
Red Hat Enterprise MRG 1.1

Grid User Guide

Use and configuration information for MRG Grid

Lana Brindley

Grid User Guide

Red Hat Enterprise MRG 1.1 Grid User Guide
Use and configuration information for MRG Grid
Edition 1

Author Lana Brindley lbrindle@redhat.com
Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later with the restrictions noted below (the
latest version of the OPL is presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit
permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from the copyright holder.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United
States and other countries.

All other trademarks referenced herein are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072USAPhone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588Research Triangle Park, NC 27709USA

This book explains use and operation of the MRG Grid component of the Red Hat Enterprise MRG
distributed computing platform. For installation instructions, see the MRG Grid Installation Guide.

mailto:lbrindle@redhat.com
http://www.opencontent.org/openpub/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions ... vi
1.2. Pull-quote Conventions ... vii
1.3. Notes and Warnings ... viii

2. We Need Feedback! ... viii

1. Overview 1

2. Configuration 3
2.1. System Wide Configuration File Variables ... 6
2.2. Logging configuration variables ... 11

3. Remote configuration tool 17

4. Jobs 21
4.1. Choosing a universe ... 21
4.2. Writing a submit description file ... 23
4.3. Time scheduling for job execution ... 24
4.4. Job Hooks ... 26

5. User Priorities and Negotiation 31

6. ClassAds 37
6.1. Writing ClassAd expressions ... 41

7. Policy Configuration 53
7.1. Machine states and transitioning ... 53
7.2. The condor_startd daemon .. 57
7.3. Conditions for state and activity transitions .. 59
7.4. Defining a policy .. 63

8. The Virtual Machine Universe 71
8.1. Configuring MRG Grid for the virtual machine universe ... 71

9. High Availability 75
9.1. High availability of the job queue .. 75
9.2. High availability of the central manager ... 76

10. Cloud Computing 83
10.1. MRG/EC2 Basic ... 83
10.2. MRG/EC2 Enhanced .. 87

11. Concurrency Limits 95

12. Dynamic provisioning 99

13. Low-latency scheduling 101

14. Application Program Interfaces (APIs) 105
14.1. Using the MRG Grid API ... 105
14.2. Methods ... 108

15. Frequently Asked Questions 121
15.1. Installing MRG Grid .. 121
15.2. Running MRG Grid jobs .. 121
15.3. Running MRG Grid on Windows platforms ... 124
15.4. Grid computing ... 125

16. More Information 127

Grid User Guide

iv

A. Revision History 129

v

Preface

Red Hat Enterprise MRG
This book contains information on the use and operation of the MRG Grid component of Red Hat
Enterprise MRG. Red Hat Enterprise MRG is a high performance distributed computing platform
consisting of three components:

1. Messaging — Cross platform, high performance, reliable messaging using the Advanced Message
Queuing Protocol (AMQP) standard.

2. Realtime — Consistent low-latency and predictable response times for applications that require
microsecond latency.

3. Grid — Distributed High Throughput (HTC) and High Performance Computing (HPC).

All three components of Red Hat Enterprise MRG are designed to be used as part of the platform, but
can also be used separately.

MRG Grid
Grid computing allows organizations to fully utilize their computing resources to complete high-
performance tasks. By monitoring all resources - rack-mounted clusters and general workstations - for
availability, any spare computing power can be redirected towards other, more intensive tasks until it is
explicitly required again. This allows a standard networked system to operate in a way that is similar to
a supercomputer.

MRG Grid provides High Throughput and High Performance computing and enables enterprises to
achieve higher peak computing capacity as well as improved infrastructure utilization by leveraging
their existing technology to build high performance grids. MRG Grid provides a job queueing
mechanism, scheduling policy, priority scheme, resource monitoring, and resource management.
Users submit their jobs to MRG Grid, where they are placed into a queue. MRG Grid then chooses
when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately
informs the user upon completion.

MRG Grid is based on the Condor Project1 developed within the University of Wisconsin-Madison2.
Condor also offers a comprehensive library of freely available documentation in its Manual3.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts4 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1 http://www.cs.wisc.edu/condor/
2 http://www.wisc.edu/
3 http://www.cs.wisc.edu/condor/manual/
4 https://fedorahosted.org/liberation-fonts/

http://www.cs.wisc.edu/condor/
http://www.wisc.edu/
http://www.cs.wisc.edu/condor/manual/
https://fedorahosted.org/liberation-fonts/
http://www.cs.wisc.edu/condor/
http://www.wisc.edu/
http://www.cs.wisc.edu/condor/manual/
https://fedorahosted.org/liberation-fonts/

Preface

vi

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctrl-Alt-F1 to switch to the first virtual terminal. Press Ctrl-Alt-F7 to return
to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and
click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then
click the Copy button. Now switch back to your document and choose Edit > Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Pull-quote Conventions

vii

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

Preface

viii

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }

}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes your
life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will apply.
Ignoring Important boxes won't cause data loss but may cause irritation and frustration.

Warning
A Warning should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product Red Hat Enterprise MRG.

When submitting a bug report, be sure to mention the manual's identifier: Grid_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

Overview
MRG Grid is a software system that creates a High-Throughput Computing (HTC) environment.
It uses the computational ability of many computers connected over a network to complete large
or resource-intensive operations. MRG Grid harnesses existing resources by detecting when a
workstation becomes available for use, and subsequently relinquishing that resource when it becomes
unavailable.

When a job is submitted to MRG Grid, it finds an idle machine on the network and begins running the
job on that machine. There is no requirement for machines to share file systems, so machines across
an entire enterprise can run a job, including machines in different administrative domains.

MRG Grid does not require an account (login) on machines where it runs a job. This is because of its
remote system call technology. Any tasks such as reading or writing from disk are transmitted over
the network and performed on the machine where the job was submitted. This ensures that only the
resources of the machine are used, without requiring MRG Grid to log in to each machine individually.

MRG Grid implements ClassAds, a clean design that simplifies the user's submission of jobs. All
machines in the MRG Grid pool advertise their resource properties, both static and dynamic, such
as available RAM memory, CPU type, CPU speed, virtual memory size, physical location, and
current load average, in a resource offer ad. When a job is submitted, the user specifies a resource
request ad, specifying both the required and a desired set of properties. MRG Grid acts as a broker
by matching and ranking resource offer ads with resource request ads, making certain that all
requirements in both ads are satisfied. During this match-making process, MRG Grid also considers
several layers of priority values: the priority the user assigned to the resource request ad, the priority
of the user which submitted the ad, and desire of machines in the pool to accept certain types of ads
over others.

Groups of researchers, engineers, and scientists have used MRG Grid to establish pools ranging
in size from a handful to tens of thousands of workstations. We hope that MRG Grid will help
revolutionize your computing environment as well.

2

Chapter 2.

3

Configuration
This section describes how to configure all parts of the MRG Grid system. General information about
the configuration files and their syntax is followed by a description of settings that affect all MRG Grid
daemons and tools.

The configuration files are used to customize how MRG Grid operates. This section discusses how the
configuration files for MRG Grid work and how to customize the files should you need to.

Initial configuration
It is advised that you review the configuration file stored at /etc/condor/condor_config before
starting MRG Grid. The default configuration sets up a Personal Condor. Personal Condor is
a specific style of installation suited for individual users who do not have their own pool of machines.
To allow other machines to join your pool you will need to customize the HOSTALLOW_WRITE option.
Open the /etc/condor/condor_config file in your preferred text editor and locate the section
titled Host/IP Access Levels. The value for this option should be set to allow machines to join
your pool and submit jobs. Any machine that you give write access to using the HOSTALLOW_WRITE
option should also be given read access using the HOSTALLOW_READ option:

HOSTALLOW_WRITE = *.your.domain.com

Warning
The simplest option is to change the HOSTALLOW_WRITE option to HOSTALLOW_WRITE =
*. However, this will allow anyone to submit jobs or add machines to your pool. This is a
serious security risk and therefore not recommended.

There are different configuration files offering varying levels of control. The files are parsed in the
following order:

1. Global configuration file

The global configuration file is shared by all machines in the pool. For ease of administration, this
file can be located on a shared file system. If this is not possible, it will need to be the same across
all nodes. Ideally, this file will only be customized through the local configuration files.

MRG Grid will look in different places for the global configuration file, in the following order:

a. The filename specified in the CONDOR_CONFIG environment variable

b. /etc/condor/condor_config

c. /usr/local/etc/condor_config

d. ~condor/condor_config

Note
If a file is specified in the CONDOR_CONFIG environment variable and there's a
problem reading that file, MRG Grid will print an error message and exit. It will not

Chapter 2. Configuration

4

continue to search the other options. Leaving the CONDOR_CONFIG environment
variable blank will ensure that MRG Grid will search through the other options.

If a valid configuration file is not found in any of the searched locations, MRG Grid will print an
error message and exit.

2. Local configuration file

A local configuration file exists for each machine. Settings in this configuration file will override
settings in the global file for that machine.

The location of the local configuration file is stored in the global configuration file, using the
LOCAL_CONFIG_FILE setting. This can be a list of files or a single file. If this is not set, no local
configuration file is used.

Once MRG Grid has completed parsing the four configuration files, it will check for environment
variables. These configuration variables are prefixed by the string _CONDOR_ or _condor_. MRG Grid
parses environment variables last, subsequently any settings made this way will override conflicting
settings in the configuration files.

