real-time update of the condor_schedd by the shadows
could cause performance issues if there are thousands of concurrently
running vanilla/standard/java jobs under a single condor_schedd and they
are allowed to suspend and resume.
#REAL_TIME_JOB_SUSPEND_UPDATES = False

A standard universe job can perform arbitrary shell calls via the
libc 'system()' function. This function call is routed back to the shadow
which performs the actual system() invocation in the initialdir of the
running program and as the user who submitted the job. However, since the

Example configuration files

219

user job can request ARBITRARY shell commands to be run by the shadow, this
is a generally unsafe practice. This should only be made available if it is
actually needed. If this attribute is not defined, then it is the same as
it being defined to False. Set it to True to allow the shadow to execute
arbitrary shell code from the user job.
#SHADOW_ALLOW_UNSAFE_REMOTE_EXEC = False

KEEP_OUTPUT_SANDBOX is an optional feature to tell Condor-G to not
remove the job spool when the job leaves the queue. To use, just
set to TRUE. Since you will be operating Condor-G in this manner,
you may want to put leave_in_queue = false in your job submit
description files, to tell Condor-G to simply remove the job from
the queue immediately when the job completes (since the output files
will stick around no matter what).
#KEEP_OUTPUT_SANDBOX = False

This setting tells the negotiator to ignore user priorities. This
avoids problems where jobs from different users won't run when using
condor_advertise instead of a full-blown startd (some of the user
priority system in Condor relies on information from the startd --
we will remove this reliance when we support the user priority
system for grid sites in the negotiator; for now, this setting will
just disable it).
#NEGOTIATOR_IGNORE_USER_PRIORITIES = False

These are the directories used to locate classad plug-in functions
#CLASSAD_SCRIPT_DIRECTORY =
#CLASSAD_LIB_PATH =

This setting tells Condor whether to delegate or copy GSI X509
credentials when sending them over the wire between daemons.
Delegation can take up to a second, which is very slow when
submitting a large number of jobs. Copying exposes the credential
to third parties if Condor isn't set to encrypt communications.
By default, Condor will delegate rather than copy.
#DELEGATE_JOB_GSI_CREDENTIALS = True

This setting controls whether Condor delegates a full or limited
X509 credential for jobs. Currently, this only affects grid-type
gt2 grid universe jobs. The default is False.
#DELEGATE_FULL_JOB_GSI_CREDENTIALS = False

This setting controls the default behaviour for the spooling of files
into, or out of, the Condor system by such tools as condor_submit
and condor_transfer_data. Here is the list of valid settings for this
parameter and what they mean:
##
stm_use_schedd_only
Ask the condor_schedd to solely store/retreive the sandbox
##
stm_use_transferd
Ask the condor_schedd for a location of a condor_transferd, then
store/retreive the sandbox from the transferd itself.
##
The allowed values are case insensitive.
The default of this parameter if not specified is: stm_use_schedd_only
#SANDBOX_TRANSFER_METHOD = stm_use_schedd_only

##--
Settings that control the daemon's debugging output:
##--

##
The flags given in ALL_DEBUG are shared between all daemons.

Appendix A. Configuration options

220

##

ALL_DEBUG =

MAX_COLLECTOR_LOG = 1000000
COLLECTOR_DEBUG =

MAX_KBDD_LOG = 1000000
KBDD_DEBUG =

MAX_NEGOTIATOR_LOG = 1000000
NEGOTIATOR_DEBUG = D_MATCH
MAX_NEGOTIATOR_MATCH_LOG = 1000000

MAX_SCHEDD_LOG = 1000000
SCHEDD_DEBUG = D_PID

MAX_SHADOW_LOG = 1000000
SHADOW_DEBUG =

MAX_STARTD_LOG = 1000000
STARTD_DEBUG =

MAX_STARTER_LOG = 1000000

MAX_MASTER_LOG = 1000000
MASTER_DEBUG =
When the master starts up, should it truncate it's log file?
#TRUNC_MASTER_LOG_ON_OPEN = False

MAX_JOB_ROUTER_LOG = 1000000
JOB_ROUTER_DEBUG =

MAX_ROOSTER_LOG = 1000000
ROOSTER_DEBUG =

MAX_HDFS_LOG = 1000000
HDFS_DEBUG =

MAX_TRIGGERD_LOG = 1000000
TRIGGERD_DEBUG =

High Availability Logs
MAX_HAD_LOG = 1000000
HAD_DEBUG =
MAX_REPLICATION_LOG = 1000000
REPLICATION_DEBUG =
MAX_TRANSFERER_LOG = 1000000
TRANSFERER_DEBUG =

The daemons touch their log file periodically, even when they have
nothing to write. When a daemon starts up, it prints the last time
the log file was modified. This lets you estimate when a previous
instance of a daemon stopped running. This paramete controls how often
the daemons touch the file (in seconds).
#TOUCH_LOG_INTERVAL = 60

##
##

#####
#
#

Example configuration files

221

#####
#
#
#####

Part 3: Settings control the policy for running, stopping, and
periodically checkpointing condor jobs:
##
##

This section contains macros are here to help write legible
expressions:
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (CurrentTime - EnteredCurrentState)
ActivityTimer = (CurrentTime - EnteredCurrentActivity)
ActivationTimer = ifThenElse(JobStart =!= UNDEFINED, (CurrentTime - JobStart), 0)
LastCkpt = (CurrentTime - LastPeriodicCheckpoint)

The JobUniverse attribute is just an int. These macros can be
used to specify the universe in a human-readable way:
STANDARD = 1
VANILLA = 5
MPI = 8
VM = 13
IsMPI = (TARGET.JobUniverse == $(MPI))
IsVanilla = (TARGET.JobUniverse == $(VANILLA))
IsStandard = (TARGET.JobUniverse == $(STANDARD))
IsVM = (TARGET.JobUniverse == $(VM))

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3
HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)
MaxVacateTime = 10 * $(MINUTE)

KeyboardBusy = (KeyboardIdle < $(MINUTE))
ConsoleBusy = (ConsoleIdle < $(MINUTE))
CPUIdle = ($(NonCondorLoadAvg) <= $(BackgroundLoad))
CPUBusy = ($(NonCondorLoadAvg) >= $(HighLoad))
KeyboardNotBusy = ($(KeyboardBusy) == False)

BigJob = (TARGET.ImageSize >= (50 * 1024))
MediumJob = (TARGET.ImageSize >= (15 * 1024) && TARGET.ImageSize < (50 * 1024))
SmallJob = (TARGET.ImageSize < (15 * 1024))

JustCPU = ($(CPUBusy) && ($(KeyboardBusy) == False))
MachineBusy = ($(CPUBusy) || $(KeyboardBusy))

The RANK expression controls which jobs this machine prefers to
run over others. Some examples from the manual include:
RANK = TARGET.ImageSize
RANK = (Owner == "coltrane") + (Owner == "tyner") \
+ ((Owner == "garrison") * 10) + (Owner == "jones")
By default, RANK is always 0, meaning that all jobs have an equal
ranking.
#RANK = 0

###
This where you choose the configuration that you would like to
use. It has no defaults so it must be defined. We start this

Appendix A. Configuration options

222

file off with the UWCS_* policy.
##

Also here is what is referred to as the TESTINGMODE_*, which is
a quick hardwired way to test Condor with a simple no-preemption policy.
Replace UWCS_* with TESTINGMODE_* if you wish to do testing mode.
For example:
WANT_SUSPEND = $(UWCS_WANT_SUSPEND)
becomes
WANT_SUSPEND = $(TESTINGMODE_WANT_SUSPEND)

When should we only consider SUSPEND instead of PREEMPT?
WANT_SUSPEND = $(UWCS_WANT_SUSPEND)

When should we preempt gracefully instead of hard-killing?
WANT_VACATE = $(UWCS_WANT_VACATE)

When is this machine willing to start a job?
START = $(UWCS_START)

When should a local universe job be allowed to start?
#START_LOCAL_UNIVERSE = TotalLocalJobsRunning < 200

When should a scheduler universe job be allowed to start?
#START_SCHEDULER_UNIVERSE = TotalSchedulerJobsRunning < 200

When to suspend a job?
SUSPEND = $(UWCS_SUSPEND)

When to resume a suspended job?
CONTINUE = $(UWCS_CONTINUE)

When to nicely stop a job?
(as opposed to killing it instantaneously)
PREEMPT = $(UWCS_PREEMPT)

When to instantaneously kill a preempting job
(e.g. if a job is in the pre-empting stage for too long)
KILL = $(UWCS_KILL)

PERIODIC_CHECKPOINT = $(UWCS_PERIODIC_CHECKPOINT)
PREEMPTION_REQUIREMENTS = $(UWCS_PREEMPTION_REQUIREMENTS)
PREEMPTION_RANK = $(UWCS_PREEMPTION_RANK)
NEGOTIATOR_PRE_JOB_RANK = $(UWCS_NEGOTIATOR_PRE_JOB_RANK)
NEGOTIATOR_POST_JOB_RANK = $(UWCS_NEGOTIATOR_POST_JOB_RANK)
MaxJobRetirementTime = $(UWCS_MaxJobRetirementTime)
CLAIM_WORKLIFE = $(UWCS_CLAIM_WORKLIFE)

###
This is the UWisc - CS Department Configuration.
###

When should we only consider SUSPEND instead of PREEMPT?
Only when SUSPEND is True and one of the following is also true:
- the job is small
- the keyboard is idle
- it is a vanilla universe job
UWCS_WANT_SUSPEND = ($(SmallJob) || $(KeyboardNotBusy) || $(IsVanilla)) && \
 ($(SUSPEND))

When should we preempt gracefully instead of hard-killing?
UWCS_WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) || $(IsVanilla))

Only start jobs if:

Example configuration files

223

1) the keyboard has been idle long enough, AND
2) the load average is low enough OR the machine is currently
running a Condor job
(NOTE: Condor will only run 1 job at a time on a given resource.
The reasons Condor might consider running a different job while
already running one are machine Rank (defined above), and user
priorities.)
UWCS_START = ((KeyboardIdle > $(StartIdleTime)) \
 && ($(CPUIdle) || \
 (State != "Unclaimed" && State != "Owner")))

Suspend jobs if:
1) the keyboard has been touched, OR
2a) The cpu has been busy for more than 2 minutes, AND
2b) the job has been running for more than 90 seconds
UWCS_SUSPEND = ($(KeyboardBusy) || \
 ((CpuBusyTime > 2 * $(MINUTE)) \
 && $(ActivationTimer) > 90))

Continue jobs if:
1) the cpu is idle, AND
2) we've been suspended more than 10 seconds, AND
3) the keyboard hasn't been touched in a while
UWCS_CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 10) \
 && (KeyboardIdle > $(ContinueIdleTime)))

Preempt jobs if:
1) The job is suspended and has been suspended longer than we want
2) OR, we don't want to suspend this job, but the conditions to
suspend jobs have been met (someone is using the machine)
UWCS_PREEMPT = (((Activity == "Suspended") && \
 ($(ActivityTimer) > $(MaxSuspendTime))) \
 || (SUSPEND && (WANT_SUSPEND == False)))

Maximum time (in seconds) to wait for a job to finish before kicking
it off (due to PREEMPT, a higher priority claim, or the startd
gracefully shutting down). This is computed from the time the job
was started, minus any suspension time. Once the retirement time runs
out, the usual preemption process will take place. The job may
self-limit the retirement time to _less_ than what is given here.
By default, nice user jobs and standard universe jobs set their
MaxJobRetirementTime to 0, so they will not wait in retirement.