Adding entries to configuration files
1. All entries in a configuration file use the same syntax. The entries are in the form:

This is a comment
SUBSYSTEM_NAME.CONFIG_VARIABLE = VALUE

Things to note about the syntax:

• Each valid entry requires an operator of =

• A line that does not contain an operator and is prefixed by a # symbol will be treated as a
comment and ignored

• The SUBSYSTEM_NAME is optional

• There must be white space on either side of the = sign

2. An entry can continue over multiple lines by placing a \ character at the end of the line to be
continued. For example:

ADMIN_MACHINES = condor.example.com, raven.example.com, \
stork.example.com, ostrich.example.com \
bigbird.example.com

Important
The line continuation character will also work within a comment, which will cause
MRG Grid to ignore the second line. The following example would be ignored entirely:

This comment has line continuation \

5

characters, so FOO will not be set \
FOO = BAR

Executing a Program to Produce Configuration Entries
1. MRG Grid can run a specialized program to obtain configuration entries. To run a program from

the configuration file, insert a | character at the end of the line. This syntax will only work with
CONDOR_CONFIG, or the configuration variable LOCAL_CONFIG_FILE. For example, to run a
program located at /bin/make_the_config to populate the local configuration file, use the
following entry:

LOCAL_CONFIG_FILE = /bin/make_the_config|

Pre-Defined Configuration Macros
MRG Grid provides pre-defined configuration macros to help simplify configuration. These settings are
determined automatically and cannot be overwritten.

FULL_HOSTNAME

The fully qualified hostname of the local machine (domain name and hostname)

HOSTNAME

The hostname of the local machine

IP_ADDRESS

The local machine's IP address as an ASCII string

TILDE

The full path to the home directory of the user Condor, if the user exists on the local machine

SUBSYSTEM

The subsystem name of the daemon or tool that is evaluating the macro. This is a unique string
which identifies a given daemon within the MRG Grid system. The possible subsystem names are:
• STARTD

• SCHEDD

• MASTER

• COLLECTOR

• NEGOTIATOR

• KBDD

• SHADOW

• STARTER

• GRIDMANAGER

• HAD

Chapter 2. Configuration

6

• REPLICATION

• QUILL

Static Pre-Defined Configuration Macros
These settings are determined automatically and cannot be overwritten.

ARCH

Defines the string used to identify the architecture of the local machine to MRG Grid. This allows
jobs to be submitted for a given platform and MRG Grid will force them to run on the correct
machines

OPSYS

Defines the string used to identify the operating system of the local machine to MRG Grid. If it is
not defined in the configuration file, MRG Grid will automatically insert the operating system of the
current machine as determined by the uname command

UNAME_ARCH

The architecture as reported by the uname command's machine field

UNAME_OPSYS

The operating system as reported by the uname command's sysname field

PID

The process ID of the daemon or tool

PPID

The process ID of the daemon or tool's parent process

USERNAME

The name of the user running the daemon or tool. For daemons started as the root user, but
running under another user, that username will be used instead of root

2.1. System Wide Configuration File Variables
These settings affect all parts of the MRG Grid system.

FILESYSTEM_DOMAIN

Defaults to the fully qualified hostname of the current machine.

UID_DOMAIN

Defaults to the fully qualified hostname of the current machine it is evaluated on.

COLLECTOR_HOST

The host name of the machine where the condor_collector is running for your pool.
COLLECTOR_HOST must be defined for the pool to work properly.

This setting can also be used to specify the network port of the condor_collector. The port is
separated from the host name by a colon. To set the network port to 1234, use the following
syntax:

COLLECTOR_HOST = $(CONDOR_HOST):1234

System Wide Configuration File Variables

7

If no port is specified, the default port of 9618 is used.

CONDOR_VIEW_HOST

The host name of the machine where the CondorView server is running. This service is optional,
and requires additional configuration to enable it. If CONDOR_VIEW_HOST is not defined, no
CondorView server is used.

RELEASE_DIR

The full path to the MRG Grid release directory, which holds the bin, etc, lib and sbin
directories. There is no default value for RELEASE_DIR.

BIN

The directory where user-level programs are installed.

LIB

The directory where libraries used to link jobs for MRG Grid's standard universe are stored.
The condor_compile program uses this macro to find the libraries, so it must be defined for
condor_compile to function.

LIBEXEC

The directory where support commands for Condor are placed. Do not add this directory to a user
or system-wide path.

INCLUDE

The directory where header files are placed.

SBIN

The directory where system binaries and administrative tools are installed. The directory defined
at SBIN should also be in the path of users acting as Condor administrators.

LOCAL_DIR

The location of the local Condor directory on each machine in your pool. One common option is to
use the condor user's home directory which may be specified with $(TILDE), in this format:

LOCAL_DIR = $(TILDE)

On machines with a shared file system, where the directory is shared among all machines in your
pool, use the $(HOSTNAME) macro and have a directory with many sub-directories, one for each
machine in your pool. For example:

LOCAL_DIR = $(tilde)/hosts/$(hostname)

or:

LOCAL_DIR = $(release_dir)/hosts/$(hostname)

LOG

The directory where each daemon writes its log files. The names of the log files themselves are
defined with other macros, which require the $(LOG) macro.

Chapter 2. Configuration

8

SPOOL

The directory where files used by condor_schedd are stored, including the job queue file and
the initial executables of any jobs that have been submitted. If a given machine executes jobs but
does not submit them, it does not require a SPOOL directory.

EXECUTE

The scratch directory for the local machine. The scratch directory is used as the destination for
input files that were specified for transfer. It also serves as the job's working directory if the job is
using file transfer mode and no other working directory is specified. If a given machine submits
jobs but does not execute them, it does not require an EXECUTE directory. To customize the
execute directory independently for each batch slot, use SLOTx_EXECUTE.

LOCAL_CONFIG_FILE

The location of the local configuration file for each machine in the pool. The value of
LOCAL_CONFIG_FILE is treated as a list of files. The items in the list are delimited by
either commas or spaces. The list is processed in the order given (with settings in later
files overwriting values from previous files). This allows the use of one global configuration
file for multiple platforms in the pool. If LOCAL_CONFIG_FILE is not defined, and
REQUIRE_LOCAL_CONFIG_FILE has not been explicitly set to false, an error will be caused.

REQUIRE_LOCAL_CONFIG_FILE

A boolean value that defaults to true. This will cause MRG Grid to exit with an error if any file
listed in LOCAL_CONFIG_FILE cannot be located. If the value is set to false, MRG Grid will ignore
any local configuration files that cannot be located and continue. If LOCAL_CONFIG_FILE is not
defined, and REQUIRE_LOCAL_CONFIG_FILE has not been explicitly set to false, an error will be
caused.

CONDOR_IDS

The User ID (UID) and Group ID (GID) for Condor daemons to use when run by the root user. This
value can also be set using the CONDOR_IDS environment variable. The syntax is:

CONDOR_IDS = UID.GID

To set a UID of 1234 and a GID of 5678, use the following setting:

CONDOR_IDS = 1234.5678

If CONDOR_IDS is not set and the daemons are run by the root user, MRG Grid will search for a
condor user on the system, and use that UID and GID.

CONDOR_ADMIN

An email address for MRG Grid to send messages about any errors that occur in the pool, such as
a daemon failing.

CONDOR_SUPPORT_EMAIL

The email address to be included in the footer of all email sent out by MRG Grid. The footer reads:

Email address of the local MRG Grid administrator: admin@example.com

If this setting is not defined, MRG Grid will use the address specified in CONDOR_ADMIN.

System Wide Configuration File Variables

9

MAIL

The full path to a text based email client, such as /bin/mail. The email client must be able
to accept mail messages and headers as standard input (STDIN) and use the -s command to
specify a subject for the message. On all platforms, the default shipped with MRG Grid should
work. This setting will only need to be changed if the installation is in a non-standard location. The
condor_schedd will not function unless MAIL is defined.

RESERVED_SWAP

The amount (in megabytes) of memory swap space reserved for use by the machine. MRG Grid
will stop initializing processes if the amount of available swap space falls below this level. The
default value is 5MB.

RESERVED_DISK

The amount (in megabytes) of disk space reserved for use by the machine. When reporting, MRG
Grid will subtract this amount from the total amount of available disk space. The default value is
0MB (zero megabytes).

LOCK

MRG Grid creates lock files in order to synchronize access to various log files. If the local Condor
directory is not on a local partition, be sure to set the LOCK entry to avoid problems with file
locking.

The user and group that MRG Grid runs as need to have write access to the directory that
contains the lock files. If no value for LOCK is provided, the value of LOG is used.

HISTORY

The location of the history file, which stores information about all jobs that have completed
on a given machine. This setting is used by condor_schedd to append information, and
condor_history the user-level program used to view the file. The default value is $(SPOOL)/
history. If not defined, no history file will be kept.

ENABLE_HISTORY_ROTATION

A boolean value that defaults to true. When false, the history file will not be rotated, and the history
will continue to grow in size until it reaches the limits defined by the operating system. The rotated
files are stored in the same directory as the history file. Use MAX_HISTORY_LOG to define the size
of the file and MAX_HISTORY_ROTATIONS to define the number of files to use when rotation is
enabled.

MAX_HISTORY_LOG

Defines the maximum size (in bytes) for the history file, before it is rotated. Default value is
20,971,520 bytes (20MB). This parameter is only used if history file rotation is enabled.

MAX_HISTORY_ROTATIONS

Defines how many files to use for rotation. Defaults to 2. In this case, there may be up to three
history files at any one time - two backups and the history file that is currently being written. The
oldest file will removed first on rotation.

MAX_JOB_QUEUE_LOG_ROTATIONS

The job queue database file is periodically rotated in order to save disk space. This option controls
how many rotated files are saved. Defaults to 1. In this case, there may be up to two history
files at any one time - the backup which has been rotated out of use, and the history file that is
currently being written. The oldest file will be removed first on rotation.

Chapter 2. Configuration

10

NO_DNS

A boolean value that defaults to false. When true, MRG Grid constructs hostnames automatically
using the machine's IP address and DEFAULT_DOMAIN_NAME.

DEFAULT_DOMAIN_NAME

The domain name for the machine. This value is appended to the hostname in order to create a
fully qualified hostname. This value should be set in the global configuration file, as MRG Grid
can depend on knowing this value in order to locate the local configuration files. The default value
is an example, and must be changed to a valid domain name. This variable only operates when
NO_DNS is set to true.

EMAIL_DOMAIN

Defines the domain to use for email. If a job is submitted and the user has not specified
notify_user in the submit description file, MRG Grid will send any email about that job to
username@UID_DOMAIN. If all the machines share a common UID domain, but email to this
address will not work, you will need to define the correct domain to use. In many cases, you can
set EMAIL_DOMAIN to FULL_HOSTNAME.

CREATE_CORE_FILES

A boolean value that is undefined by default, in order to allow the default operating system value
to take precedence. If set to true, the Condor daemons will create core files in the LOG directory in
the case of a segmentation fault (segfault). When set to false no core files will be created. When
left undefined, it will retain the setting that was in effect when the Condor daemons were started.
Core files are used primarily for debugging purposes.

ABORT_ON_EXCEPTION

A boolean value that defaults to false. When set to true MRG Grid will abort on a fatal internal
exception. If CREATE_CORE_FILES is also true, MRG Grid will create a core file when an
exception occurs.

Q_QUERY_TIMEOUT

The amount of time (in seconds) that condor_q will wait when trying to connect to
condor_schedd, before causing a timeout error. Defaults to 20 seconds.

DEAD_COLLECTOR_MAX_AVOIDANCE_TIME

For pools where High Availability is in use. Defines the maximum time (in seconds) to wait in
between checks for a failed primary condor_collector daemon. If connections to the dead
daemon take very little time to fail, new query attempts become more frequent. Defaults to 3600 (1
hour).

NETWORK_MAX_PENDING_CONNECTS

The maximum number of simultaneous network connection attempts. condor_schedd can try to
connect to large numbers of startds when claiming them. The negotiator may also connect to
large numbers of startds when initiating security sessions. Defaults to 80% of the process file
descriptor limit, except on Windows operating systems, where the default is 1600.

WANT_UDP_COMMAND_SOCKET

A boolean value that defaults to true. When true, Condor daemons will create a UDP command
socket in addition to the required TCP command socket. When false, only the TCP command
socket will be created. If you modify this setting, you will need to restart all Condor daemons.

Logging configuration variables

11

MASTER_INSTANCE_LOCK

The name of the lock #le to prevent multiple condor_master daemons from starting. This is
useful when using shared #le systems like NFS, where the lock #les exist on a local disk. Defaults
to $(LOCK)/InstanceLock. The $(LOCK) macro can be used to specify the location of all lock
#les, not just the condor_master instance lock. If $(LOCK) is unde#ned, the master log itself
will be locked.

SHADOW_LOCK

The lock #le to be used for access to the ShadowLog #le. It must be a separate #le from the
ShadowLog, since the ShadowLog might be rotated and access will need to be synchronized
across rotations. This macro is de#ned relative to the $(LOCK) macro.

2.2. Logging configuration variables
These variables control logging. Many of these variables apply to each of the possible subsystems. In
each case, replace the word SUBSYSTEM with the name of the appropriate subsystem. The possible
subsystems are:
• STARTD

• SCHEDD

• MASTER

• COLLECTOR

• NEGOTIATOR

• KBDD

• SHADOW

• STARTER

• SUBMIT

• GRIDMANAGER

• TOOL

• HAD

• REPLICATION

• QUILL

SUBSYSTEM_LOG

The name of the log file for a given subsystem. For example, $(STARTD_LOG) gives the location
of the log file for the condor_startd daemon.

MAX_SUBSYSTEM_LOG

The maximum size a log file is allowed to grow to, in bytes. Each log file will grow to the specified
length, then be saved to a file with the suffix .old. The .old files are overwritten each time
the log is saved, thus the maximum space devoted to logging for any one program will be twice

Chapter 2. Configuration

12

the maximum length of its log file. A value of 0 specifies that the file may grow without bounds.
Deafults to 1MB.

TRUNC_SUBSYSTEM_LOG_ON_OPEN

When TRUE, the log will be restarted with an empty file every time the program is run. When
FALSE new entries will be appended. Defaults to FALSE.

SUBSYSTEM_LOCK

Specifies the lock file used to synchronize additions to the log file. It must be a separate file from
the $(SUBSYSTEM_LOG) file, since that file can be rotated and synchronization should occur
across log file rotations. A lock file is only required for log files which are accessed by more than
one process. Currently, this includes only the SHADOW subsystem. This macro is defined relative
to the $(LOCK) macro.

FILE_LOCK_VIA_MUTEX

This setting is for Windows platforms only. When TRUE log are able to be locked using a mutex
instead of by file locking. This can correct problems on Windows platforms where processes
starve waiting for a lock on a log file. Defaults to TRUE on Windows platforms. Always set to
FALSE on Unix platforms.

ENABLE_USERLOG_LOCKING

When TRUE the job log specified in the submit description file is locked before being written to.
Defaults to TRUE.

TOUCH_LOG_INTERVAL

The time interval between daemons creating (using the touch command) log files, in seconds.
The change in last modification time for the log file is useful when a daemon restarts after failure
or shut down. The last modification date is printed, and it provides an upper bound on the length of
time that the daemon was not running. Defaults to 60 seconds.

LOGS_USE_TIMESTAMP

Formatting of the current time at the start of each line in the log files. When TRUE, Unix Epoch
Time is used. When FALSE, the time is printed in the local timezone using the syntax:

[Month]/[Day] [Hour]:[Minute]:[Second]

. Defaults to FALSE.

SUBSYSTEM_DEBUG

The Condor daemons are all capable of producing different levels of output. All daemons default
to D_ALWAYS. This logs all messages. Settings are a comma or space-separated list of these
values:
• D_ALL

Enables all of the debug levels at once. There is no need to list any other debug levels in
addition to D_ALL. This setting generates an extremely large amount of output.

• D_FULLDEBUG

Verbose output. Only very frequent log messages for very specific debugging purposes are
excluded.

• D_DAEMONCORE

Logging configuration variables

13

Logs messages that specific to DaemonCore, such as timers the daemons have set and the
commands that are registered.

• D_PRIV

Logs messages about privilege state switching.

• D_COMMAND

With this flag set, any daemon that uses DaemonCore will print out a log message whenever a
command is received. The name and integer of the command, whether the command was sent
via UDP or TCP, and where the command was sent from are all logged.

• D_LOAD

The condor_startd records the load average on the machine where it is running. Both the
general system load average, and the load average being generated by MRG Grid activity
are determined. With this flag set, the condor_startd will log a message with the current
state of both of these load averages whenever it computes them. This flag only affects the
condor_startd subsystem.

• D_KEYBOARD

Logs messages related to the values for remote and local keyboard idle times. This flag only
affects the condor_startd subsystem.

• D_JOB

Logs the contents of any job ClassAd that the condor_schedd sends to claim the
condor_startd. This flag only affects the condor_startd subsystem.

• D_MACHINE

Logs the contents of any machine ClassAd that the condor_schedd sends to claim the
condor_startd. This flag only affects the condor_startd subsystem.

• D_SYSCALLS

Logs remote syscall requests and return values.

• D_MATCH

Logs messages for every match performed by the condor_negotiator.

• D_NETWORK

All daemons will log a message on every TCP accept, connect, and close, and on every UDP
send and receive.

• D_HOSTNAME

Logs verbose messages explaining how host names, domain names and IP addresses have
been resolved.

• D_CKPT

Chapter 2. Configuration

14

The Condor process checkpoint support code, which is linked into a standard universe user job,
will output some low-level details about the checkpoint procedure. This logging appears only in
the $(SHADOW_LOG).

• D_SECURITY

Logs messages regarding secure network communications. Includes messages about
negotiation of a socket authentication mechanism, management of a session key cache, and
messages about the authentication process.

• D_PROCFAMILY

Logs messages regarding management of families of processes. A process family is defined as
a process and all descendents of that process.

• D_ACCOUNTANT

Logs messages regarding the computation of user priorities.

• D_PROTOCOL

Log messages regarding the protocol for the matchmaking and resource claiming framework.

• D_PID

This flag is used to change the formatting of all log messages that are printed. If D_PID is set,
the process identifier (PID) of the process writing each line to the log file will be recorded.

• D_FDS

This flag is used to change the formatting of all log messages that are printed. If D_FDS is set,
the file descriptor that the log file was allocated will be recorded.

ALL_DEBUG

Used to make all subsystems share a debug flag. For example, to turn on all debugging in all
subsystems, set ALL_DEBUG = D_ALL.

TOOL_DEBUG

Uses the same values (debugging levels) as SUBSYSTEM_DEBUG to describe the amount of
debugging information sent to STDERR for Condor tools.

SUBMIT_DEBUG

Uses the same values (debugging levels) as SUBSYSTEM_DEBUG to describe the amount of
debugging information sent to STDERR for condor_submit.

SUBSYSTEM_[LEVEL]_LOG

This is the name of a log file for messages at a specific debug level for a specific subsystem. If the
debug level is included in $(SUBSYSTEM_DEBUG), then all messages of this debug level will be
written both to the $(SUBSYSTEM_LOG) file and the $(SUBSYSTEM_[LEVEL]_LOG) file.

MAX_SUBSYSTEM_[LEVEL]_LOG

Similar to MAX_SUBSYSTEM_LOG.

Logging configuration variables

15

TRUNC_SUBSYSTEM_[LEVEL]_LOG_ON_OPEN

Similar to TRUNC_SUBSYSTEM_LOG_ON_OPEN.

EVENT_LOG

The full path and file name of the event log. There is no default value for this variable, so no event
log will be written if it is not defined.