UWCS_MaxJobRetirementTime = 0

If you completely disable preemption of claims to machines, you
should consider limiting the timespan over which new jobs will be
accepted on the same claim. See the manual section on disabling
preemption for a comprehensive discussion. Since this example
configuration does not disable preemption of claims, we leave
CLAIM_WORKLIFE undefined (infinite).
#UWCS_CLAIM_WORKLIFE = 1200

Kill jobs if they have taken too long to vacate gracefully
UWCS_KILL = $(ActivityTimer) > $(MaxVacateTime)

Only define vanilla versions of these if you want to make them
different from the above settings.
#SUSPEND_VANILLA = ($(KeyboardBusy) || \
((CpuBusyTime > 2 * $(MINUTE)) && $(ActivationTimer) > 90))
#CONTINUE_VANILLA = ($(CPUIdle) && ($(ActivityTimer) > 10) \
&& (KeyboardIdle > $(ContinueIdleTime)))
#PREEMPT_VANILLA = (((Activity == "Suspended") && \
($(ActivityTimer) > $(MaxSuspendTime))) \

Appendix A. Configuration options

224

|| (SUSPEND_VANILLA && (WANT_SUSPEND == False)))
#KILL_VANILLA = $(ActivityTimer) > $(MaxVacateTime)

Checkpoint every 3 hours on average, with a +-30 minute random
factor to avoid having many jobs hit the checkpoint server at
the same time.
UWCS_PERIODIC_CHECKPOINT = $(LastCkpt) > (3 * $(HOUR) + \
 $RANDOM_INTEGER(-30,30,1) * $(MINUTE))

You might want to checkpoint a little less often. A good
example of this is below. For jobs smaller than 60 megabytes, we
periodic checkpoint every 6 hours. For larger jobs, we only
checkpoint every 12 hours.
#UWCS_PERIODIC_CHECKPOINT = \
((TARGET.ImageSize < 60000) && \
($(LastCkpt) > (6 * $(HOUR) + $RANDOM_INTEGER(-30,30,1)))) || \
($(LastCkpt) > (12 * $(HOUR) + $RANDOM_INTEGER(-30,30,1)))

The rank expressions used by the negotiator are configured below.
This is the order in which ranks are applied by the negotiator:
1. NEGOTIATOR_PRE_JOB_RANK
2. rank in job ClassAd
3. NEGOTIATOR_POST_JOB_RANK
4. cause of preemption (0=user priority,1=startd rank,2=no preemption)
5. PREEMPTION_RANK

The NEGOTIATOR_PRE_JOB_RANK expression overrides all other ranks
that are used to pick a match from the set of possibilities.
The following expression matches jobs to unclaimed resources
whenever possible, regardless of the job-supplied rank.
UWCS_NEGOTIATOR_PRE_JOB_RANK = RemoteOwner =?= UNDEFINED

The NEGOTIATOR_POST_JOB_RANK expression chooses between
resources that are equally preferred by the job.
The following example expression steers jobs toward
faster machines and tends to fill a cluster of multi-processors
breadth-first instead of depth-first. It also prefers online
machines over offline (hibernating) ones. In this example,
the expression is chosen to have no effect when preemption
would take place, allowing control to pass on to
PREEMPTION_RANK.
UWCS_NEGOTIATOR_POST_JOB_RANK = \
 (RemoteOwner =?= UNDEFINED) * (KFlops - SlotID - 1.0e10*(Offline=?=True))

The negotiator will not preempt a job running on a given machine
unless the PREEMPTION_REQUIREMENTS expression evaluates to true
and the owner of the idle job has a better priority than the owner
of the running job. This expression defaults to true.
UWCS_PREEMPTION_REQUIREMENTS = ($(StateTimer) > (1 * $(HOUR)) && \
 RemoteUserPrio > SubmitterUserPrio * 1.2) || (MY.NiceUser == True)

The PREEMPTION_RANK expression is used in a case where preemption
is the only option and all other negotiation ranks are equal. For
example, if the job has no preference, it is usually preferable to
preempt a job with a small ImageSize instead of a job with a large
ImageSize. The default is to rank all preemptable matches the
same. However, the negotiator will always prefer to match the job
with an idle machine over a preemptable machine, if all other
negotiation ranks are equal.
UWCS_PREEMPTION_RANK = (RemoteUserPrio * 1000000) - TARGET.ImageSize

###
This is a Configuration that will cause your Condor jobs to

Example configuration files

225

always run. This is intended for testing only.
##

This mode will cause your jobs to start on a machine an will let
them run to completion. Condor will ignore all of what is going
on in the machine (load average, keyboard activity, etc.)

TESTINGMODE_WANT_SUSPEND = False
TESTINGMODE_WANT_VACATE = False
TESTINGMODE_START = True
TESTINGMODE_SUSPEND = False
TESTINGMODE_CONTINUE = True
TESTINGMODE_PREEMPT = False
TESTINGMODE_KILL = False
TESTINGMODE_PERIODIC_CHECKPOINT = False
TESTINGMODE_PREEMPTION_REQUIREMENTS = False
TESTINGMODE_PREEMPTION_RANK = 0

Prevent machine claims from being reused indefinitely, since
preemption of claims is disabled in the TESTINGMODE configuration.
TESTINGMODE_CLAIM_WORKLIFE = 1200

##
##

#
#
#
#
#######
#
#

Part 4: Settings you should probably leave alone:
(unless you know what you're doing)
##
##

##
Daemon-wide settings:
##

Pathnames
LOG = /var/log/condor
SPOOL = $(LOCAL_DIR)/spool
EXECUTE = $(LOCAL_DIR)/execute
BIN = $(RELEASE_DIR)/bin
LIB = $(RELEASE_DIR)/lib64/condor
INCLUDE = $(RELEASE_DIR)/include/condor
SBIN = $(RELEASE_DIR)/sbin
LIBEXEC = $(RELEASE_DIR)/libexec/condor
SHARE = $(RELEASE_DIR)/share/condor
RUN = /var/run/condor
DATA = $(SPOOL)
ETC = /etc/condor

If you leave HISTORY undefined (comment it out), no history file
will be created.
HISTORY = $(SPOOL)/history

Log files
COLLECTOR_LOG = $(LOG)/CollectorLog
KBDD_LOG = $(LOG)/KbdLog

Appendix A. Configuration options

226

MASTER_LOG = $(LOG)/MasterLog
NEGOTIATOR_LOG = $(LOG)/NegotiatorLog
NEGOTIATOR_MATCH_LOG = $(LOG)/MatchLog
SCHEDD_LOG = $(LOG)/SchedLog
SHADOW_LOG = $(LOG)/ShadowLog
STARTD_LOG = $(LOG)/StartLog
STARTER_LOG = $(LOG)/StarterLog
JOB_ROUTER_LOG = $(LOG)/JobRouterLog
ROOSTER_LOG = $(LOG)/RoosterLog
SHARED_PORT_LOG = $(LOG)/SharedPortLog
TRIGGERD_LOG = $(LOG)/TriggerLog

High Availability Logs
HAD_LOG = $(LOG)/HADLog
REPLICATION_LOG = $(LOG)/ReplicationLog
TRANSFERER_LOG = $(LOG)/TransfererLog
HDFS_LOG = $(LOG)/HDFSLog

Lock files
SHADOW_LOCK = $(LOCK)/ShadowLock

This setting controls how often any lock files currently in use have their
timestamp updated. Updating the timestamp prevents administrative programs
like 'tmpwatch' from deleting long lived lock files. The parameter is
an integer in seconds with a minimum of 60 seconds. The default if not
specified is 28800 seconds, or 8 hours.
This attribute only takes effect on restart of the daemons or at the next
update time.
LOCK_FILE_UPDATE_INTERVAL = 28800

This setting primarily allows you to change the port that the
collector is listening on. By default, the collector uses port
9618, but you can set the port with a ":port", such as:
COLLECTOR_HOST = $(CONDOR_HOST):1234
COLLECTOR_HOST = $(CONDOR_HOST)

The NEGOTIATOR_HOST parameter has been deprecated. The port where
the negotiator is listening is now dynamically allocated and the IP
and port are now obtained from the collector, just like all the
other daemons. However, if your pool contains any machines that
are running version 6.7.3 or earlier, you can uncomment this
setting to go back to the old fixed-port (9614) for the negotiator.
#NEGOTIATOR_HOST = $(CONDOR_HOST)

How long are you willing to let daemons try their graceful
shutdown methods before they do a hard shutdown? (30 minutes)
#SHUTDOWN_GRACEFUL_TIMEOUT = 1800

How much disk space would you like reserved from Condor? In
places where Condor is computing the free disk space on various
partitions, it subtracts the amount it really finds by this
many megabytes. (If undefined, defaults to 0).
RESERVED_DISK = 5

If your machine is running AFS and the AFS cache lives on the same
partition as the other Condor directories, and you want Condor to
reserve the space that your AFS cache is configured to use, set
this to true.
#RESERVE_AFS_CACHE = False

By default, if a user does not specify "notify_user" in the submit
description file, any email Condor sends about that job will go to
"username@UID_DOMAIN". If your machines all share a common UID
domain (so that you would set UID_DOMAIN to be the same across all

Example configuration files

227

machines in your pool), *BUT* email to user@UID_DOMAIN is *NOT*
the right place for Condor to send email for your site, you can
define the default domain to use for email. A common example
would be to set EMAIL_DOMAIN to the fully qualified hostname of
each machine in your pool, so users submitting jobs from a
specific machine would get email sent to user@machine.your.domain,
instead of user@your.domain. In general, you should leave this
setting commented out unless two things are true: 1) UID_DOMAIN is
set to your domain, not $(FULL_HOSTNAME), and 2) email to
user@UID_DOMAIN won't work.
#EMAIL_DOMAIN = $(FULL_HOSTNAME)

Should Condor daemons create a UDP command socket (for incomming
UDP-based commands) in addition to the TCP command socket? By
default, classified ad updates sent to the collector use UDP, in
addition to some keep alive messages and other non-essential
communication. However, in certain situations, it might be
desirable to disable the UDP command port (for example, to reduce
the number of ports represented by a GCB broker, etc). If not
defined, the UDP command socket is enabled by default, and to
modify this, you must restart your Condor daemons. Also, this
setting must be defined machine-wide. For example, setting
"STARTD.WANT_UDP_COMMAND_SOCKET = False" while the global setting
is "True" will still result in the startd creating a UDP socket.
#WANT_UDP_COMMAND_SOCKET = True

If your site needs to use TCP updates to the collector, instead of
UDP, you can enable this feature. HOWEVER, WE DO NOT RECOMMEND
THIS FOR MOST SITES! In general, the only sites that might want
this feature are pools made up of machines connected via a
wide-area network where UDP packets are frequently or always
dropped. If you enable this feature, you *MUST* turn on the
COLLECTOR_SOCKET_CACHE_SIZE setting at your collector, and each
entry in the socket cache uses another file descriptor. If not
defined, this feature is disabled by default.
#UPDATE_COLLECTOR_WITH_TCP = True

HIGHPORT and LOWPORT let you set the range of ports that Condor
will use. This may be useful if you are behind a firewall. By
default, Condor uses port 9618 for the collector, 9614 for the
negotiator, and system-assigned (apparently random) ports for
everything else. HIGHPORT and LOWPORT only affect these
system-assigned ports, but will restrict them to the range you
specify here. If you want to change the well-known ports for the
collector or negotiator, see COLLECTOR_HOST or NEGOTIATOR_HOST.
Note that both LOWPORT and HIGHPORT must be at least 1024 if you
are not starting your daemons as root. You may also specify
different port ranges for incoming and outgoing connections by
using IN_HIGHPORT/IN_LOWPORT and OUT_HIGHPORT/OUT_LOWPORT.
#HIGHPORT = 9700
#LOWPORT = 9600

If a daemon doens't respond for too long, do you want go generate
a core file? This bascially controls the type of the signal
sent to the child process, and mostly affects the Condor Master
#NOT_RESPONDING_WANT_CORE = False

##
Daemon-specific settings:
##

##--
condor_master

Appendix A. Configuration options

228

##--
Daemons you want the master to keep running for you:
DAEMON_LIST = MASTER, STARTD, SCHEDD

Which daemons use the Condor DaemonCore library (i.e., not the
checkpoint server or custom user daemons)?
#DC_DAEMON_LIST = \
#MASTER, STARTD, SCHEDD, KBDD, COLLECTOR, NEGOTIATOR, EVENTD, \
#VIEW_SERVER, CONDOR_VIEW, VIEW_COLLECTOR, HAWKEYE, CREDD, HAD, \
#DBMSD, QUILL, JOB_ROUTER, ROOSTER, LEASEMANAGER, HDFS, SHARED_PORT, TRIGGERD

Where are the binaries for these daemons?
MASTER = $(SBIN)/condor_master
STARTD = $(SBIN)/condor_startd
SCHEDD = $(SBIN)/condor_schedd
KBDD = $(SBIN)/condor_kbdd
NEGOTIATOR = $(SBIN)/condor_negotiator
COLLECTOR = $(SBIN)/condor_collector
STARTER_LOCAL = $(SBIN)/condor_starter
JOB_ROUTER = $(LIBEXEC)/condor_job_router
ROOSTER = $(LIBEXEC)/condor_rooster
HDFS = $(LIBEXEC)/condor_hdfs
SHARED_PORT = $(LIBEXEC)/condor_shared_port
TRIGGERD = $(SBIN)/condor_triggerd

When the master starts up, it can place it's address (IP and port)
into a file. This way, tools running on the local machine don't
need to query the central manager to find the master. This
feature can be turned off by commenting out this setting.
MASTER_ADDRESS_FILE = $(LOG)/.master_address

Where should the master find the condor_preen binary? If you don't
want preen to run at all, just comment out this setting.
PREEN = $(SBIN)/condor_preen

How do you want preen to behave? The "-m" means you want email
about files preen finds that it thinks it should remove. The "-r"
means you want preen to actually remove these files. If you don't
want either of those things to happen, just remove the appropriate
one from this setting.
PREEN_ARGS = -m -r

How often should the master start up condor_preen? (once a day)
#PREEN_INTERVAL = 86400

If a daemon dies an unnatural death, do you want email about it?
#PUBLISH_OBITUARIES = True

If you're getting obituaries, how many lines of the end of that
daemon's log file do you want included in the obituary?
#OBITUARY_LOG_LENGTH = 20

Should the master run?
#START_MASTER = True

Should the master start up the daemons you want it to?
#START_DAEMONS = True

How often do you want the master to send an update to the central
manager?
#MASTER_UPDATE_INTERVAL = 300

How often do you want the master to check the timestamps of the

Example configuration files

229

daemons it's running? If any daemons have been modified, the
master restarts them.
#MASTER_CHECK_NEW_EXEC_INTERVAL = 300

Once you notice new binaries, how long should you wait before you
try to execute them?
#MASTER_NEW_BINARY_DELAY = 120

What's the maximum amount of time you're willing to give the
daemons to quickly shutdown before you just kill them outright?
#SHUTDOWN_FAST_TIMEOUT = 120

######
Exponential backoff settings:
######
When a daemon keeps crashing, we use "exponential backoff" so we
wait longer and longer before restarting it. This is the base of
the exponent used to determine how long to wait before starting
the daemon again:
#MASTER_BACKOFF_FACTOR = 2.0