MAX_EVENT_LOG

Controls the maximum length in bytes to which the event log will be allowed to grow. The log file
will grow to the specified length, then be saved to a file with the suffix .old. The .old files are
overwritten each time the log is saved. A value of 0 allows the file to grow continuously. Defaults
to 1MB.

EVENT_LOG_USE_XML

When TRUE, events are logged in XML format. Defaults to FALSE.

EVENT_LOG_JOB_AD_INFORMATION_ATTRS

A comma-separated list of job ClassAd attributes. When evaluated, these values form a new
event of JobAdInformationEvent. This new event is placed in the event log in addition to each
logged event.

16

Chapter 3.

17

Remote configuration tool
The remote configuration feature simplifies configuration and management of a pool. It allows
a single machine to configure all nodes in a condor pool and easily modify or change a node's
configuration. Any change that impacts other nodes in the system will also be handled appropriately.
The configuration tools allow management of multiple independent pools, and can build a condor
node from the ground up needing only an operating system and the appropriate remote configuration
packages.

Configuring the server for remote configuration
1. The remote configuration feature requires a server machine with the condor-remote-

configuration-server package. Only one machine in a cluster should act as the server,
and should be the same machine that the MRG Management Console is installed on. Install the
package on the server using yum:

yum install condor-remote-configuration-server

2. A CNAME record will need to be added to the DNS configuration with the name puppet. It needs
to point to the machine that has the condor-remote-configuration-server installed.

3. Copy the puppet.conf.master file to the /etc/puppet directory using the following
command:

$ cp -f /etc/opt/grid/examples/puppet.conf.master /etc/puppet/
puppet.conf

4. Create the site.pp file:

$ echo 'import "condor"' >> /etc/puppet/manifests/site.pp

5. Start the service from the shell prompt:

service puppetmaster start
Starting puppetmaster service: [OK]

Configuring a client for remote configuration
1. The remote configuration feature for client machines requires the condor-remote-

configuration package. Install the package using yum:

yum install condor-remote-configuration

Chapter 3. Remote configuration tool

18

2. Copy the puppet.conf.client file to the /etc/puppet directory using the following
command:

$ cp -f /etc/opt/grid/examples/puppet.conf.client /etc/puppet/
puppet.conf

Then copy the namespaceauth.conf file to /etc/puppet:

$ cp -f /etc/opt/grid/examples/namespaceauth.conf /etc/puppet

3. Open the namespaceauth.conf configuration file in your preferred text editor and locate the
line that states allow <puppetmaster.fqdn> entry. Replace the <puppetmaster.fqdn>
text with the fully qualified domain name of the server machine. This is the machine that has the
condor-remote-configuration-server package installed:

allow server.example.com

4. Start the service from the shell prompt:

service puppet start
Starting puppet service: [OK]

Using the remote configuration tool
To use the remote configuration tools to configure a node, you will need to know the node's fully
qualified domain name. This name is used by the node to identify itself to the configuration system.

1. To configure a node, use the following syntax:

$ condor_configure_node -n [name of node] [action] [features]

Use the --help option to see a full list of possible commands:

$ condor_configure_node --help

2. The possible actions are:
• add: Used to add features to the node being configured. If any additional information is

required, the tool will prompt for it.

• delete: Used to remove features on the node.

3. There are three items that the tool will ask for, regardless of the options in use:

19

a. Schedulers: If the node being configured is not a scheduler, then the configuration tool will
prompt for the list of schedulers the node should be allowed to submit to. First it will prompt
for the default scheduler, then for a comma separated list of additional schedulers. This entry
should contain the fully qualified domain names of the schedulers in the pool. If the pool has a
high availability scheduler, use ha-schedd@.

b. Collector Name: This is a human readable text field that will identify the pool. This value
will be set as the COLLECTOR_NAME for the node.

c. QMF Broker Information: The QMF Broker is the AMQP broker that is used to
communicate with the MRG Management Console. The configuration tool will prompt for the
IP or hostname where the broker is running, as well as the port the broker is listening on. If no
port is provided, the default port will be used.

4. The configuration tool will always prompt you to save the configuration. When it is saved, the tool
will automatically check the configuration of all known nodes, to ensure they are up to date.

5. The remote configuration tool controls the content of the ~/condor_config.local local
configuration file. It is possible to provide a custom configuration for a node by creating a file
named ~/condor_config.overrides and adding configuration entries to that file.

Important
Be very cautious when adding entries to a ~/condor_config.overrides file.
Settings in this file will override any settings provided by the remote configuration
feature. This can result in lost or incorrect functionality of the features controlled by
the remote configuration feature.

This example gives some common uses of the remote configuration tool.

To enable a machine named condor_ca.domain.com to be a High Available Central Manager:

$ condor_configure_node -n condor_ca.domain.com -a ha_central_manager

To enable a machine name twofer.domain.com to be both a scheduler and an execute node:

$ condor_configure_node -n twofer.domain.com -a scheduler,startd

To remove the execute functionality from twofer.domain.com:

$ condor_configure_node -n twofer.domain.com -d startd

Example 3.1. Examples of use of the remote configuration tool

20

Chapter 4.

21

Jobs
Submitting a job consists of six main steps:

Prepare the job
Jobs must be able to run without interaction by the user, as MRG Grid runs unattended and in the
background. This means that all interactive input and output must be automated. MRG Grid can
redirect standard input (STDIN) and console output (STDOUT and STDERR) to and from files.
Create any files you need to perform these functions, and test them to make sure they will run
correctly with the job.

Choose a universe
MRG Grid uses a runtime environment, called a universe, to determine how a job is handled as it
is being processed. You will need to select which universe under which to run the job. For more
information on choosing a universe, see Section 4.1, “Choosing a universe”

Write a submit description file
The submit description file controls the details of the job submission. The file contains information
about the job, such as:
• Which executable to run

• The files to use for keyboard and screen data

• The platform required to run the program

• The universe to use. If you are unsure which universe to use, select the vanilla universe.

• Where to send notification emails

• How many times to run a program

You will need to write a submit description file to go with the job. For more information on writing a
submit description file, see Section 4.2, “Writing a submit description file”

Submit the job
Submit the program using the condor_submit command.

Monitor the progress of the job
Once a job has been submitted, MRG Grid will go ahead and run the job. You can monitor the
job's progress using the condor_q and condor_status commands.

Finishing the job
When your job finishes, MRG Grid will notify you of the exit status of your job and various statistics
about the performance, including time used and input/output performed. If you are using a log
file for the job, the exit status will also be recorded. You can also remove a job from the queue
prematurely with the condor_rm command.

4.1. Choosing a universe
MRG Grid uses an execution environment, called a universe. Jobs will run in the vanilla universe by
default, unless a different universe is specified in the submit description file.

Currently, the following universes are supported:

Chapter 4. Jobs

22

• Vanilla

• Java

• VM (for Xen)

• Grid

• Scheduler

• Local

• Parallel

Vanilla universe
The vanilla universe is the default universe, and has very few restrictions.

If a vanilla universe job is partially completed when the remote machine has to be returned, or fails for
some other reason, MRG Grid will perform one of two actions. It will either suspend the job, in case
it can complete it on the same machine at a later time, or it will cancel the job and restart it again on
another machine in the pool.

Grid universe
The Grid Universe provides jobs access to external schedulers. For example, jobs submitted to EC2
are routed through the Grid Universe.

Java universe
The java universe allows users to run jobs written for the Java Virtual Machine (JVM). A program
submitted to the java universe may run on any sort of machine with a JVM regardless of its location,
owner, or JVM version. MRG Grid will automatically locate details such as finding the JVM binary and
setting the classpath.

Scheduler universe
The scheduler universe is primarily for use with the condor_dagman daemon. It allows users to
submit lightweight jobs to be run immediately, alongside the condor_schedd daemon on the host
machine. Scheduler universe jobs are not matched with a remote machine, and will never be pre-
empted.

The scheduler universe, however, offers few features and limited policy support. The local universe is
a better choice for most jobs which must run on the submitting machine, as it offers a richer set of job
management features, and is more consistent with the other universes.

Local universe
The local universe allows a job to be submitted and executed with different assumptions for the
execution conditions of the job. The job does not wait to be matched with a machine - it is executed
immediately, on the machine where the job is submitted. Jobs submitted in the local universe will
never be pre-empted.

Writing a submit description file

23

Parallel universe
The parallel universe is used to run jobs that require simultaneous startup on multiple execution
nodes, such as Message Passing Interface (MPI) jobs.

VM universe
The VM universe allows for the running of Xen virtual machine instances. A VM universe job's lifecycle
is tied to the virtual machine that is being run.

4.2. Writing a submit description file
A job is submitted for execution using condor_submit, which requires a file called a submit
description file. The submit description file contains the name of the executable, the initial working
directory and command-line arguments.

Example submit description files
The following examples are common submit description files.

This example submits a job called physica.

Since no platform is specified in this description file, MRG Grid will default to run the job on a machine
which has the same architecture and operating system as the machine from which it was submitted.
The submit description file does not specify input, output, and error commands, this will cause MRG
Grid to use /dev/null for all STDIN, STDOUT and STDERR. A log file, called physica.log will be
created. When the job finishes, its exit conditions will be noted in the log file. It is recommended that
you always have a log file.

Executable = physica
Log = physica.log
Queue

Example 4.1. Basic submit description file

Chapter 4. Jobs

24

This example queues two copies of the program mathematica.

The first copy will run in directory run_1, and the second will run in directory run_2. For both queued
copies, STDIN will be test.data, STDOUT will be loop.out, and STDERR will be loop.error.
There will be two sets of files written, as the files for each job are written to the individual directories.
The job will be run in the vanilla universe.

Executable = mathematica
Universe = vanilla
input = test.data
output = loop.out
error = loop.error
Log = mathematica.log

Initialdir = run_1
Queue

Initialdir = run_2
Queue

Example 4.2. Using multiple directories in a submit description file

This example queues 150 runs of program chemistria.

This job must be run only on Linux workstations that have greater than 32 megabytes of physical
memory. If machines with greater than 64 megabytes of physical memory are available, the job should
be run on those machines as a preference. This submit description file also advises that it will use
up to 28 megabytes of memory when running. Each of the 150 runs of the program is given its own
process number, starting with process number 0. In this case, STDIN, STDOUT, and STDERR will refer
to in.0, out.0 and err.0 for the first run of the program, and in.1, out.1 and err.1 for the
second run of the program. A log file will be written to chemistria.log.

Executable = chemistria
Requirements = Memory >= 32 && OpSys == "LINUX" && Arch =="X86_64"
Rank = Memory >= 64
Image_Size = 28 Meg

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = chemistria.log

Queue 150

Example 4.3. Specifying execution requirements in a submit description file

4.3. Time scheduling for job execution
MRG Grid allows jobs to begin execution at a later time. This feature can be accessed by adding a
deferral time to the submit description file. Jobs running on a Unix platform can also be set to run
periodically.

Time scheduling for job execution

25

Deferring jobs
Job deferral allow the submitter to specify an exact date and time at which a job is to begin. MRG
Grid attempts to match the job to an execution machine as normal, however, the job will wait until the
specified time to begin execution. Submitters can also provide details for how to handle a job that
misses it's specified execution time.

The deferral time is defined in the submit description file as a Unix Epoch timestamp. Unix Epoch
timestamps are the number of seconds elapsed since midnight on January 1, 1970, Coordinated
Universal Time.

After a job has been matched and the files transferred to a machine for execution, MRG Grid checks
to see if the job has a deferral time. If it does, and the time for execution is still in the future, the job will
wait. While it waits, JobStatus will indicate that the job is running.

If a job reports that the time for execution is in the past - that is, the job has failed to execute when
it should have - then the job is evicted from the execution machine and put on hold in the queue.
This could occur if the files were transferred too slowly, or because of a network outage. This can be
avoided by specifying a deferral window within which the job can still begin. When a job arrives too
late, the difference between the current time and the deferral time is calculated. If the difference is
within the deferral window, the job will begin executing immediately.

When a job defines a deferral time far in the future and then is matched to an execution machine,
potential computation cycles are lost because the deferred job has claimed the machine, but is not
actually executing. Other jobs could execute during the interval when the job waits for its deferral time.
To make use of the wasted time, a job defines a deferral_prep_time with an integer expression that
evaluates to a number of seconds. At this number of seconds before the deferral time, the job may be
matched with a machine.

If a job is waiting to begin execution and a condor_hold command is issued, the job is removed from
the execution machine and put on hold. If a job is waiting to begin execution and a condor_suspend
command is issued, the job continues to wait, and when the deferral time arrives, the job will be
immediately suspended.

Limitations to the job deferral feature
There are some limitations to the job deferral feature:

• Job deferral will not work with scheduler universe jobs. If a deferral time is specified in a job
submitted to the scheduler universe, a fatal error will occur.

• Job deferral times are based on the execution machine's system clock, not the submission
machine's system clock.

• A job's JobStatus attribute will always show the job as running when job deferral is used. As of
the 1.1 release of MRG Grid, there is no way to distinguish between a job that is executing and a job
that has been deferred and is waiting to begin execution. This will be addressed in future versions.

Example submit description files
The following examples show how to set job deferral times and deferral windows.

1 http://www.epochconverter.com/

http://www.epochconverter.com/

Chapter 4. Jobs

26

This example starts a job on January 1, 2008 at 09:00:00 GMT.

To calculate the date and time as Unix epoch time on a Unix-based machine, use the date program
from the shell prompt with the following syntax:

$ date --date "MM/DD/YYYY HH:MM:SS" +%s

You could also use an online time converter, such as the Epoch Converter1.

January 1, 2008 at 09:00:00 GMT converts to 1199178000 in Unix epoch time. The line you will need
to add to the submit description file is:

deferral_time = 1199178000

Example 4.4. Setting the deferral time using Unix epoch time

This example starts a job one minute from the submit time.

This parameter uses a value in seconds to determine the start time:

deferral_time = (CurrentTime + 60)

Example 4.5. Setting the deferral time in seconds from submission time

This example sets a deferral window of 120 seconds, within which a job can begin execution

This parameter uses a value in seconds to determine the length of the deferral window:

deferral_time = (CurrentTime + 60)

Example 4.6. Setting a deferral window in the submit description file

This example schedules a job to begin on January 1st, 2010 at 09:00:00 GMT, and sets a deferral
prep time of 1 minute.

The deferral_prep_time attribute delays the job from being matched until the specified number of
seconds before the job is to begin execution. This prevents the job from being assigned to a machine
long before it is due to start and unnecessarily tying up resources.

deferral_time = 1262336400
deferral_prep_time = 60

Example 4.7. Setting a deferral prep time in the submit description file

4.4. Job Hooks
A hook is an external program or script invoked during the life cycle of a job. External programs or
scripts can contain external code and logic, which MRG Grid can then hook and use to execute the
job. This can result in an easier and more direct method of interfacing with an external scheduling
system, although some of the flexibility offered by the Condor daemons might be lost.

Hooks can also be useful where a job needs to be performed behind a firewall, but requires data from
outside. The hook only needs an outbound network connection to complete the task, thereby being
able to operate from behind the firewall, without the intervention of a connection broker.

http://www.epochconverter.com/

Job Hooks

27

Hooks can also be used to manage the execution of a job. They can be used to fetch execution
environment variables, update information about the job as it runs, notify when it exits, or take special
action if the job is evicted.

Periodically, MRG Grid will send out a hook to see if there is any work to be fetched. When a new job
is hooked, it is evaluated to decide if it should be executed, and whether or not it should pre-empt any
currently running jobs. If the resources are not available to run the hooked job, it will be refused, and
will need to be hooked again.

When a job is accepted the condor_startd daemon will spawn a condor_starter daemon to
manage the execution of the job. The job will then be treated as any other, and can potentially be pre-
empted by a higher ranking job.

Hooks used for fetching jobs are handled either by the condor_startd or the condor_starter
daemon. The different types of hooks are:

HOOK_FETCH_WORK

This hook returns any work to be considered by the condor_startd daemon. The
FetchWorkDelay configuration variable determines how long the daemon will wait between
attempts to fetch work.

HOOK_REPLY_FETCH

When a new job is hooked with HOOK_FETCH_WORK, the condor_startd decides whether
to accept or reject the fetched job and uses HOOK_REPLY_FETCH to send notification of this
decision.

Importantly, this hook is advisory in nature. condor_startd will not wait for the results of
HOOK_REPLY_FETCH before performing other actions. The output and exit status of this hook is
ignored.

HOOK_EVICT_CLAIM

HOOK_EVICT_CLAIM is invoked by condor_startd in order to evict a fetched job. This hook is
also advisory in nature.

HOOK_PREPARE_JOB

When a job is going to be run, condor_starter invokes HOOK_PREPARE_JOB. This will execute
command to set up the job environment and perform actions such as transferring input files.

condor_starter will wait for HOOK_PREPARE_JOB to be returned before it attempts to execute
the job. An exit status of 0 indicates that the job has been prepared succesfully. If the hook returns
with an exit status that is not 0 - indicating that an error has occured - the job will be aborted.

HOOK_UPDATE_JOB_INFO

This hook is invoked periodically during the life of a job to update job status information. By
default, this hook is invoked for the first time 8 seconds after the job is begun. This can be
changed by adjusting the STARTER_INITIAL_UPDATE_INTERVAL configuration variable. The
frequency of the check can be adjusted with the STARTER_UPDATE_INTERVAL configuration
variable, which defaults to 300 seconds (5 minutes).

HOOK_JOB_EXIT

This hook is invoked whenever a job exits - either through completion or eviction.

The condor_starter will wait for this hook to return before taking any further action.

Chapter 4. Jobs

28

Defining the FetchWorkDelay Expression
The condor_startd daemon will attempt to fetch new work in two circumstances:

1. When condor_startd evaluates its own state; and

2. When the condor_starter exits after completing fetched work.

It is possible that, even if a slot is already running another job, it could be pre-empted by a new job,
which could result in a problem known as thrashing. In this situation, every job gets pre-empted and no
job has a chance to finish. By adjusting the frequency that condor_startd checks for new work, this
can be prevented. This can be achieved by defining the FetchWorkDelay configuration variable.

The FetchWorkDelay variable is expressed as the number of seconds to wait in between the last
fetch attempt completing and attempting to fetch another job.

This example instructs condor_startd to wait for 300 seconds (5 minutes) between attempts
to fetch jobs, unless the slot is marked as Claimed/Idle. In this case, condor_startd should
attempt to fetch a job immediately:

FetchWorkDelay = ifThenElse(State == "Claimed" && Activity == "Idle", 0,
 300)

If the FetchWorkDelay variable is not defined, condor_startd will default to a 300 second (5
minute) delay between all attempts to fetch work, regardless of the state of the slot.

Example 4.8. Setting the FetchWorkDelay configuration variable

Using keywords to define hooks in configuration files
Hooks are defined in the configuration files by prefixing the name of the hook with a keyword. This
allows a machine to have multiple sets of hooks, with each set identified by a keyword.

Each slot on a machine can define a separate keyword for the set of hooks that should be used. If
a slot-specific keyword is not used, condor_startd will use the global keyboard defined in the
STARTD_JOB_HOOK_KEYWORD configuration variable.