What's the maximum amount of time you want the master to wait
between attempts to start a given daemon? (With 2.0 as the
MASTER_BACKOFF_FACTOR, you'd hit 1 hour in 12 restarts...)
#MASTER_BACKOFF_CEILING = 3600

How long should a daemon run without crashing before we consider
it "recovered". Once a daemon has recovered, we reset the number
of restarts so the exponential backoff stuff goes back to normal.
#MASTER_RECOVER_FACTOR = 300

##--
condor_collector
##--
Address to which Condor will send a weekly e-mail with output of
condor_status.
Default is condor-admin@cs.wisc.edu
CONDOR_DEVELOPERS = NONE

Global Collector to periodically advertise basic information about
your pool.
Default is condor.cs.wisc.edu
CONDOR_DEVELOPERS_COLLECTOR = NONE

##--
condor_negotiator
##--
Determine if the Negotiator will honor SlotWeight attributes, which
may be used to give a slot greater weight when calculating usage.
Default: True
NEGOTIATOR_USE_SLOT_WEIGHTS = False

How often the Negotaitor starts a negotiation cycle, defined in
seconds.
#NEGOTIATOR_INTERVAL = 60

##--
condor_startd
##--
Where are the various condor_starter binaries installed?
STARTER_LIST = STARTER, STARTER_STANDARD

Appendix A. Configuration options

230

STARTER = $(SBIN)/condor_starter
STARTER_STANDARD = $(SBIN)/condor_starter.std
STARTER_LOCAL = $(SBIN)/condor_starter

When the startd starts up, it can place it's address (IP and port)
into a file. This way, tools running on the local machine don't
need to query the central manager to find the startd. This
feature can be turned off by commenting out this setting.
STARTD_ADDRESS_FILE = $(LOG)/.startd_address

When a machine is claimed, how often should we poll the state of
the machine to see if we need to evict/suspend the job, etc?
#POLLING_INTERVAL = 5

How often should the startd send updates to the central manager?
#UPDATE_INTERVAL = 300

How long is the startd willing to stay in the "matched" state?
#MATCH_TIMEOUT = 300

How long is the startd willing to stay in the preempting/killing
state before it just kills the starter directly?
#KILLING_TIMEOUT = 30

When a machine unclaimed, when should it run benchmarks?
LastBenchmark is initialized to 0, so this expression says as soon
as we're unclaimed, run the benchmarks. Thereafter, if we're
unclaimed and it's been at least 4 hours since we ran the last
benchmarks, run them again. The startd keeps a weighted average
of the benchmark results to provide more accurate values.
Note, if you don't want any benchmarks run at all, either comment
RunBenchmarks out, or set it to "False".
BenchmarkTimer = (CurrentTime - LastBenchmark)
RunBenchmarks : (LastBenchmark == 0) || ($(BenchmarkTimer) >= (4 * $(HOUR)))
#RunBenchmarks : False

Normally, when the startd is computing the idle time of all the
users of the machine (both local and remote), it checks the utmp
file to find all the currently active ttys, and only checks access
time of the devices associated with active logins. Unfortunately,
on some systems, utmp is unreliable, and the startd might miss
keyboard activity by doing this. So, if your utmp is unreliable,
set this setting to True and the startd will check the access time
on all tty and pty devices.
#STARTD_HAS_BAD_UTMP = False

This entry allows the startd to monitor console (keyboard and
mouse) activity by checking the access times on special files in
/dev. Activity on these files shows up as "ConsoleIdle" time in
the startd's ClassAd. Just give a comma-separated list of the
names of devices you want considered the console, without the
"/dev/" portion of the pathname.
CONSOLE_DEVICES = mouse, console

The STARTD_ATTRS (and legacy STARTD_EXPRS) entry allows you to
have the startd advertise arbitrary attributes from the config
file in its ClassAd. Give the comma-separated list of entries
from the config file you want in the startd ClassAd.
NOTE: because of the different syntax of the config file and
ClassAds, you might have to do a little extra work to get a given
entry into the ClassAd. In particular, ClassAds require double
quotes (") around your strings. Numeric values can go in
directly, as can boolean expressions. For example, if you wanted

Example configuration files

231

the startd to advertise its list of console devices, when it's
configured to run benchmarks, and how often it sends updates to
the central manager, you'd have to define the following helper
macro:
#MY_CONSOLE_DEVICES = "$(CONSOLE_DEVICES)"
Note: this must come before you define STARTD_ATTRS because macros
must be defined before you use them in other macros or
expressions.
Then, you'd set the STARTD_ATTRS setting to this:
#STARTD_ATTRS = MY_CONSOLE_DEVICES, RunBenchmarks, UPDATE_INTERVAL
##
STARTD_ATTRS can also be defined on a per-slot basis. The startd
builds the list of attributes to advertise by combining the lists
in this order: STARTD_ATTRS, SLOTx_STARTD_ATTRS. In the below
example, the startd ad for slot1 will have the value for
favorite_color, favorite_season, and favorite_movie, and slot2
will have favorite_color, favorite_season, and favorite_song.
##
#STARTD_ATTRS = favorite_color, favorite_season
#SLOT1_STARTD_ATTRS = favorite_movie
#SLOT2_STARTD_ATTRS = favorite_song
##
Attributes in the STARTD_ATTRS list can also be on a per-slot basis.
For example, the following configuration:
##
#favorite_color = "blue"
#favorite_season = "spring"
#SLOT2_favorite_color = "green"
#SLOT3_favorite_season = "summer"
#STARTD_ATTRS = favorite_color, favorite_season
##
will result in the following attributes in the slot classified
ads:
##
slot1 - favorite_color = "blue"; favorite_season = "spring"
slot2 - favorite_color = "green"; favorite_season = "spring"
slot3 - favorite_color = "blue"; favorite_season = "summer"
##
Finally, the recommended default value for this setting, is to
publish the COLLECTOR_HOST setting as a string. This can be
useful using the "$$(COLLECTOR_HOST)" syntax in the submit file
for jobs to know (for example, via their environment) what pool
they're running in.
COLLECTOR_HOST_STRING = "$(COLLECTOR_HOST)"
STARTD_ATTRS = COLLECTOR_HOST_STRING

When the startd is claimed by a remote user, it can also advertise
arbitrary attributes from the ClassAd of the job its working on.
Just list the attribute names you want advertised.
Note: since this is already a ClassAd, you don't have to do
anything funny with strings, etc. This feature can be turned off
by commenting out this setting (there is no default).
STARTD_JOB_EXPRS = ImageSize, ExecutableSize, JobUniverse, NiceUser

If you want to "lie" to Condor about how many CPUs your machine
has, you can use this setting to override Condor's automatic
computation. If you modify this, you must restart the startd for
the change to take effect (a simple condor_reconfig will not do).
Please read the section on "condor_startd Configuration File
Macros" in the Condor Administrators Manual for a further
discussion of this setting. Its use is not recommended. This
must be an integer ("N" isn't a valid setting, that's just used to
represent the default).
#NUM_CPUS = N

Appendix A. Configuration options

232

If you never want Condor to detect more the "N" CPUs, uncomment this
line out. You must restart the startd for this setting to take
effect. If set to 0 or a negative number, it is ignored.
By default, it is ignored. Otherwise, it must be a positive
integer ("N" isn't a valid setting, that's just used to
represent the default).
#MAX_NUM_CPUS = N

Normally, Condor will automatically detect the amount of physical
memory available on your machine. Define MEMORY to tell Condor
how much physical memory (in MB) your machine has, overriding the
value Condor computes automatically. For example:
#MEMORY = 128

How much memory would you like reserved from Condor? By default,
Condor considers all the physical memory of your machine as
available to be used by Condor jobs. If RESERVED_MEMORY is
defined, Condor subtracts it from the amount of memory it
advertises as available.
#RESERVED_MEMORY = 0

######
SMP startd settings
##
By default, Condor will evenly divide the resources in an SMP
machine (such as RAM, swap space and disk space) among all the
CPUs, and advertise each CPU as its own slot with an even share of
the system resources. If you want something other than this,
there are a few options available to you. Please read the section
on "Configuring The Startd for SMP Machines" in the Condor
Administrator's Manual for full details. The various settings are
only briefly listed and described here.
######

The maximum number of different slot types.
#MAX_SLOT_TYPES = 10

Use this setting to define your own slot types. This
allows you to divide system resources unevenly among your CPUs.
You must use a different setting for each different type you
define. The "<N>" in the name of the macro listed below must be
an integer from 1 to MAX_SLOT_TYPES (defined above),
and you use this number to refer to your type. There are many
different formats these settings can take, so be sure to refer to
the section on "Configuring The Startd for SMP Machines" in the
Condor Administrator's Manual for full details. In particular,
read the section titled "Defining Slot Types" to help
understand this setting. If you modify any of these settings, you
must restart the condor_start for the change to take effect.
#SLOT_TYPE_<N> = 1/4
#SLOT_TYPE_<N> = cpus=1, ram=25%, swap=1/4, disk=1/4
For example:
#SLOT_TYPE_1 = 1/8
#SLOT_TYPE_2 = 1/4

If you define your own slot types, you must specify how
many slots of each type you wish to advertise. You do
this with the setting below, replacing the "<N>" with the
corresponding integer you used to define the type above. You can
change the number of a given type being advertised at run-time,
with a simple condor_reconfig.
#NUM_SLOTS_TYPE_<N> = M
For example:

Example configuration files

233

#NUM_SLOTS_TYPE_1 = 6
#NUM_SLOTS_TYPE_2 = 1

The number of evenly-divided slots you want Condor to
report to your pool (if less than the total number of CPUs). This
setting is only considered if the "type" settings described above
are not in use. By default, all CPUs are reported. This setting
must be an integer ("N" isn't a valid setting, that's just used to
represent the default).
#NUM_SLOTS = N

How many of the slots the startd is representing should
be "connected" to the console (in other words, notice when there's
console activity)? This defaults to all slots (N in a
machine with N CPUs). This must be an integer ("N" isn't a valid
setting, that's just used to represent the default).
#SLOTS_CONNECTED_TO_CONSOLE = N

How many of the slots the startd is representing should
be "connected" to the keyboard (for remote tty activity, as well
as console activity). Defaults to 1.
#SLOTS_CONNECTED_TO_KEYBOARD = 1

If there are slots that aren't connected to the
keyboard or the console (see the above two settings), the
corresponding idle time reported will be the time since the startd
was spawned, plus the value of this parameter. It defaults to 20
minutes. We do this because, if the slot is configured
not to care about keyboard activity, we want it to be available to
Condor jobs as soon as the startd starts up, instead of having to
wait for 15 minutes or more (which is the default time a machine
must be idle before Condor will start a job). If you don't want
this boost, just set the value to 0. If you change your START
expression to require more than 15 minutes before a job starts,
but you still want jobs to start right away on some of your SMP
nodes, just increase this parameter.
#DISCONNECTED_KEYBOARD_IDLE_BOOST = 1200

######
Settings for computing optional resource availability statistics:
######
If STARTD_COMPUTE_AVAIL_STATS = True, the startd will compute
statistics about resource availability to be included in the
classad(s) sent to the collector describing the resource(s) the
startd manages. The following attributes will always be included
in the resource classad(s) if STARTD_COMPUTE_AVAIL_STATS = True:
AvailTime = What proportion of the time (between 0.0 and 1.0)
has this resource been in a state other than "Owner"?
LastAvailInterval = What was the duration (in seconds) of the
last period between "Owner" states?
The following attributes will also be included if the resource is
not in the "Owner" state:
AvailSince = At what time did the resource last leave the
"Owner" state? Measured in the number of seconds since the
epoch (00:00:00 UTC, Jan 1, 1970).
AvailTimeEstimate = Based on past history, this is an estimate
of how long the current period between "Owner" states will
last.
#STARTD_COMPUTE_AVAIL_STATS = False

If STARTD_COMPUTE_AVAIL_STATS = True, STARTD_AVAIL_CONFIDENCE sets
the confidence level of the AvailTimeEstimate. By default, the
estimate is based on the 80th percentile of past values.
#STARTD_AVAIL_CONFIDENCE = 0.8

Appendix A. Configuration options

234

STARTD_MAX_AVAIL_PERIOD_SAMPLES limits the number of samples of
past available intervals stored by the startd to limit memory and
disk consumption. Each sample requires 4 bytes of memory and
approximately 10 bytes of disk space.
#STARTD_MAX_AVAIL_PERIOD_SAMPLES = 100

CKPT_PROBE is the location of a program which computes aspects of the
CheckpointPlatform classad attribute. By default the location of this
executable will be here: $(LIBEXEC)/condor_ckpt_probe
CKPT_PROBE = $(LIBEXEC)/condor_ckpt_probe

##--
condor_schedd
##--
Where are the various shadow binaries installed?
SHADOW_LIST = SHADOW, SHADOW_STANDARD
SHADOW = $(SBIN)/condor_shadow
SHADOW_STANDARD = $(SBIN)/condor_shadow.std

When the schedd starts up, it can place it's address (IP and port)
into a file. This way, tools running on the local machine don't
need to query the central manager to find the schedd. This
feature can be turned off by commenting out this setting.
SCHEDD_ADDRESS_FILE = $(SPOOL)/.schedd_address