Note
Slots are the logical equivalent of the physical cores on a machine. For example, a quad-
core workstation would have four slots - with each slot being a dedicated allocation of
memory (note however that hyperthreading will generally double the amount of slots
available - a quad-core machine with hyperthreading would have eight slots).

Once a job has been hooked using HOOK_FETCH_WORK, the condor_startd daemon will use the
keyword for that job to select the hooks required to execute it.

Job Hooks

29

This is an example configuration file that defines hooks on a machine with four slots.

Three of the slots (slots 1-3) use the global keyword for running work from a database-driven system.
These slots need to fetch work and provide a reply to the database system for each attempted claim.

The fourth slot (slot 4) uses a custom keyword to handle work fetched from a web service. It needs
only to fetch work.

STARTD_JOB_HOOK_KEYWORD = DATABASE

SLOT4_JOB_HOOK_KEYWORD = WEB

DATABASE_HOOK_DIR = /usr/local/condor/fetch/database
DATABASE_HOOK_FETCH_WORK = $(DATABASE_HOOK_DIR)/fetch_work.php
DATABASE_HOOK_REPLY_FETCH = $(DATABASE_HOOK_DIR)/reply_fetch.php

WEB_HOOK_DIR = /usr/local/condor/fetch/web
WEB_HOOK_FETCH_WORK = $(WEB_HOOK_DIR)/fetch_work.php

Note that the keywords DATABASE and WEB are very generic terms. It is advised that you choose more
specific keywords for your own installation.

Example 4.9. Using keywords when defining hooks

30

Chapter 5.

31

User Priorities and Negotiation
MRG Grid uses priorities and negotiation to allocate jobs between the machines in the pool. Every
user is identified by username@uid_domain and is assigned a priority value. These values are
assigned to the user, not the machine. This enables users to submit jobs from different machines in
the same domain, or even from multiple machines in multiple domains.

Priorities are numerical values assigned to each user. The highest possible priority is 1, and the
priority decreases as the number rises. There are two priority values assigned to users:
• Real User Priority (RUP), which measures the amount of resources consumed by the user.

• Effective User Priority (EUP), which determines the number of resources available to the user.

Real User Priority (RUP)
RUP measures the amount of resources consumed by the user over time. Every user begins with a
RUP of 0.5 and will stabilize over time if the user consumes resources at a stable rate. For example,
if a user continuously uses exactly ten resources for a long period of time, the RUP of that user will
stabilize to 10.

The RUP will get better as the user decreases the amount of resources being consumed. The rate at
which the RUP decays can be set in the configuration files using the PRIORITY_HALFLIFE setting,
which measures in seconds. For example, if the PRIORITY_HALFLIFE is set to 86400 (1 day), and
a user who's RUP is 10 removes all their jobs and consumes no further resources, the RUP would
become 5 in one day, 2.5 in two days, and so on.

Effective User Priority (EUP)
EUP is used to determine how many resources a user can access. The EUP is related to the RUP by
a priority factor which can be defined on a per-user basis. By default, the priority factor for all users
is 1.0, and so the EUP will remain the same as the the RUP. This can be used to preferentially serve
some users over others.

The number of resources that a user can access is inversely related to the EUP of each user. For
example, Alice has an EUP of 5, Bob has an EUP of 10 and Charlie has an EUP of 20. In this case,
Alice will be able to access twice as many resources as Bob, who can access twice as many as
Charlie. However, if a user does not consume the full amount of resources they have been allocated,
the remainder will be redistributed among the remaining users.

There are two settings that can affect EUP when submitting jobs:
Nice users

A nice user gets their RUP raised by a priority factor, which is specified in the configuration file.
This results in a large EUP and subsequently a low priority for access to resources, causing the
job to run as the equivalent of a background job.

Remote Users
In some situations, users from other domains may be able to submit jobs to the local pool. It may
be preferable to treat local users preferentially over remote users. In this case, a remote user
would get their RUP raised by a priority factor, which is specified in the configuration file. This
results in a large EUP and subsequently a low priority for access to resources.

Chapter 5. User Priorities and Negotiation

32

Pre-emption
Priorities are used to ensure that users get an appropriate allocation of resources. MRG Grid can also
pre-empt jobs and reallocate them if conditions change, so that higher priority jobs are continually
pushed further up the queue.

However, too many pre-emptions can lead to a condition known as thrashing, where a new job
with a higher priority is identified every cycle. In this situation, every job gets pre-empted and
no job has a chance to finish. To avoid thrashing, conditions for pre-emption can be set using
the PREEMPTION_REQUIREMENTS setting in the configuration file. Set this variable to deny pre-
emption when the current job has been running for a relatively short period of time. This limits
the number of pre-emptions per resource, per time period. There is more information about the
PREEMPTION_REQUIREMENTS setting in Chapter 2, Configuration.

Negotiation
MRG Grid uses negotiation to match jobs with the resources capable of running them. The
condor_negotiator daemon is responsible for negotiation.

Negotiation occurs in cycles. During a negotiation cycle, the condor_negotiator daemon performs
the following actions, in this order:
1. Construct a list of all possible resources in the pool

2. Obtain a list of all job submitters in the pool

3. Sort the list of job submitters based on EUP, with the highest priority user (lowest EUP) at the top
of the list, and the lowest at the bottom.

4. Continue to perform all four steps until there are either no more resources to match, or no more
jobs to match.

Once the condor_negotiator daemon has finished the initial actions, it will list every job for
each submitter, in EUP order. Since jobs can be submitted from more than one machine, there is
further sorting. When the jobs all come from a single machine, they are sorted in order of job priority.
Otherwise, all the jobs from a single machine are sorted before sorting the jobs from the next machine.

In order to find matches, condor_negotiator will perform the following tasks for each machine in
the pool that can execute jobs:
1. If machine.requirements is false or job.requirements is false, ignore the machine

2. If the machine is in the Claimed state, but not running a job, ignore the machine

3. If the machine is not running a job, add it to the potential match list with a reason of No
Preemption

4. If the machine is running a job:
a. If the machine.RANK on the submitted job is higher than that of the running job, add this

machine to the potential match list with a reason of Rank

b. If the EUP of the submitted job is better than the EUP of the running job,
PREEMPTION_REQUIREMENTS is true, and the machine.RANK on the submitted job is higher
than the running job, add this machine to the potential match list with a reason of Priority

The potential match list is sorted by:
1. NEGOTIATOR_PRE_JOB_RANK

33

2. job.RANK

3. NEGOTIATOR_POST_JOB_RANK

4. Reason for claim

• No Preemption

• Rank

• Priority

5. PREEMPTION_RANK

The job is then assigned to the top machine on the potential match list. That machine is then removed
from the list of resources available in this negotiation cycle and the daemon goes on to find a match
for the next job.

Cluster Considerations
If a cluster has multiple jobs and one of them cannot be matched, no other jobs in that cluster will be
returned during the current negotiation cycle. This is based on an assumption that all the jobs in a
cluster will be similar. The configuration variable NEGOTIATE_ALL_JOBS_IN_CLUSTER can be used
to disable this behaviour. The definition of what makes up a cluster can be modified by use of the
SIGNIFICANT_ATTRIBUTES setting.

Group Accounting
MRG Grid keeps a running tally of resource use. This accounting information is used to calculate
priorities for the scheduling algorithms. Accounting is done on a per-user basis by default, but can also
be on a per-group basis. When done on a per-group basis, any jobs submitted by the same group will
be treated with the same priority.

When a job is submitted, the user can include an attribute that defines the accounting group. For
example, the following line in a job's submit description file indicates that the job is part of the
group_physics accounting group:

+AccountingGroup = "group_physics"

Example 5.1. Submit description file entry when using accounting groups

The value for the AccountingGroup attribute is a string. It must be enclosed in double quotation
marks and can contain a maximum of 40 characters. The name should not be qualified with a domain,
as parts of the system will add the $(UID_DOMAIN) to the string. For example, the statistics for this
accounting group might be displayed as follows:

User Name EUP
------------------------------ ---------
group_physics@example.com 0.50
mcurie@example.com 23.11
pvonlenard@example.com 111.13
...

Example 5.2. Accounting group statistics, showing the appending of the fully qualified domain

Chapter 5. User Priorities and Negotiation

34

Condor normally removes entities automatically when they are no longer relevant, however
administrators can also remove accounting groups manually, using the -delete option with the
condor_userprio daemon. This action will only work if all jobs have already been removed from the
accounting group, and the group is identified by its fully-qualified name. For example:

$ condor_userprio -delete group_physics@example.com

Example 5.3. Manually removing accounting groups

Group Quotas
In some cases, priorities based on each individual user might not be effective. Group quotas affect the
negotiation for available resources within the pool. This may be the case when different groups own
different amounts of resources, and the groups choose to combine their resources to form a pool. For
example:

The physics department owns twenty workstations, and the chemistry department owns ten
workstations. They have combined their resources to form a pool of thirty similar machines. The
physics department wants priority on any twenty of the workstations. Likewise, the chemistry
department wants priority on any ten workstations.

By creating group quotas, users are allocated not to specific machines, but to numbers of machines
(a quota). Given thirty similar machines, group quotas allow the users within the physics group to
have preference on up to twenty of the machines within the pool, and the machines can be any of the
machines that are currently available.

Example 5.4. An effective use of group quotas

In order to set group quotas, the group must be identified in the job's submit description file, using the
AccountingGroup attribute. Members of a group quota are called group users. When specifying a
group user, you will need to include the name of the group, as well the username, using the following
syntax:

+AccountingGroup = "group.user"

For example, if the user mcurie of the group_physics group was submitting a job in a pool that
implements group quotas, the submit description file would be:

+AccountingGroup = "group_physics.mcurie"

Example 5.5. Submit description file entry when using group quotas

Group names are not case-sensitive and do not require the group_ prefix. However, in order to avoid
conflicts, group names must be different to user names. Adding the group_ prefix to group names
ensures against conflicts.