Additionally, a daemon may store its ClassAd on the local filesystem
as well as sending it to the collector. This way, tools that need
information about a daemon do not have to contact the central manager
to get information about a daemon on the same machine.
This feature is necessary for Quill to work.
SCHEDD_DAEMON_AD_FILE = $(SPOOL)/.schedd_classad

How often should the schedd send an update to the central manager?
#SCHEDD_INTERVAL = 300

How long should the schedd wait between spawning each shadow?
#JOB_START_DELAY = 2

How many concurrent sub-processes should the schedd spawn to handle
queries? (Unix only)
#SCHEDD_QUERY_WORKERS = 3

How often should the schedd send a keep alive message to any
startds it has claimed? (5 minutes)
#ALIVE_INTERVAL = 300

This setting controls the maximum number of times that a
condor_shadow processes can have a fatal error (exception) before
the condor_schedd will simply relinquish the match associated with
the dying shadow.
#MAX_SHADOW_EXCEPTIONS = 5

Estimated virtual memory size of each condor_shadow process.
Specified in kilobytes.
SHADOW_SIZE_ESTIMATE = 800

The condor_schedd can renice the condor_shadow processes on your
submit machines. How "nice" do you want the shadows? (1-19).
The higher the number, the lower priority the shadows have.
SHADOW_RENICE_INCREMENT = 0

The condor_schedd can renice scheduler universe processes
(e.g. DAGMan) on your submit machines. How "nice" do you want the

Example configuration files

235

scheduler universe processes? (1-19). The higher the number, the
lower priority the processes have.
SCHED_UNIV_RENICE_INCREMENT = 0

By default, when the schedd fails to start an idle job, it will
not try to start any other idle jobs in the same cluster during
that negotiation cycle. This makes negotiation much more
efficient for large job clusters. However, in some cases other
jobs in the cluster can be started even though an earlier job
can't. For example, the jobs' requirements may differ, because of
different disk space, memory, or operating system requirements.
Or, machines may be willing to run only some jobs in the cluster,
because their requirements reference the jobs' virtual memory size
or other attribute. Setting NEGOTIATE_ALL_JOBS_IN_CLUSTER to True
will force the schedd to try to start all idle jobs in each
negotiation cycle. This will make negotiation cycles last longer,
but it will ensure that all jobs that can be started will be
started.
#NEGOTIATE_ALL_JOBS_IN_CLUSTER = False

This setting controls how often, in seconds, the schedd considers
periodic job actions given by the user in the submit file.
(Currently, these are periodic_hold, periodic_release, and periodic_remove.)
#PERIODIC_EXPR_INTERVAL = 60

######
Queue management settings:
######
How often should the schedd truncate it's job queue transaction
log? (Specified in seconds, once a day is the default.)
#QUEUE_CLEAN_INTERVAL = 86400

How often should the schedd commit "wall clock" run time for jobs
to the queue, so run time statistics remain accurate when the
schedd crashes? (Specified in seconds, once per hour is the
default. Set to 0 to disable.)
#WALL_CLOCK_CKPT_INTERVAL = 3600

What users do you want to grant super user access to this job
queue? (These users will be able to remove other user's jobs).
By default, this only includes root.
QUEUE_SUPER_USERS = root, condor

##--
condor_shadow
##--
If the shadow is unable to read a checkpoint file from the
checkpoint server, it keeps trying only if the job has accumulated
more than MAX_DISCARDED_RUN_TIME seconds of CPU usage. Otherwise,
the job is started from scratch. Defaults to 1 hour. This
setting is only used if USE_CKPT_SERVER (from above) is True.
#MAX_DISCARDED_RUN_TIME = 3600

Should periodic checkpoints be compressed?
#COMPRESS_PERIODIC_CKPT = False

Should vacate checkpoints be compressed?
#COMPRESS_VACATE_CKPT = False

Should we commit the application's dirty memory pages to swap
space during a periodic checkpoint?
#PERIODIC_MEMORY_SYNC = False

Appendix A. Configuration options

236

Should we write vacate checkpoints slowly? If nonzero, this
parameter specifies the speed at which vacate checkpoints should
be written, in kilobytes per second.
#SLOW_CKPT_SPEED = 0

How often should the shadow update the job queue with job
attributes that periodically change? Specified in seconds.
#SHADOW_QUEUE_UPDATE_INTERVAL = 15 * 60

Should the shadow wait to update certain job attributes for the
next periodic update, or should it immediately these update
attributes as they change? Due to performance concerns of
aggressive updates to a busy condor_schedd, the default is True.
#SHADOW_LAZY_QUEUE_UPDATE = TRUE

##--
condor_starter
##--
The condor_starter can renice the processes from remote Condor
jobs on your execute machines. If you want this, uncomment the
following entry and set it to how "nice" you want the user
jobs. (1-19) The larger the number, the lower priority the
process gets on your machines.
Note on Win32 platforms, this number needs to be greater than
zero (i.e. the job must be reniced) or the mechanism that
monitors CPU load on Win32 systems will give erratic results.
#JOB_RENICE_INCREMENT = 10

Should the starter do local logging to its own log file, or send
debug information back to the condor_shadow where it will end up
in the ShadowLog?
#STARTER_LOCAL_LOGGING = TRUE

If the UID_DOMAIN settings match on both the execute and submit
machines, but the UID of the user who submitted the job isn't in
the passwd file of the execute machine, the starter will normally
exit with an error. Do you want the starter to just start up the
job with the specified UID, even if it's not in the passwd file?
#SOFT_UID_DOMAIN = FALSE

##--
condor_procd
##--

the path to the procd binary
#
PROCD = $(SBIN)/condor_procd

the path to the procd "address"
- on UNIX this will be a named pipe; we'll put it in the
$(LOCK) directory by default (note that multiple named pipes
will be created in this directory for when the procd responds
to its clients)
- on Windows, this will be a named pipe as well (but named pipes on
Windows are not even close to the same thing as named pipes on
UNIX); the name will be something like:
\\.\pipe\condor_procd
#
PROCD_ADDRESS = $(RUN)/procd_pipe

The procd currently uses a very simplistic logging system. Since this
log will not be rotated like other Condor logs, it is only recommended

Example configuration files

237

to set PROCD_LOG when attempting to debug a problem. In other Condor
daemons, turning on D_PROCFAMILY will result in that daemon logging
all of its interactions with the ProcD.
#
#PROCD_LOG = $(LOG)/ProcLog

This is the maximum period that the procd will use for taking
snapshots (the actual period may be lower if a condor daemon registers
a family for which it wants more frequent snapshots)
#
PROCD_MAX_SNAPSHOT_INTERVAL = 60

On Windows, we send a process a "soft kill" via a WM_CLOSE message.
This binary is used by the ProcD (and other Condor daemons if PRIVSEP
is not enabled) to help when sending soft kills.
WINDOWS_SOFTKILL = $(SBIN)/condor_softkill

##--
condor_submit
##--
If you want condor_submit to automatically append an expression to
the Requirements expression or Rank expression of jobs at your
site, uncomment these entries.
#APPEND_REQUIREMENTS = (expression to append job requirements)
#APPEND_RANK = (expression to append job rank)

If you want expressions only appended for either standard or
vanilla universe jobs, you can uncomment these entries. If any of
them are defined, they are used for the given universe, instead of
the generic entries above.
#APPEND_REQ_VANILLA = (expression to append to vanilla job requirements)
#APPEND_REQ_STANDARD = (expression to append to standard job requirements)
#APPEND_RANK_STANDARD = (expression to append to vanilla job rank)
#APPEND_RANK_VANILLA = (expression to append to standard job rank)

This can be used to define a default value for the rank expression
if one is not specified in the submit file.
#DEFAULT_RANK = (default rank expression for all jobs)

If you want universe-specific defaults, you can use the following
entries:
#DEFAULT_RANK_VANILLA = (default rank expression for vanilla jobs)
#DEFAULT_RANK_STANDARD = (default rank expression for standard jobs)

If you want condor_submit to automatically append expressions to
the job ClassAds it creates, you can uncomment and define the
SUBMIT_EXPRS setting. It works just like the STARTD_EXPRS
described above with respect to ClassAd vs. config file syntax,
strings, etc. One common use would be to have the full hostname
of the machine where a job was submitted placed in the job
ClassAd. You would do this by uncommenting the following lines:
#MACHINE = "$(FULL_HOSTNAME)"
#SUBMIT_EXPRS = MACHINE

Condor keeps a buffer of recently-used data for each file an
application opens. This macro specifies the default maximum number
of bytes to be buffered for each open file at the executing
machine.
#DEFAULT_IO_BUFFER_SIZE = 524288

Condor will attempt to consolidate small read and write operations
into large blocks. This macro specifies the default block size
Condor will use.
#DEFAULT_IO_BUFFER_BLOCK_SIZE = 32768

Appendix A. Configuration options

238

##--
condor_preen
##--
Who should condor_preen send email to?
#PREEN_ADMIN = $(CONDOR_ADMIN)

What files should condor_preen leave in the spool directory?
VALID_SPOOL_FILES = job_queue.log, job_queue.log.tmp, history, \
 Accountant.log, Accountantnew.log, \
 local_univ_execute, .quillwritepassword, \
 .pgpass, \
 .schedd_address, .schedd_classad

What files should condor_preen remove from the log directory?
INVALID_LOG_FILES = core

##--
Java parameters:
##--
If you would like this machine to be able to run Java jobs,
then set JAVA to the path of your JVM binary. If you are not
interested in Java, there is no harm in leaving this entry
empty or incorrect.

JAVA = /usr/bin/java

Some JVMs need to be told the maximum amount of heap memory
to offer to the process. If your JVM supports this, give
the argument here, and Condor will fill in the memory amount.
If left blank, your JVM will choose some default value,
typically 64 MB. The default (-Xmx) works with the Sun JVM.

JAVA_MAXHEAP_ARGUMENT = -Xmx

JAVA_CLASSPATH_DEFAULT gives the default set of paths in which
Java classes are to be found. Each path is separated by spaces.
If your JVM needs to be informed of additional directories, add
them here. However, do not remove the existing entries, as Condor
needs them.

JAVA_CLASSPATH_DEFAULT = $(SHARE) $(SHARE)/scimark2lib.jar .

JAVA_CLASSPATH_ARGUMENT describes the command-line parameter
used to introduce a new classpath:

JAVA_CLASSPATH_ARGUMENT = -classpath

JAVA_CLASSPATH_SEPARATOR describes the character used to mark
one path element from another:

JAVA_CLASSPATH_SEPARATOR = :

JAVA_BENCHMARK_TIME describes the number of seconds for which
to run Java benchmarks. A longer time yields a more accurate
benchmark, but consumes more otherwise useful CPU time.
If this time is zero or undefined, no Java benchmarks will be run.

JAVA_BENCHMARK_TIME = 2

If your JVM requires any special arguments not mentioned in
the options above, then give them here.

JAVA_EXTRA_ARGUMENTS =

Example configuration files

239

##
##--
Condor-G settings
##--
Where is the GridManager binary installed?

GRIDMANAGER = $(SBIN)/condor_gridmanager
GT2_GAHP = $(SBIN)/gahp_server
GRID_MONITOR = $(SBIN)/grid_monitor.sh

##--
Settings that control the daemon's debugging output:
##--
##
Note that the Gridmanager runs as the User, not a Condor daemon, so
all users must have write permssion to the directory that the
Gridmanager will use for it's logfile. Our suggestion is to create a
directory called GridLogs in $(LOG) with UNIX permissions 1777
(just like /tmp)
Another option is to use /tmp as the location of the GridManager log.

MAX_GRIDMANAGER_LOG = 1000000
GRIDMANAGER_DEBUG =

GRIDMANAGER_LOG = $(LOG)/GridmanagerLog.$(USERNAME)
GRIDMANAGER_LOCK = $(LOCK)/GridmanagerLock.$(USERNAME)

##--
Various other settings that the Condor-G can use.
##--

For grid-type gt2 jobs (pre-WS GRAM), limit the number of jobmanager
processes the gridmanager will let run on the headnode. Letting too
many jobmanagers run causes severe load on the headnode.
GRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCE = 10

If we're talking to a Globus 2.0 resource, Condor-G will use the new
version of the GRAM protocol. The first option is how often to check the
proxy on the submit site of things. If the GridManager discovers a new
proxy, it will restart itself and use the new proxy for all future
jobs launched. In seconds, and defaults to 10 minutes
#GRIDMANAGER_CHECKPROXY_INTERVAL = 600

The GridManager will shut things down 3 minutes before loosing Contact
because of an expired proxy.
In seconds, and defaults to 3 minutes
#GRDIMANAGER_MINIMUM_PROXY_TIME = 180

Condor requires that each submitted job be designated to run under a
particular "universe".
##
If no universe is specificed in the submit file, Condor must pick one
for the job to use. By default, it chooses the "vanilla" universe.
The default can be overridden in the config file with the DEFAULT_UNIVERSE
setting, which is a string to insert into a job submit description if the
job does not try and define it's own universe
##
#DEFAULT_UNIVERSE = vanilla

#
The Cred_min_time_left is the first-pass at making sure that Condor-G
does not submit your job without it having enough time left for the

Appendix A. Configuration options

240

job to finish. For example, if you have a job that runs for 20 minutes, and
you might spend 40 minutes in the queue, it's a bad idea to submit with less
than an hour left before your proxy expires.
2 hours seemed like a reasonable default.
#
CRED_MIN_TIME_LEFT = 120

The GridMonitor allows you to submit many more jobs to a GT2 GRAM server
than is normally possible.
#ENABLE_GRID_MONITOR = TRUE

##
When an error occurs with the GridMonitor, how long should the
gridmanager wait before trying to submit a new GridMonitor job?
The default is 1 hour (3600 seconds).
#GRID_MONITOR_DISABLE_TIME = 3600

##
The location of the wrapper for invoking
Condor GAHP server
##
CONDOR_GAHP = $(SBIN)/condor_c-gahp
CONDOR_GAHP_WORKER = $(SBIN)/condor_c-gahp_worker_thread

##
The Condor GAHP server has it's own log. Like the Gridmanager, the
GAHP server is run as the User, not a Condor daemon, so all users must
have write permssion to the directory used for the logfile. Our
suggestion is to create a directory called GridLogs in $(LOG) with
UNIX permissions 1777 (just like /tmp)
Another option is to use /tmp as the location of the CGAHP log.

MAX_C_GAHP_LOG = 1000000

#C_GAHP_LOG = $(LOG)/GridLogs/CGAHPLog.$(USERNAME)
C_GAHP_LOG = /tmp/CGAHPLog.$(USERNAME)
C_GAHP_LOCK = /tmp/CGAHPLock.$(USERNAME)
C_GAHP_WORKER_THREAD_LOG = /tmp/CGAHPWorkerLog.$(USERNAME)
C_GAHP_WORKER_THREAD_LOCK = /tmp/CGAHPWorkerLock.$(USERNAME)

##
The location of the wrapper for invoking
GT4 GAHP server
##
GT4_GAHP = $(SBIN)/gt4_gahp

##
The location of GT4 files. This should normally be lib/gt4
##
GT4_LOCATION = $(LIB)/gt4

##
The location of the wrapper for invoking
GT4 GAHP server
##
GT42_GAHP = $(SBIN)/gt42_gahp

##
The location of GT4 files. This should normally be lib/gt4
##
GT42_LOCATION = $(LIB)/gt42

Example configuration files

241

##
gt4 gram requires a gridftp server to perform file transfers.
If GRIDFTP_URL_BASE is set, then Condor assumes there is a gridftp
server set up at that URL suitable for its use. Otherwise, Condor
will start its own gridftp servers as needed, using the binary
pointed at by GRIDFTP_SERVER. GRIDFTP_SERVER_WRAPPER points to a
wrapper script needed to properly set the path to the gridmap file.
##
#GRIDFTP_URL_BASE = gsiftp://$(FULL_HOSTNAME)
GRIDFTP_SERVER = $(LIBEXEC)/globus-gridftp-server
GRIDFTP_SERVER_WRAPPER = $(LIBEXEC)/gridftp_wrapper.sh

##
Location of the PBS/LSF gahp and its associated binaries
##
GLITE_LOCATION = $(LIB)/glite
PBS_GAHP = $(GLITE_LOCATION)/bin/batch_gahp
LSF_GAHP = $(GLITE_LOCATION)/bin/batch_gahp

##
The location of the wrapper for invoking the Unicore GAHP server
##
UNICORE_GAHP = $(SBIN)/unicore_gahp

##
The location of the wrapper for invoking the NorduGrid GAHP server
##
NORDUGRID_GAHP = $(SBIN)/nordugrid_gahp

The location of the CREAM GAHP server
CREAM_GAHP = $(SBIN)/cream_gahp

Condor-G and CredD can use MyProxy to refresh GSI proxies which are
about to expire.
#MYPROXY_GET_DELEGATION = /path/to/myproxy-get-delegation

##
EC2: Universe = Grid, Grid_Resource = Amazon
##

The location of the amazon_gahp program, required
AMAZON_GAHP = $(SBIN)/amazon_gahp

Location of log files, useful for debugging, must be in
a directory writable by any user, such as /tmp
#AMAZON_GAHP_DEBUG = D_FULLDEBUG
AMAZON_GAHP_LOG = /tmp/AmazonGahpLog.$(USERNAME)

The number of seconds between status update requests to EC2. You can
make this short (5 seconds) if you want Condor to respond quickly to
instances as they terminate, or you can make it long (300 seconds = 5
minutes) if you know your instances will run for awhile and don't mind
delay between when they stop and when Condor responds to them
stopping.
GRIDMANAGER_JOB_PROBE_INTERVAL = 300

As of this writing Amazon EC2 has a hard limit of 20 concurrently
running instances, so a limit of 20 is imposed so the GridManager
does not waste its time sending requests that will be rejected.
GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE_AMAZON = 20

##
##--
condor_credd credential managment daemon

Appendix A. Configuration options

242

##--
Where is the CredD binary installed?
CREDD = $(SBIN)/condor_credd

When the credd starts up, it can place it's address (IP and port)
into a file. This way, tools running on the local machine don't
need an additional "-n host:port" command line option. This
feature can be turned off by commenting out this setting.
CREDD_ADDRESS_FILE = $(LOG)/.credd_address

Specify a remote credd server here,
#CREDD_HOST = $(CONDOR_HOST):$(CREDD_PORT)

CredD startup arguments
Start the CredD on a well-known port. Uncomment to to simplify
connecting to a remote CredD. Note: that this interface may change
in a future release.
CREDD_PORT = 9620
CREDD_ARGS = -p $(CREDD_PORT) -f

CredD daemon debugging log
CREDD_LOG = $(LOG)/CredLog
CREDD_DEBUG = D_FULLDEBUG
MAX_CREDD_LOG = 4000000

The credential owner submits the credential. This list specififies
other user who are also permitted to see all credentials. Defaults
to root on Unix systems, and Administrator on Windows systems.
#CRED_SUPER_USERS =

Credential storage location. This directory must exist
prior to starting condor_credd. It is highly recommended to
restrict access permissions to _only_ the directory owner.
CRED_STORE_DIR = $(LOCAL_DIR)/cred_dir

Index file path of saved credentials.
This file will be automatically created if it does not exist.
#CRED_INDEX_FILE = $(CRED_STORE_DIR/cred-index

condor_credd will attempt to refresh credentials when their
remaining lifespan is less than this value. Units = seconds.
#DEFAULT_CRED_EXPIRE_THRESHOLD = 3600

condor-credd periodically checks remaining lifespan of stored
credentials, at this interval.
#CRED_CHECK_INTERVAL = 60

##
##--
Stork data placment server
##--
Where is the Stork binary installed?
STORK = $(SBIN)/stork_server

When Stork starts up, it can place it's address (IP and port)
into a file. This way, tools running on the local machine don't
need an additional "-n host:port" command line option. This
feature can be turned off by commenting out this setting.
STORK_ADDRESS_FILE = $(LOG)/.stork_address

Specify a remote Stork server here,
#STORK_HOST = $(CONDOR_HOST):$(STORK_PORT)

STORK_LOG_BASE specifies the basename for heritage Stork log files.

Example configuration files

243

Stork uses this macro to create the following output log files:
$(STORK_LOG_BASE): Stork server job queue classad collection
journal file.
$(STORK_LOG_BASE).history: Used to track completed jobs.
$(STORK_LOG_BASE).user_log: User level log, also used by DAGMan.
STORK_LOG_BASE = $(LOG)/Stork

Modern Condor DaemonCore logging feature.
STORK_LOG = $(LOG)/StorkLog
STORK_DEBUG = D_FULLDEBUG
MAX_STORK_LOG = 4000000

Stork startup arguments
Start Stork on a well-known port. Uncomment to to simplify
connecting to a remote Stork. Note: that this interface may change
in a future release.
#STORK_PORT = 34048
STORK_PORT = 9621
STORK_ARGS = -p $(STORK_PORT) -f -Serverlog $(STORK_LOG_BASE)

Stork environment. Stork modules may require external programs and
shared object libraries. These are located using the PATH and
LD_LIBRARY_PATH environments. Further, some modules may require
further specific environments. By default, Stork inherits a full
environment when invoked from condor_master or the shell. If the
default environment is not adequate for all Stork modules, specify
a replacement environment here. This environment will be set by
condor_master before starting Stork, but does not apply if Stork is
started directly from the command line.
#STORK_ENVIRONMENT = TMP=/tmp;CONDOR_CONFIG=/special/config;PATH=/lib

Limits the number of concurrent data placements handled by Stork.
#STORK_MAX_NUM_JOBS = 5

Limits the number of retries for a failed data placement.
#STORK_MAX_RETRY = 5

Limits the run time for a data placement job, after which the
placement is considered failed.
#STORK_MAXDELAY_INMINUTES = 10

Temporary credential storage directory used by Stork.
#STORK_TMP_CRED_DIR = /tmp

Directory containing Stork modules.
#STORK_MODULE_DIR = $(LIBEXEC)

##
##--
Quill Job Queue Mirroring Server
##--
Where is the Quill binary installed and what arguments should be passed?
QUILL = $(SBIN)/condor_quill
#QUILL_ARGS =

Where is the log file for the quill daemon?
QUILL_LOG = $(LOG)/QuillLog

The identification and location of the quill daemon for local clients.
QUILL_ADDRESS_FILE = $(LOG)/.quill_address

If this is set to true, then the rest of the QUILL arguments must be defined
for quill to function. If it is Fase or left undefined, then quill will not
be consulted by either the scheduler or the tools, but in the case of a

Appendix A. Configuration options

244

remote quill query where the local client has quill turned off, but the
remote client has quill turned on, things will still function normally.
#QUILL_ENABLED = TRUE

If Quill is enabled, by default it will only mirror the current job
queue into the database. For historical jobs, and classads from other
sources, the SQL Log must be enabled.
#QUILL_USE_SQL_LOG=FALSE

#
The SQL Log can be enabled on a per-daemon basis. For example, to collect
historical job information, but store no information about execute machines,
uncomment these two lines
#QUILL_USE_SQL_LOG = FALSE
#SCHEDD.QUILL_USE_SQL_LOG = TRUE

This will be the name of a quill daemon using this config file. This name
should not conflict with any other quill name--or schedd name.
#QUILL_NAME = quill@postgresql-server.machine.com

The Postgreql server requires usernames that can manipulate tables. This will
be the username associated with this instance of the quill daemon mirroring
a schedd's job queue. Each quill daemon must have a unique username
associated with it otherwise multiple quill daemons will corrupt the data
held under an indentical user name.
#QUILL_DB_NAME = name_of_db

The required password for the DB user which quill will use to read
information from the database about the queue.
#QUILL_DB_QUERY_PASSWORD = foobar

What kind of database server is this?
For now, only PGSQL is supported
#QUILL_DB_TYPE = PGSQL

The machine and port of the postgres server.
Although this says IP Addr, it can be a DNS name.
It must match whatever format you used for the .pgpass file, however
#QUILL_DB_IP_ADDR = machine.domain.com:5432

The login to use to attach to the database for updating information.
There should be an entry in file $SPOOL/.pgpass that gives the password
for this login id.
#QUILL_DB_USER = quillwriter

Polling period, in seconds, for when quill reads transactions out of the
schedd's job queue log file and puts them into the database.
#QUILL_POLLING_PERIOD = 10

Allows or disallows a remote query to the quill daemon and database
which is reading this log file. Defaults to true.
#QUILL_IS_REMOTELY_QUERYABLE = TRUE

Add debugging flags to here if you need to debug quill for some reason.
#QUILL_DEBUG = D_FULLDEBUG

Number of seconds the master should wait for the Quill daemon to respond
before killing it. This number might need to be increased for very
large logfiles.
The default is 3600 (one hour), but kicking it up to a few hours won't hurt
#QUILL_NOT_RESPONDING_TIMEOUT = 3600

Should Quill hold open a database connection to the DBMSD?