Quotas are configured in terms of slots per group. The combined quotas for all groups must be equal
to or less than the amount of available slots in the pool. Any slots that are not allocated as part of a
group quota are allocated to the none group. The none group contains only those users who do not
submit jobs as part of a group.

35

Changes caused by group quotas to accounting and negotiation
When using group quotas, some changes occur in how accounting and negotiation are processed.

For jobs submitted by group users, accounting is performed per group user, rather than per group or
individual user.

Negotiation is performed differently when group quotas are used. Instead of negotiating in the order
described in Negotiation, the condor_negotiator daemon will create a list of all jobs belonging to
defined groups before it lists those jobs submitted by individual submitters. If there is more than one
group in the negotiation cycle, the daemon will negotiate for the group using the smallest percentage
of resources first, and the highest percentage last. However, the same algorithm still applies to
individual submitters.

Managing configuration for group quotas
Configuring a pool can be slightly different when using group quotas. Each group can be assigned
an initial value for user priority with the GROUP_PRIO_FACTOR_ setting. Additionally, if a group is
currently allocated the entire quota of machines, and a group user has a submitted job that is not
running, the GROUP_AUTOREGROUP_ setting, if true, will allow the job to considered again within the
same negotiation cycle, along with the individual users jobs.

• GROUP_NAMES = group_physics, group_chemistry

• GROUP_QUOTA_group_physics = 20

• GROUP_QUOTA_group_chemistry = 10

• GROUP_PRIO_FACTOR_group_physics = 1.0

• GROUP_PRIO_FACTOR_group_chemistry = 3.0

• GROUP_AUTOREGROUP_group_physics = FALSE

• GROUP_AUTOREGROUP_group_chemistry = TRUE

In this example, the physics group can access 20 machines and the chemistry group can access ten
machines. The initial priority factor for users within the groups are 1.0 for the physics group and 3.0 for
the chemistry group. The GROUP_AUTOREGROUP_ settings indicate that the physics group will never
be able to access more than 20 machines, while the chemistry group could potentially get more than
ten machines.

Example 5.6. Example configuration for group quotas

Job Priority
In addition to user priorities, it is also possible to specify job priorities to control the order of job
execution. Jobs can be assigned a priority level, of any integer, through the use of the condor_prio
command. Jobs with a higher number will run with a higher priority. Job priority works only on a per
user basis. It is effective when used by a single user to order their own jobs, but will not impact the
order in which they run with other jobs in the pool.

1. To find out what jobs are currently running, use the condor_q with the name of the user to query:

$ condor_q user

Chapter 5. User Priorities and Negotiation

36

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> :
 froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 126.0 user 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

2. Job priority can be any integer. The default priority is 0. To change the priority use the
condor_prio with the desired priority:

$ condor_prio -p -15 126.0

3. To check that the changes have been made, use the condor_q command again:

$ condor_q user
-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> :
 froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 126.0 user 4/11 15:06 0+00:00:00 I -15 0.3 hello

 1 jobs; 1 idle, 0 running, 0 held

Chapter 6.

37

ClassAds
Job submission is simplified through the use of ClassAds. ClassAds are used to advertise the
attributes of individual jobs and each slot on a machine. MRG Grid then uses the ClassAds to match
jobs to slots.

Note
Slots are the logical equivalent of the physical cores on a machine. For example, a quad-
core workstation would have four slots - with each slot being a dedicated allocation of
memory (note however that hyperthreading will generally double the amount of slots
available - a quad-core machine with hyperthreading would have eight slots).

ClassAds for slots advertise information such as:
• available RAM

• CPU type and speed

• virtual memory size

• current load average

Slots also advertise information about the conditions under which it is willing to run a job, and what
type of job it would prefer. Additionally, machines can specify which jobs they would prefer to run. All
this information is held by the ClassAd.

ClassAds for jobs advertise the type of machine they need to execute the job. For example, a job may
require a minimum of 128MB of RAM, but would ideally like 512MB. This information is listed in the
jobs ClassAd and slots that meet those requirements will be ranked for matching.

MRG Grid continuously reads all the ClassAds, ranking and matching jobs and slots. All requirements
for both sets of ClassAds must be fulfilled before a match is made. ClassAds are generated
automatically by the condor_submit daemon, but can also be manually constructed and edited.

This example uses the condor_status command to view ClassAds information from the machines
available in the pool.

$ condor_status

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

adriana.cs x86_64 LINUX Claimed Busy 1.000 64 0+01:10:00
alfred.cs. x86_64 LINUX Claimed Busy 1.000 64 0+00:40:00
amul.cs.wi x86_64 LINUX Owner Idle 1.000 128 0+06:20:04
anfrom.cs. x86_64 LINUX Claimed Busy 1.000 32 0+05:16:22
anthrax.cs x86_64 LINUX Claimed Busy 0.285 64 0+00:00:00
astro.cs.w x86_64 LINUX Claimed Busy 0.949 64 0+05:30:00
aura.cs.wi x86_64 LINUX Owner Idle 1.043 128 0+14:40:15

Example 6.1. Using condor_status to view ClassAds

Chapter 6. ClassAds

38

The condor_status command has options that can be used to view the data in different ways. The
most common options are:

condor_status -available

Shows only those machines that are currently available to run jobs.

condor_status -run

Shows only those machines that are currently running jobs.

condor_status -l

Lists the ClassAds for all machines in the pool.

Note
Use $ man condor_status for a complete list of options.

Constraints and preferences
Constraints and preferences for jobs are specified in the submit description file using requirements
and rank expressions. For machines, this information is determined by the configuration.

The rank expression is used by a job to specify which requirements to use to rank potential machine
matches.

This example uses the rank expression to specify preferences a job has for a machine.

A job ClassAd might contain the following expressions:

Requirements = Arch=="x86_64" && OpSys == "LINUX"
Rank = TARGET.Memory + TARGET.Mips

In this case, the job requires an computer running a 64 bit Linux operating system. Among all such
computers, the job prefers those with large physical memories and high MIPS (Millions of Instructions
Per Second) ratings.

Example 6.2. Using the rank expression to set constraints and preferences for jobs

Any desired attribute can be specified for the rank expression. The condor_negotiator daemon
will satisfy the required attributes first, then deliver the best resource available by matching the rank
expression.

A machine may also specify constraints and preferences for the jobs that it will run.

39

This example using the machine configuration to set constraints and preferences a machine has for a
job

A machine's configuration might contain the following:

Friend = Owner == "tannenba" || Owner == "wright"
ResearchGroup = Owner == "jbasney" || Owner == "raman"
Trusted = Owner != "rival" && Owner != "riffraff"
START = Trusted && (ResearchGroup || LoadAvg < 0.3 &&
KeyboardIdle > 15*60)
RANK = Friend + ResearchGroup*10

This machine will always run a job submitted by members of the ResearchGroup but will never run
jobs owned by users rival and riffraff. Jobs submitted by Friends are preferred to foreign
jobs, and jobs submitted by the ResearchGroup are preferred to jobs submitted by Friends.

Example 6.3. Using machine configuration to set constraints and preferences

Querying ClassAd expressions
ClassAds can be queried from the shell prompt with the condor_status and condor_q tools. Some
common examples are shown here:

Note
Use $ man condor_status and $ man condor_q for a complete list of options.

Chapter 6. ClassAds

40

This example finds all computers that have mmore than 100MB of memory and their keyboard idle for
longer than 20 minutes

$ condor_status -constraint 'KeyboardIdle > 20*60 && Memory > 100'

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

amul.cs.wi x86_64 LINUX Claimed Busy 1.000 128 0+03:45:01
aura.cs.wi x86_64 LINUX Claimed Busy 1.000 128 0+00:15:01
balder.cs. x86_64 LINUX Claimed Busy 1.000 1024 0+01:05:00
beatrice.c x86_64 LINUX Claimed Busy 1.000 128 0+01:30:02
[output truncated]

 Machines Owner Claimed Unclaimed Matched Preempting

x86_64/LINUX 3 0 3 0 0 0
x86_64/LINUX 21 0 21 0 0 0
x86_64/LINUX 3 0 3 0 0 0
x86_64/LINUX 1 0 0 1 0 0
x86_64/LINUX 1 0 1 0 0 0

Total 29 0 28 1 0 0

Example 6.4. Using the condor_status command with the -constraint option

Writing ClassAd expressions

41

This example uses a regular expression and a ClassAd function to list specific information.

A file called ad contains ClassAd information:

$ cat ad
MyType = "Generic"
FauxType = "DBMS"
Name = "random-test"
Machine = "f05.cs.wisc.edu"
MyAddress = "<128.105.149.105:34000>"
DaemonStartTime = 1153192799
UpdateSequenceNumber = 1

The condor_advertise daemon is used to insert the generic ClassAd information into the file:

$ condor_advertise UPDATE_AD_GENERIC ad

You can now use condor_status to constrain the search with a regular expression containing a
ClassAd function:

$ condor_status -any -constraint 'FauxType=="DBMS" && regexp("random.*",
 Name, "i")'

MyType TargetType Name

Generic None random-test

Job queues can also be queried in the same way.

Example 6.5. Using a regex and a ClassAd function to list information

6.1. Writing ClassAd expressions
The primary purpose of a ClassAd is to make matches, where the possible matches contain
constraints. To achieve this, the ClassAd mechanism will continuously carry out expression
evaluations, where two ClassAds test each other for a potential match. This is performed by the
condor_negotiator daemon. This section examines the semantics of evaluating constraints.

A ClassAd contains a set of attributes, which are unique names associated with expressions.