Example configuration files

245

Each open connection consumes resources at the server, so large pools
(100 or more machines) should set this variable to FALSE. Note the
default is TRUE.
#QUILL_MAINTAIN_DB_CONN = TRUE

##
##--
Database Management Daemon settings
##--
Where is the DBMSd binary installed and what arguments should be passed?
DBMSD = $(SBIN)/condor_dbmsd
DBMSD_ARGS = -f

Where is the log file for the quill daemon?
DBMSD_LOG = $(LOG)/DbmsdLog

Interval between consecutive purging calls (in seconds)
#DATABASE_PURGE_INTERVAL = 86400

Interval between consecutive database reindexing operations
This is only used when dbtype = PGSQL
#DATABASE_REINDEX_INTERVAL = 86400

Number of days before purging resource classad history
This includes things like machine ads, daemon ads, submitters
#QUILL_RESOURCE_HISTORY_DURATION = 7

Number of days before purging job run information
This includes job events, file transfers, matchmaker matches, etc
This does NOT include the final job ad. condor_history does not need
any of this information to work.
#QUILL_RUN_HISTORY_DURATION = 7

Number of days before purging job classad history
This is the information needed to run condor_history
#QUILL_JOB_HISTORY_DURATION = 3650

DB size threshold for warning the condor administrator. This is checked
after every purge. The size is given in gigabytes.
#QUILL_DBSIZE_LIMIT = 20

Number of seconds the master should wait for the DBMSD to respond before
killing it. This number might need to be increased for very large databases
The default is 3600 (one hour).
#DBMSD_NOT_RESPONDING_TIMEOUT = 3600

##
##--
VM Universe Parameters
##--
Where is the Condor VM-GAHP installed? (Required)
VM_GAHP_SERVER = $(SBIN)/condor_vm-gahp

If the VM-GAHP is to have its own log, define
the location of log file.
##
Optionally, if you do NOT define VM_GAHP_LOG, logs of VM-GAHP will
be stored in the starter's log file.
However, on Windows machine you must always define VM_GAHP_LOG.
#
VM_GAHP_LOG = $(LOG)/VMGahpLog
MAX_VM_GAHP_LOG = 1000000
#VM_GAHP_DEBUG = D_FULLDEBUG

Appendix A. Configuration options

246

What kind of virtual machine program will be used for
the VM universe?
The two options are vmware and xen. (Required)
#VM_TYPE = vmware

How much memory can be used for the VM universe? (Required)
This value is the maximum amount of memory that can be used by the
virtual machine program.
#VM_MEMORY = 128

Want to support networking for VM universe?
Default value is FALSE
#VM_NETWORKING = FALSE

What kind of networking types are supported?
##
If you set VM_NETWORKING to TRUE, you must define this parameter.
VM_NETWORKING_TYPE = nat
VM_NETWORKING_TYPE = bridge
VM_NETWORKING_TYPE = nat, bridge
##
If multiple networking types are defined, you may define
VM_NETWORKING_DEFAULT_TYPE for default networking type.
Otherwise, nat is used for default networking type.
VM_NETWORKING_DEFAULT_TYPE = nat
#VM_NETWORKING_DEFAULT_TYPE = nat
#VM_NETWORKING_TYPE = nat

In default, the number of possible virtual machines is same as
NUM_CPUS.
Since too many virtual machines can cause the system to be too slow
and lead to unexpected problems, limit the number of running
virtual machines on this machine with
#VM_MAX_NUMBER = 2

When a VM universe job is started, a status command is sent
to the VM-GAHP to see if the job is finished.
If the interval between checks is too short, it will consume
too much of the CPU. If the VM-GAHP fails to get status 5 times in a row,
an error will be reported to startd, and then startd will check
the availability of VM universe.
Default value is 60 seconds and minimum value is 30 seconds
#VM_STATUS_INTERVAL = 60

How long will we wait for a request sent to the VM-GAHP to be completed?
If a request is not completed within the timeout, an error will be reported
to the startd, and then the startd will check
the availability of vm universe. Default value is 5 mins.
#VM_GAHP_REQ_TIMEOUT = 300

When VMware or Xen causes an error, the startd will disable the
VM universe. However, because some errors are just transient,
we will test one more
whether vm universe is still unavailable after some time.
In default, startd will recheck vm universe after 10 minutes.
If the test also fails, vm universe will be disabled.
#VM_RECHECK_INTERVAL = 600

Usually, when we suspend a VM, the memory being used by the VM
will be saved into a file and then freed.
However, when we use soft suspend, neither saving nor memory freeing
will occur.
For VMware, we send SIGSTOP to a process for VM in order to
stop the VM temporarily and send SIGCONT to resume the VM.

Example configuration files

247

For Xen, we pause CPU. Pausing CPU doesn't save the memory of VM
into a file. It only stops the execution of a VM temporarily.
#VM_SOFT_SUSPEND = TRUE

If Condor runs as root and a job comes from a different UID domain,
Condor generally uses "nobody", unless SLOTx_USER is defined.
If "VM_UNIV_NOBODY_USER" is defined, a VM universe job will run
as the user defined in "VM_UNIV_NOBODY_USER" instead of "nobody".
##
Notice: In VMware VM universe, "nobody" can not create a VMware VM.
So we need to define "VM_UNIV_NOBODY_USER" with a regular user.
For VMware, the user defined in "VM_UNIV_NOBODY_USER" must have a
home directory. So SOFT_UID_DOMAIN doesn't work for VMware VM universe job.
If neither "VM_UNIV_NOBODY_USER" nor "SLOTx_VMUSER"/"SLOTx_USER" is defined,
VMware VM universe job will run as "condor" instead of "nobody".
As a result, the preference of local users for a VMware VM universe job
which comes from the different UID domain is
"VM_UNIV_NOBODY_USER" -> "SLOTx_VMUSER" -> "SLOTx_USER" -> "condor".
#VM_UNIV_NOBODY_USER = login name of a user who has home directory

If Condor runs as root and "ALWAYS_VM_UNIV_USE_NOBODY" is set to TRUE,
all VM universe jobs will run as a user defined in "VM_UNIV_NOBODY_USER".
#ALWAYS_VM_UNIV_USE_NOBODY = FALSE

##--
VM Universe Parameters Specific to VMware
##--

Where is perl program? (Required)
VMWARE_PERL = perl

Where is the Condor script program to control VMware? (Required)
VMWARE_SCRIPT = $(SBIN)/condor_vm_vmware.pl

Networking parameters for VMware
##
What kind of VMware networking is used?
##
If multiple networking types are defined, you may specify different
parameters for each networking type.
##
Examples
(e.g.) VMWARE_NAT_NETWORKING_TYPE = nat
(e.g.) VMWARE_BRIDGE_NETWORKING_TYPE = bridged

If there is no parameter for specific networking type, VMWARE_NETWORKING_TYPE is used.
##
#VMWARE_NAT_NETWORKING_TYPE = nat
#VMWARE_BRIDGE_NETWORKING_TYPE = bridged
VMWARE_NETWORKING_TYPE = nat

The contents of this file will be inserted into the .vmx file of
the VMware virtual machine before Condor starts it.
#VMWARE_LOCAL_SETTINGS_FILE = /path/to/file

##--
VM Universe Parameters common to libvirt controlled vm's (xen & kvm)
##--

Where is the Condor script program to control Xen & KVM? (Required)
VM_SCRIPT = $(SBIN)/condor_vm_xen.sh

Networking parameters for Xen & KVM
##

Appendix A. Configuration options

248

This is the path to the XML helper command; the libvirt_simple_script.awk
script just reproduces what Condor already does for the kvm/xen VM
universe
LIBVIRT_XML_SCRIPT = $(LIBEXEC)/libvirt_simple_script.awk

This is the optional debugging output file for the xml helper
script. Scripts that need to output debugging messages should
write them to the file specified by this argument, which will be
passed as the second command line argument when the script is
executed

#LIBVRT_XML_SCRIPT_ARGS = /dev/stderr

##--
VM Universe Parameters Specific to Xen
##--

Where is bootloader for Xen domainU? (Required)
##
The bootloader will be used in the case that a kernel image includes
a disk image
#XEN_BOOTLOADER = /usr/bin/pygrub

The contents of this file will be added to the Xen virtual machine
description that Condor writes.
#XEN_LOCAL_SETTINGS_FILE = /path/to/file

##
##--
condor_lease_manager lease manager daemon
##--
Where is the LeaseManager binary installed?
LeaseManager = $(SBIN)/condor_lease_manager

Turn on the lease manager
#DAEMON_LIST = $(DAEMON_LIST), LeaseManager

The identification and location of the lease manager for local clients.
LeaseManger_ADDRESS_FILE = $(LOG)/.lease_manager_address

LeaseManager startup arguments
#LeaseManager_ARGS = -local-name generic

LeaseManager daemon debugging log
LeaseManager_LOG = $(LOG)/LeaseManagerLog
LeaseManager_DEBUG = D_FULLDEBUG
MAX_LeaseManager_LOG = 1000000

Basic parameters
LeaseManager.GETADS_INTERVAL = 60
LeaseManager.UPDATE_INTERVAL = 300
LeaseManager.PRUNE_INTERVAL = 60
LeaseManager.DEBUG_ADS = False

LeaseManager.CLASSAD_LOG = $(SPOOL)/LeaseManagerState
#LeaseManager.QUERY_ADTYPE = Any
#LeaseManager.QUERY_CONSTRAINTS = target.MyType == "SomeType"
#LeaseManager.QUERY_CONSTRAINTS = target.TargetType == "SomeType"

##
##--
KBDD - keyboard activity detection daemon
##--
When the KBDD starts up, it can place it's address (IP and port)

Example configuration files

249

into a file. This way, tools running on the local machine don't
need an additional "-n host:port" command line option. This
feature can be turned off by commenting out this setting.
KBDD_ADDRESS_FILE = $(LOG)/.kbdd_address

##
##--
condor_ssh_to_job
##--
NOTE: condor_ssh_to_job is not supported under Windows.

Tell the starter (execute side) whether to allow the job owner or
queue super user on the schedd from which the job was submitted to
use condor_ssh_to_job to access the job interactively (e.g. for
debugging). TARGET is the job; MY is the machine.
#ENABLE_SSH_TO_JOB = true

Tell the schedd (submit side) whether to allow the job owner or
queue super user to use condor_ssh_to_job to access the job
interactively (e.g. for debugging). MY is the job; TARGET is not
defined.
#SCHEDD_ENABLE_SSH_TO_JOB = true

Command condor_ssh_to_job should use to invoke the ssh client.
%h --> remote host
%i --> ssh key file
%k --> known hosts file
%u --> remote user
%x --> proxy command
%% --> %
#SSH_TO_JOB_SSH_CMD = ssh -oUser=%u -oIdentityFile=%i -oStrictHostKeyChecking=yes -
oUserKnownHostsFile=%k -oGlobalKnownHostsFile=%k -oProxyCommand=%x %h

Additional ssh clients may be configured. They all have the same
default as ssh, except for scp, which omits the %h:
#SSH_TO_JOB_SCP_CMD = scp -oUser=%u -oIdentityFile=%i -oStrictHostKeyChecking=yes -
oUserKnownHostsFile=%k -oGlobalKnownHostsFile=%k -oProxyCommand=%x

Path to sshd
#SSH_TO_JOB_SSHD = /usr/sbin/sshd

Arguments the starter should use to invoke sshd in inetd mode.
%f --> sshd config file
%% --> %
#SSH_TO_JOB_SSHD_ARGS = "-i -e -f %f"

sshd configuration template used by condor_ssh_to_job_sshd_setup.
SSH_TO_JOB_SSHD_CONFIG_TEMPLATE = $(ETC)/condor_ssh_to_job_sshd_config_template

Path to ssh-keygen
#SSH_TO_JOB_SSH_KEYGEN = /usr/bin/ssh-keygen

Arguments to ssh-keygen
%f --> key file to generate
%% --> %
#SSH_TO_JOB_SSH_KEYGEN_ARGS = "-N '' -C '' -q -f %f -t rsa"

##
##
Condor HDFS
##
This is the default local configuration file for configuring Condor
daemon responsible for running services related to hadoop
distributed storage system.You should copy this file to the

Appendix A. Configuration options

250

appropriate location and customize it for your needs.
##
Unless otherwise specified, settings that are commented out show
the defaults that are used if you don't define a value. Settings
that are defined here MUST BE DEFINED since they have no default
value.
##
##

##
FOLLOWING MUST BE CHANGED
##

The location for hadoop installation directory. The default location
is under 'libexec' directory. The directory pointed by HDFS_HOME
should contain a lib folder that contains all the required Jars necessary
to run HDFS name and data nodes.
#HDFS_HOME = $(RELEASE_DIR)/libexec/hdfs

The host and port for hadoop's name node. If this machine is the
name node (see HDFS_SERVICES) then the specified port will be used
to run name node.
HDFS_NAMENODE = example.com:9000
HDFS_NAMENODE_WEB = example.com:8000

You need to pick one machine as name node by setting this parameter
to HDFS_NAMENODE. The remaining machines in a storage cluster will
act as data nodes (HDFS_DATANODE).
HDFS_SERVICES = HDFS_DATANODE

The two set of directories that are required by HDFS are for name
node (HDFS_NAMENODE_DIR) and data node (HDFS_DATANODE_DIR). The
directory for name node is only required for a machine running
name node service and is used to store critical meta data for
files. The data node needs its directory to store file blocks and
their replicas.
HDFS_NAMENODE_DIR = /tmp/hadoop_name
HDFS_DATANODE_DIR = /scratch/tmp/hadoop_data

Unlike name node address settings (HDFS_NAMENODE), that needs to be
well known across the storage cluster, data node can run on any
arbitrary port of given host.
#HDFS_DATANODE_ADDRESS = 0.0.0.0:0

##
OPTIONAL
###

Sets the log4j debug level. All the emitted debug output from HDFS
will go in 'hdfs.log' under $(LOG) directory.
#HDFS_LOG4J=DEBUG

The access to HDFS services both name node and data node can be
restricted by specifying IP/host based filters. By default settings
from ALLOW_READ/ALLOW_WRITE and DENY_READ/DENY_WRITE
are used to specify allow and deny list. The below two parameters can
be used to override these settings. Read the Condor manual for
specification of these filters.
WARN: HDFS doesn't make any distinction between read or write based connection.
#HDFS_ALLOW=*
#HDFS_DENY=*

#Fully qualified name for Name node and Datanode class.
#HDFS_NAMENODE_CLASS=org.apache.hadoop.hdfs.server.namenode.NameNode

Example configuration files

251

#HDFS_DATANODE_CLASS=org.apache.hadoop.hdfs.server.datanode.DataNode

In case an old name for hdfs configuration files is required.
#HDFS_SITE_FILE = hadoop-site.xml

Example A.1. The default global configuration file

252

253

Appendix B. Codes
This section describes the various codes used throughout MRG Grid.

B.1. Job universe codes
These codes are used in job ClassAds to determine which universe to use:

Code Universe Details

5 Vanilla universe Single process, non-relinked
jobs

7 Scheduler universe Jobs run under the schedd

9 Grid universe Jobs managed by the
condor_gridmanager

10 Java universe Jobs for the Java Virtual
Machine

11 Parallel universe General parallel jobs

12 Local universe A job run under the schedd
using a starter

Table B.1. Job Universe Codes

B.2. Job status codes
These codes are used in job ClassAds to describe the job status:

Code Short Description Long description

0 U Unexpected

1 I Idle

2 R Running

3 X Removed

4 C Completed

5 H Held

6 E Submission Error

Table B.2. Job Status Codes

B.3. Job notification codes
These codes are used in job ClassAds to determine notification frequency:

Code Frequency

0 Never

1 Always

2 Complete

3 Error

Table B.3. Job Notification Codes

Appendix B. Codes

254

B.4. Shadow exit status codes
These codes are used by condor_shadow when exiting:

Code Command Description

4 JOB_EXCEPTION The job exited with an
exception

44 DPRINTF_ERROR There is a fatal error with
dprintf()

100 JOB_EXITED The job exited

102 JOB_KILLED The job was killed

103 JOB_COREDUMPED The job was killed and a core
file produced

105 JOB_NO_MEM There was not enough memory
to start condor_shadow

106 JOB_SHADOW_USAGE Incorrect arguments were
provided to condor_shadow

107 JOB_SHOULD_REQUEUE Requeue the job to be run
again

108 JOB_NOT_STARTED Cannot connect to
condor_startd, or the
request was refused

109 JOB_BAD_STATUS The job status was something
other than RUNNING when it
was started

110 JOB_EXEC_FAILED Execution failed for an
unknown reason

112 JOB_SHOULD_HOLD Put the job on hold

113 JOB_SHOULD_REMOVE Remove the job

Table B.4. Shadow Exit Status Codes

B.5. Job hold reason codes
These codes are used to determine why a job has been held:

Code Error Description

0 Unspecified This error code is being
deprecated

1 UserRequest The user put the job on hold
with condor_hold

3 JobPolicy The periodic hold expression
evaluated to TRUE

4 CorruptedCredential The credentials for the job were
invalid

Job hold reason codes

255

Code Error Description

5 JobPolicyUndefined A job policy expression (such
as PeriodicHold) evaluated to
UNDEFINED

6 FailedToCreateProcess The condor_starter could
not start the executable

7 UnableToOpenOutput The standard output file for the
job could not be opened

8 UnableToOpenInput The standard input file for the
job could not be opened

9 UnableToOpenOutputStream The standard output stream for
the job could not be opened

10 UnableToOpenInputStream The standard input stream for
the job could not be opened

11 InvalidTransferAck An internal protocol error was
encountered when transferring
files

12 DownloadFileError The condor_starter could
not download the input files

13 UploadFileError The condor_starter could
not upload the output files

14 IwdError The initial working directory of
the job cannot be accessed

15 SubmittedOnHold The user requested the job be
submitted on hold

16 SpoolingInput Input files are being spooled

Table B.5. Job Hold Reason Codes

256

257

Appendix C. Feature Metadata
This appendix contains a list of the metadata associated with various features, for use with the remote
configuration feature.

BaseJobExecuter
 conflicts: None
 included: None
 depends: None
BaseScheduler
 conflicts: None
 depends: Master, NodeAccess
 included: BaseJobExecuter
CentralManager
 conflicts: None
 depends: NodeAccess
 included: Collector, Negotiator
Collector
 conflicts: None
 depends: Master, NodeAccess
 included: None
CommonUIDDomain
 conflicts: None
 depends: None
 included: None
ConcurrencyLimits
 conflicts: None
 depends: None
 included: Negotiator
ConsoleCollector
 conflicts: None
 depends: QMF
 included: Collector
ConsoleScheduler
 conflicts: None
 depends: QMF, BaseScheduler
 included: None
ConsoleExecuteNode
 conflicts: None
 depends: QMF, ExecuteNode
 included: None
ConsoleMaster
 conflicts: None
 depends: QMF, Master
 included: None
ConsoleNegotiator
 conflicts: None
 depends: QMF, Negotiator
 included: None
DedicatedResource
 conflicts: None
 depends: None
 included: ExecuteNode
DedicatedScheduler
 conflicts: None
 depends: None
 included: Scheduler
DynamicSlots
 conflicts: None
 depends: None
 included: ExecuteNode
EC2

Appendix C. Feature Metadata

258

 conflicts: None
 depends: None
 included: ExecuteNode
EC2Enhanced
 conflicts: None
 depends: None
 included: JobRouter
ExecuteNode
 conflicts: None
 depends: Master
 included: BaseJobExecuter
ExecuteNodeDedicatedPreemption
 conflicts: None
 depends: None
 included: DedicatedResource
ExecuteNodeTriggerData
 conflicts: None
 depends: None
 included: ExecuteNode
HACentralManager
 conflicts: None
 depends: None
 included: CentralManager
HAScheduler
 conflicts: Scheduler
 depends: None
 included: JobQueueLocation, BaseScheduler
JobHooks
 conflicts: None
 depends: None
 included: None
JobQueueLocation
 conflicts: None
 depends: None
 included: None
JobRouter
 conflicts: None
 depends: Master, BaseScheduler
 included: None
JobServer
 conflicts: None
 depends: Master, QMF, JobQueueLocation
 included: None
KeyboardMonitor
 conflicts: None
 depends: Master
 included: None
LowLatency
 conflicts: None
 depends: JobHooks
 included: ExecuteNode
Master
 conflicts: None
 depends: NodeAccess
 included: None
Negotiator
 conflicts: None
 depends: Master, NodeAccess
 included: None
NodeAccess
 conflicts: None
 depends: None
 included: None
QMF

259

 conflicts: None
 depends: None
 included: None
Scheduler
 conflicts: HAScheduler
 depends: None
 included: JobQueueLocation, BaseScheduler
SchedulerDedicatedPreemption
 conflicts: None
 depends: None
 included: DedicatedScheduler
SharedFileSystem
 conflicts: None
 depends: None
 included: None
TriggerService
 conflicts: None
 depends: Master, QMF
 included: None
VMUniverse
 conflicts: None
 depends: None
 included: ExecuteNode

Note
The BaseJobExecuter and BaseScheduler features are not intended to be
installed alone. They must be installed with a feature that depends on them.

260

261

Appendix D. Revision History
Revision 7.3 Fri Oct 1 2010 Lana Brindley lbrindle@redhat.com

Minor XML correction

Revision 7.2 Fri Oct 1 2010 Lana Brindley lbrindle@redhat.com
Minor XML correction

Revision 7.1 Wed Sep 29 2010 Lana Brindley lbrindle@redhat.com
Minor error correction

Revision 7.0 Tue Sep 28 2010 Lana Brindley lbrindle@redhat.com
Prepared for publishing

Revision 6.24 Tue Sep 28 2010 Lana Brindley lbrindle@redhat.com
BZ#637773 & #637771 - DAGMan chapter

Revision 6.23 Fri Sep 24 2010 Lana Brindley lbrindle@redhat.com
BZ#636851 - Users chapter

Revision 6.22 Wed Sep 22 2010 Lana Brindley lbrindle@redhat.com
BZ#632238 - Security chapter

Revision 6.21 Tue Sep 21 2010 Lana Brindley lbrindle@redhat.com
Integrated QE changes from Luigi Toscano

Revision 6.20 Tue Sep 21 2010 Lana Brindley lbrindle@redhat.com
BZ#632238 - Security chapter
BZ#632024 - Configuration chapter
Minor updates from rrati on IRC

Revision 6.19 Mon Sep 20 2010 Lana Brindley lbrindle@redhat.com
BZ#634742 - Remote Configuration chapter
BZ#632654 - Jobs chapter

Revision 6.18 Wed Sep 15 2010 Lana Brindley lbrindle@redhat.com
Integrated QE changes from Lubos Trilety
Integrated QE changes from Luigi Toscano

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

Appendix D. Revision History

262

BZ#632421 - Remote Configuration chapter
Prepared for MRG QE review

Revision 6.17 Tue Sep 14 2010 Lana Brindley lbrindle@redhat.com
BZ#632024 - Configuration chapter
BZ#632238 - Security chapter
BZ#632355 - Remote Configuration chapter
BZ#632654 - Jobs chapter

Revision 6.16 Mon Sep 13 2010 Lana Brindley lbrindle@redhat.com
BZ#618885 - Remote configuration chapter
BZ#631560 - Overview chapter
BZ#632024 - Configuration chapter

Revision 6.15 Fri Sep 10 2010 Lana Brindley lbrindle@redhat.com
BZ#615002 - VM Universe chapter
BZ#618389 - Security chapter

Revision 6.14 Wed Sep 8 2010 Lana Brindley lbrindle@redhat.com
BZ#628106 - Security chapter

Revision 6.13 Wed Sep 8 2010 Lana Brindley lbrindle@redhat.com
BZ#628106 - Security chapter

Revision 6.12 Wed Sep 8 2010 Lana Brindley lbrindle@redhat.com
BZ#621927 - Appendix A - Configuration
BZ#621977 - Appendix B - Codes
BZ#628106 - Security chapter

Revision 6.11 Mon Sep 6 2010 Lana Brindley lbrindle@redhat.com
BZ#588502 - Appendix A - Configuration
BZ#615002 - VM Universe chapter
BZ#615036 - Concurrency Limits chapter
BZ#615043, BZ#628110 & BZ#626824 - Configuration chapter
BZ#615490 - DAGMan chapter
BZ#618885 & BZ#628105 - Remote Config chapter
BZ#628108 - Users chapter

Revision 6.10 Thu Aug 26 2010 Lana Brindley lbrindle@redhat.com
BZ#625035 - Remote Config chapter
Integrated QE changes from Luigi Toscano

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

263

Integrated QE changes from Lubos Trilety
Prepared for technical review

Revision 6.9 Wed Aug 25 2010 Lana Brindley lbrindle@redhat.com
BZ#596241 - Security chapter
BZ#607675 - FAQ chapter
BZ#615334 - Low Latency chapter
BZ#617252 - HFS info in Users chapter
BZ#626824 & #622797 - Configuration chapter

Revision 6.8 Tue Aug 24 2010 Lana Brindley lbrindle@redhat.com
BZ#619588 & #618885 - Remote Configuration chapter
BZ#615002 - VM Universe chapter
BZ#561136 - Removed erroneous "dynamic provisioning" statement
BZ#621927 - Appendix A - Configuration
BZ#621977 - Appendix B - Codes

Revision 6.7 Mon Aug 23 2010 Lana Brindley lbrindle@redhat.com
BZ#618389 - Security chapter

Revision 6.6 Thu Aug 19 2010 Lana Brindley lbrindle@redhat.com
BZ#618389 - Security chapter

Revision 6.5 Thu Aug 5 2010 Lana Brindley lbrindle@redhat.com
BZ#615043 - Windows chapter

Revision 6.4 Fri Jul 30 2010 Lana Brindley lbrindle@redhat.com
BZ#615002 - VM Universe chapter

Revision 6.3 Wed Jul 28 2010 Lana Brindley lbrindle@redhat.com
BZ#614498 - Remote Configuration chapter

Revision 6.2 Tue Jul 27 2010 Lana Brindley lbrindle@redhat.com
Reviewed chapter layout

Revision 6.1 Tue Jul 27 2010 Lana Brindley lbrindle@redhat.com
BZ#614498 - New Remote Configuration chapter

Revision 5.13 Wed Jul 21 2010 Lana Brindley lbrindle@redhat.com

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

Appendix D. Revision History

264

Minor change ahead of MRG QE review

Revision 5.12 Tue Jul 20 2010 Lana Brindley lbrindle@redhat.com
Completed integrating results of technical review
Updated images
Prepared for MRG QE review

Revision 5.11 Mon Jul 19 2010 Lana Brindley lbrindle@redhat.com
Integrated results of technical review

Revision 5.10 Mon Jun 28 2010 Lana Brindley lbrindle@redhat.com
Updates for 1.3
BZ #602757 - updated hierarchical fair share info in Users chapter

Revision 5.9 Thu Jun 24 2010 Lana Brindley lbrindle@redhat.com
Updates for 1.3
BZ #607348 - updated package info in Low Latency chapter

Revision 5.8 Mon Jun 21 2010 Lana Brindley lbrindle@redhat.com
Updates for 1.3
BZ #603079 - removed info from EC2 chapter
BZ #603147 - corrected info in EC2 chapter
BZ #604172 - added info to Event Trigger chapter

Revision 5.7 Fri Jun 18 2010 Lana Brindley lbrindle@redhat.com
Updates for 1.3
BZ #496560 - Added info to DAGman chapter

Revision 5.6 Wed Jun 16 2010 Lana Brindley lbrindle@redhat.com
Updates for 1.3
BZ #580747 - Added custom kill signals info to Jobs and FAQ chapters
BZ #583093 - Added admonition to VM Universe chapter
BZ #584030 - Added information to Low Latency chapter
BZ #588502 & #593685 - Added config variables to Configuration Appendix

Revision 5.5 Tue Jun 15 2010 Lana Brindley lbrindle@redhat.com
Updates for 1.3
BZ #510139 - Added Event Trigger chapter
BZ #533982 - Added Process Tracking chapter

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

265

Revision 5.4 Wed Jun 9 2010 Lana Brindley lbrindle@redhat.com
Updates for 1.3
BZ #530580 - Configuration: MAX_FILE_DESCRIPTORS
BZ #533917 - MRG Grid FAQ contains references to capabilities that we do not ship
BZ #533974 - Grid user guide contains references to checkpointing, which we do not support
BZ #547181 - Partitionable Slot Defaults
BZ #547587 - Appendix A.2 - UNAME_ARCH contains superfluous text
BZ #561136 - Name "Dynamic Provisioning" needs to change
BZ #565619 - HA: append values to VALID_SPOOL_FILES, not overwrite it
BZ #577858 - EC2 Enhanced documentation updates
BZ #577867 - Updates to Low-Latency scheduling documentation
BZ #587423 - hook documentation does not state the privs each hook has
BZ #592406 - Sentence Fragment in Chapter 14

Revision 5.3 Mon Dec 14 2009 Lana Brindley lbrindle@redhat.com
BZ #538085 - Changes to sample config

Revision 5.2 Wed Dec 9 2009 Lana Brindley lbrindle@redhat.com
Replaced images

Revision 5.1 Wed Dec 2 2009 Lana Brindley lbrindle@redhat.com
Removed broken images

Revision 5.0 Thu Oct 29 2009 Lana Brindley lbrindle@redhat.com
Final version for 1.2 release

Revision 4.23 Thu Oct 29 2009 Lana Brindley lbrindle@redhat.com
QE changes from ltoscano relating to KVM
Changed title of EC2 chapter
BZ #531375 - EC2 chapter edits
BZ #530995 - VM Universe chapter edits

Revision 4.22 Thu Oct 22 2009 Lana Brindley lbrindle@redhat.com
QE changes from ltoscano relating to KVM

Revision 4.21 Tue Oct 20 2009 Lana Brindley lbrindle@redhat.com
BZ #527490 - VM Universe chapter
QE changes from mkudlej
QE changes from ltoscano

Revision 4.20 Fri Oct 16 2009 Lana Brindley lbrindle@redhat.com

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

Appendix D. Revision History

266

BZ #529234 - EC2 chapter edits
BZ #529239 - Remote configuration chapter edits
BZ #529200 - Added formatTime description to ClassAds chapter

Revision 4.19 Wed Oct 7 2009 Lana Brindley lbrindle@redhat.com
BZ #526123 - EC2 chapter edits

Revision 4.18 Tue Oct 6 2009 Lana Brindley lbrindle@redhat.com
BZ #496562 - Remote configuration chapter edits
BZ #518655 - VM Universe chapter edits
BZ #520208 - EC2 chapter edits
BZ #525124 - HA chapter edits

Revision 4.17 Thu Sep 24 2009 Lana Brindley lbrindle@redhat.com
BZ #482959 - Local configuration file location (added FAQ)
BZ #525093 - Updated caroniad and job hooks configuration file locations in EC2 chapter
BZ #525288 - Removed mention of caroniad and job hooks config files from low-latency chapter.
BZ #525281 - Removed Windows Execute Nodes chapter from view. This feature is not available
in 1.2
BZ #525263 - Removed references to the backfill state from the Policy Configuration chapter
BZ #525090 - Changes to Low Latency chapter

Revision 4.16 Mon Aug 24 2009 Lana Brindley lbrindle@redhat.com
Updated language in Dynamic slots and Windows-based execute nodes chapters

Revision 4.15 Fri Aug 21 2009 Lana Brindley lbrindle@redhat.com
BZ #517580 & #518293 - Changes to Low-latency chapter
BZ #518260 & #517581 - Changes to EC2 chapter
BZ #496773 - New Windows execute nodes chapter
Changes in preparation for technical review

Revision 4.14 Thu Aug 13 2009 Lana Brindley lbrindle@redhat.com
BZ #496569 & #513046 - Changes to EC2 Chapter
BZ #496571 - Added new FAQ
BZ #513505 - Changes to Low-latency chapter
BZ #470412 - Added X_CONSOLE_DISPLAY to Appendix A

Revision 4.13 Tue Aug 11 2009 Lana Brindley lbrindle@redhat.com
BZ #496560 - Added DAGMan chapter

Revision 4.12 Fri Jul 24 2009 Lana Brindley lbrindle@redhat.com

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

267

Reworking Low Latency chapter
Reworking APIs chapter
BZ #513219: Added new content to Low Latency chapter
BZ #496571: Added new FAQ
BZ #472362: Updated Appendix B with missing descriptions
BZ #485150: Updated Remote Configuration chapter with CNAME information
BZ #510162: Updated EC2 chapter with job hook information
BZ #510977: Added new Console chapter
BZ #513058: Reworked resource restriction info in ClassAds chapter

Revision 4.11 Thu Jul 23 2009 Lana Brindley lbrindle@redhat.com
BZ #496563: Reworking Jobs chapter
BZ #496565: Reworking Users chapter
BZ #496568: Reworking High Availability chapter
Edited Concurrency Limits chapter
BZ #496570: Reworking Dynamic Configuration chapter

Revision 4.10 Mon Jul 21 2009 Lana Brindley lbrindle@redhat.com
BZ #496561: moved example configuration files to end of Appendix A
BZ #496561: Reworking Configuration chapter
BZ #510138: Added condor_starter configuration variables to Appendix A

Revision 4.9 Wed Jul 15 2009 Lana Brindley lbrindle@redhat.com
BZ #495659: Reworking EC2 chapter
BZ #496561: Reworking Configuration chapter
BZ #496561: Added example configuration files to Appendix A

Revision 4.8 Fri Jul 10 2009 Scott Mumford smumford@redhat.com
Further additions to Appendix A

Revision 4.7 Fri Jul 10 2009 Lana Brindley lbrindle@redhat.com
BZ #472362: Appendix B, codes
BZ #495659: Reworking EC2 chapter

Revision 4.6 Tue Jul 7 2009 Lana Brindley lbrindle@redhat.com
BZ #471945: Low-latency example
Added link to Appendix A from Configuration.xml
Moved Policy_Configuration.xml to after Jobs.xml

Revision 4.5 Fri Jun 26 2009 Scott Mumford smumford@redhat.com
Further additions to Appendix A

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:smumford@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:smumford@redhat.com

Appendix D. Revision History

268

Revision 4.4 Thu Jun 25 2009 Scott Mumford smumford@redhat.com
Further additions to Appendix A

Revision 4.3 Wed Jun 24 2009 Scott Mumford smumford@redhat.com
Further additions to Appendix A

Revision 4.2 Tue Jun 23 2009 Scott Mumford smumford@redhat.com
Added sections A.3 - A.7 to Appendix A

Revision 4.0 Mon May 4 2009 Lana Brindley lbrindle@redhat.com
Copyedit Overview chapter
Moved "2.1. System wide configuration file variables" and "2.2. Logging configuration variables"
into a new Appendix A

Revision 3.4 Fri Mar 6 2009 Lana Brindley lbrindle@redhat.com
BZ#488852 - Added admonition to condor_submit -dump instructions in low latency chapter

Revision 3.3 Thu Feb 26 2009 Lana Brindley lbrindle@redhat.com
BZ#484072 - Minor fixes to syntax in condor_configure_node

Revision 3.2 Thu Feb 26 2009 Lana Brindley lbrindle@redhat.com
BZ#484072 - Update examples for condor_configure_node

Revision 3.1 Fri Feb 13 2009 Lana Brindley lbrindle@redhat.com
BZ#484072 - New options for condor_configure_node
BZ#484045 - Update EC2 examples

Revision 3.0 Tue Feb 10 2009 Lana Brindley lbrindle@redhat.com
Added information on EC2 Execute Node

Revision 22 Mon Jan 19 2009 Lana Brindley lbrindle@redhat.com
Added links to product page

Revision 21 Mon Jan 12 2009 Lana Brindley lbrindle@redhat.com
BZ #479198
BZ #473111

mailto:smumford@redhat.com
mailto:smumford@redhat.com
mailto:smumford@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

269

Revision 20 Wed Jan 7 2009 Lana Brindley lbrindle@redhat.com
BZ #479053

Revision 19 Wed Jan 7 2009 Lana Brindley lbrindle@redhat.com
BZ #477801
BZ #477805

Revision 18 Mon Dec 22 2008 Michael Hideo mhideo@redhat.com
BZ #477070
Removed issuenum in Book_Info.xml
Changed edition to 1

Revision 0.15 Mon Dec 8 2008 Lana Brindley lbrindle
BZ #474939
BZ #474938

Revision 0.14 Fri Dec 5 2008 Lana Brindley lbrindle
Further minor updates

Revision 0.13 Tue Nov 25 2008 Lana Brindley lbrindle
Further minor updates
Restructure of EC2 Chapter

Revision 0.12 Mon Nov 24 2008 Lana Brindley lbrindle
Minor updates prior to releasing document to Quality Engineering

Revision 0.11 Mon Nov 24 2008 Lana Brindley lbrindle@redhat.com
Completion of EC2 chapter

Revision 0.10 Fri Nov 21 2008 Lana Brindley lbrindle@redhat.com
Split EC2 chapter into EC2 and EC2 Enahnced - BZ #471695

Revision 0.9 Thu Nov 20 2008 Lana Brindley lbrindle@redhat.com
Added remote configuration chapter - BZ #471707

Revision 0.8 Wed Nov 19 2008 Lana Brindley lbrindle@redhat.com
Changes and updates arising from technical review

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:mhideo@redhat.com
mailto:lbrindle
mailto:lbrindle
mailto:lbrindle
mailto:lbrindle
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

Appendix D. Revision History

270

Revision 0.7 Fri Nov 7 2008 Lana Brindley lbrindle@redhat.com
Configuration

Revision 0.6 Mon Nov 3 2008 Lana Brindley lbrindle@redhat.com
Concurrency limits - BZ #459937
Dynamic provisioning - BZ #468942
Low-latency scheduling - BZ #454455
FAQs
More Information

Revision 0.5 Wed Oct 29 2008 Lana Brindley lbrindle@redhat.com
Added download and configuration information to EC2 chapter
APIs

Revision 0.4 Tue Oct 28 2008 Lana Brindley lbrindle@redhat.com
EC2
Removed future chapters from current build

Revision 0.3 Tue Oct 21 2008 Lana Brindley lbrindle@redhat.com
Policy Configuration
Virtual Machine Universe
High Availability

Revision 0.2 Wed Oct 1 2008 Lana Brindley lbrindle@redhat.com
Front matter
Preface
Overview
Configuration (not completed)
Jobs
Users
ClassAds
Policy Configuration (not completed)

Revision 0.1 Wed Aug 6 2008 Lana Brindley lbrindle@redhat.com
Initial Document Creation

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

	Grid User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. We Need Feedback!

	Chapter 1. Overview
	Chapter 2. Configuration
	2.1. Configuring MRG Grid for Microsoft Windows

	Chapter 3. Security
	3.1. Security Contexts
	3.2. Security negotiation
	3.3. Authentication
	3.4. Authentication methods
	3.5. Encryption
	3.6. Integrity

	Chapter 4. Remote configuration
	4.1. The Configuration Store
	4.2. Nodes
	4.3. Tools
	4.4. Remote configuration example

	Chapter 5. Jobs
	5.1. Steps to submitting a job
	5.1.1. Preparing the job
	5.1.2. Choosing a universe
	5.1.3. Writing a submit description file
	5.1.4. Submitting the job
	5.1.5. Monitoring job progress
	5.1.6. Finishing a job

	5.2. Time scheduling for job execution
	5.3. Using custom kill signals

	Chapter 6. ClassAds
	6.1. Writing ClassAd expressions
	6.2. Resource restriction

	Chapter 7. Tracking Processes
	Chapter 8. Job Hooks
	Chapter 9. Policy Configuration
	9.1. Machine states and transitioning
	9.2. The condor_startd daemon
	9.3. Conditions for state and activity transitions
	9.4. Defining a policy

	Chapter 10. User Priorities and Negotiation
	10.1. Group Quotas
	10.2. Job Priorities
	10.3. Hierarchical Fair Share (HFS)

	Chapter 11. The Virtual Machine Universe
	11.1. Configuring MRG Grid for the virtual machine universe

	Chapter 12. High Availability
	12.1. High availability of the job queue
	12.2. High availability of the central manager

	Chapter 13. Concurrency Limits
	Chapter 14. Dynamic slots
	Chapter 15. Event Trigger
	Chapter 16. Scheduling to Amazon EC2
	16.1. Getting the MRG Grid Amazon EC2 Execute Node
	16.2. MRG/EC2 Basic
	16.3. MRG/EC2 Enhanced

	Chapter 17. Low-latency scheduling
	Chapter 18. DAGMan
	18.1. DAGMan jobs

	Chapter 19. Application Program Interfaces (APIs)
	19.1. Using the MRG Grid API
	19.2. Methods

	Chapter 20. Frequently Asked Questions
	Chapter 21. More Information
	Appendix A. Configuration options
	A.1. Pre-defined configuration macros
	A.2. Static pre-defined configuration macros
	A.3. System Wide Configuration File Variables
	A.4. Logging configuration variables
	A.5. DaemonCore Configuration Variables
	A.6. Network-Related Configuration File Entries
	A.7. Shared File System Configuration File Macros
	A.8. condor_master Configuration File Macros
	A.9. condor_startd Configuration File Macros
	A.10. condor_schedd Configuration File Entries
	A.11. condor_starter Configuration File Entries
	A.12. Example configuration files

	Appendix B. Codes
	B.1. Job universe codes
	B.2. Job status codes
	B.3. Job notification codes
	B.4. Shadow exit status codes
	B.5. Job hold reason codes

	Appendix C. Feature Metadata
	Appendix D. Revision History