MyType = "Machine"
TargetType = "Job"
Machine = "froth.cs.wisc.edu"
Arch = "x86_64"
OpSys = "LINUX"
Disk = 35882
Memory = 128
KeyboardIdle = 173
LoadAvg = 0.1000
Requirements = TARGET.Owner=="smith" || LoadAvg<=0.3 && KeyboardIdle>15*60

Example 6.6. A typical ClassAd

Chapter 6. ClassAds

42

ClassAd expressions are formed by literals, attributes and other sub-expressions combined with
operators and functions. ClassAd expressions are not statically checked. For this reason, the
expressions UNDEFINED and ERROR are used to identify expressions that contain names of attributes
that have no associated value or that attempt to use values in a way that is inconsistent with their
types.

Literals
Literals represent constant values in expressions. An expression that contains a literal will always
evaluate to the value that the literal represents. The different types of literals are:

Integer
One or more digits (0-9). Additionally, the keyword TRUE represents 1 and FALSE represents 0

Real
Two sequences of continuous digits separated by a . character

String
Zero or more characters enclosed within " characters. A \ character can be used as an escape
character

Undefined
The keyword UNDEFINED represents an attribute that has not been given a value.

Error
The keyword ERROR represents an attribute with a value that is inconsistent with its type, or badly
constructed.

Attributes
Every expression must have a name and a value, together the pair is referred to as an attribute. An
attribute can be referred to in other expressions by its name.

Attribute names are sequences of letters, numbers and underscores. They can not start with a
number. All characters in the name are significant, but they are not case sensitive.

A reference to an attribute must consist of the name of the attribute being refered to. References can
also contain an optional scope resolution prefix of either MY. or TARGET.

The expression evaluation is carried out in the context of two ClassAds, creating a potential for
ambiguities in the name space. The following rules define the semantics of attribute references made
by ClassAd A which is being evaluated in relation to ClassAd B:

If the reference contains a scope resolution prefix:

• If the prefix is MY. the attribute will be looked up in ClassAd A. If the attribute exists in ClassAd
A, the value of the reference becomes the value of the expression bound to the attribute name. If the
attribute does not exist in ClassAd A, the value of the reference becomes UNDEFINED

• If the prefix is TARGET. the attribute is looked up in ClassAd B. If the attribute exists in ClassAd
B the value of the reference becomes the value of the expression bound to the attribute name. If the
attribute does not exist in ClassAd B, the value of the reference becomes UNDEFINED

If the reference does not contain a scope resolution prefix:

Writing ClassAd expressions

43

• If the attribute is defined in ClassAd A the value of the reference is the value of the expression
bound to the attribute name in ClassAd A

• If the attribute is defined in ClassAd B the value of the reference is the value of the expression
bound to the attribute name in ClassAd B

• If the attribute is defined in the ClassAd environment, the value from the environment is returned.
This is a special environment, not the standard Unix environment. Currently, the only attribute of the
environment is CurrentTime, which evaluates to the integer value returned by the system call
time(2)

• If the attribute is not defined in any of the above locations, the value of the reference becomes
UNDEFINED

If the reference refers to an expression that is itself in the process of being evaluated, it will cause a
circular dependency. In thise case, the value of the reference becomes ERROR

Operators
The unary negation operator of - takes the highest precedence in a string. In order, operators take the
following precedence:
1. - (unary negation)

2. * and /

3. + (addition) and - (subtraction)

4. < <= >= and >

5. == != =?= and =!=

6. &&

7. ||

The different types of operators are:

Arithmetic operators
The operators * / + and - operate arithmetically on integers and real literals

Arithmetic is carried out in the same type as both operands. If one operand is an integer and the
other real, the type will be promoted from integer to real

Operators are strict with respect to both UNDEFINED and ERROR

If one or both of the operands are not numerical, the value of the operation is ERROR

Comparison operators
The comparison operators == != <= < >= and > operate on integers, reals and strings

The operators =?= and =!= behave similarly to == and !=, but are not strict. Semantically, =?=
tests if its operands have the same type and the same value. For example, 10 == UNDEFINED
and UNDEFINED == UNDEFINED both evaluate to UNDEFINED, but 10 =?= UNDEFINED will
evaluate to FALSE and UNDEFINED =?= UNDEFINED will evaluate to TRUE. The =!= operator
tests for not identical conditions

Chapter 6. ClassAds

44

String comparisons are case insensitive for most operators. The only exceptions are the operators
=?= and =!= which perform case sensitive comparisons when both sides are strings

Comparisons are carried out in the same type as both operands. If one operand is an integer and
the other real, the type will be promoted from integer to real

Strings can not be converted to any other type, so comparing a string and an integer or a string
and a real results in ERROR

The operators == != <= < and >= > are strict with respect to both UNDEFINED and ERROR

Logical operators
The logical operators && and || operate on integers and reals. The zero value of these types are
considered FALSE and non-zero values TRUE

Logical operators are not strict, and exploit the "don't care" properties of the operators to eliminate
UNDEFINED and ERROR values when possible. For example, UNDEFINED && FALSE evaluates to
FALSE, but UNDEFINED || FALSE evaluates to UNDEFINED

Any string operand is equivalent to an ERROR operand for a logical operator. For example TRUE
&& "string" evaluates to ERROR

Pre-defined functions
ClassAd expressions can use predefined functions. Function names are not case sensitive. Function
calls can also be nested or recursive.

This is a complete list of predefined functions. The format of each function is:

ReturnType
 FunctionName(ParameterType1 parameter1, ParameterType2 parameter2, ...)

The possible types are as listed in Literals. If the function can be any of these literal types, it is
described as AnyType. Where the type is Integer, but only returns the value 1 or 0 (True or
False), it is described as Boolean. Optional parameters are given in square brackets.

AnyType ifThenElse(AnyType IfExpr,AnyType ThenExpr, AnyType ElseExpr)
A conditional expression.

When IfExpr evaluates to true, return the value as given by ThenExpr

When false, return the value as given by ElseExpr

When UNDEFINED, return the value UNDEFINED

When ERROR, return the value ERROR

When IfExpr evaluates to 0.0, return the value as given by ElseExpr

When IfExpr evaluates to a non-0.0 or Real value, return the value as given by ThenExpr

When IfExpr evaluates to give a value of type String, return the value ERROR

Expressions are only evaluated as defined

If a number of arguments other than three are given, the function will return ERROR

Writing ClassAd expressions

45

Boolean isUndefined(AnyType Expr)
Returns True if Expr evaluates to UNDEFINED. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Boolean isError(AnyType Expr)
Returns True, if Expr evaluates to ERROR. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Boolean isString(AnyType Expr)
Returns True if Expr gives a value of type String. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Boolean isInteger(AnyType Expr)
Returns True, if Expr gives a value of type Integer. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Boolean isReal(AnyType Expr)
Returns True if Expr gives a value of type Real. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Boolean isBoolean(AnyType Expr)
Returns True, if Expr returns an integer value of 1 or 0. Otherwise, returns False

If a number of arguments other than one is given, the function will return ERROR

Integer int(AnyType Expr)
Returns the integer value as defined by Expr

Where the type of the evaluated Expr is Real the value is rounded down to an integer

Where the type of the evaluated Expr is String the string is converted to an integer using a C-
like atoi() function. If the result is not an integer, ERROR is returned

Where the evaluated Expr is ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

Real real(AnyType Expr)
Returns the real value as defined by Expr

Where the type of the evaluated Expr is Integer the return value is the converted integer

Where the type of the evaluated Expr is String the string is converted to a real value using a C-
like atof() function. If the result is not real ERROR is returned

Where the evaluated Expr is ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

String string(AnyType Expr)
Returns the string that results from the evaluation of Expr

Chapter 6. ClassAds

46

A non-string value will be converted to a string

Where the evaluated Expr is ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

Integer floor(AnyType Expr)
When the type of the evaluated Expr is Integer, returns the integer that results from the
evaluation of Expr

When the type of the evaluated Expr is anything other than Integer, function real(Expr) is
called. Its return value is then used to return the largest integer that is not higher than the returned
value

Where the Real(Expr) returns ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

Integer ceiling(AnyType Expr)
When the type of the evaluated Expr is Integer, returns the integer that results from the
evaluation of Expr

When the type of the evaluated Expr is anything other than Integer, function real(Expr) is
called. Its return value is then used to return the smallest integer that is not less than the returned
value

Where the Real(Expr) returns ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

Integer round(AnyType Expr)
When the type of the evaluated Expr is Integer, returns the integer that results from the
evaluation of Expr

When the type of the evaluated Expr is anything other than Integer, function real(Expr)
is called. Its return value is then used to return the integer that results from a round-to-nearest
rounding method. The nearest integer value to the return value is returned, except in the case
of the value at the exact midpoint between two values. In this case, the even valued integer is
returned

Where the Real(Expr) returns ERROR or UNDEFINED, or the integer does not fit into 32 bits
ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

Integer random([AnyType Expr])
When the type of the optional argument Expr evaluates to Integer or Real, the return value is
the integer or real r randomly chosen from the interval 0 <= r < x

With no argument, the return value is chosen with random(1.0)

In all other cases, the function will return ERROR

If a number of arguments other than one is given, the function will return ERROR

Writing ClassAd expressions

47

String strcat(AnyType Expr1 [, AnyType Expr2 ...])
Returns the string which is the concatenation of all arguments, where all arguments are converted
to type String by function string(Expr)

If any argument evaluates to ERROR or UNDEFINED, ERROR is returned

String substr(String s, Integer offset [, Integer length])
Returns the substring s, from the position indicated by offset, with optional length characters

The first character within s is at offset 0. If the length argument is not used, the substring
extends to the end of the string

If offset is negative, the value of length - offset is used for offset

If length is negative, an initial substring is computed, from the offset to the end of the string.
Then, the absolute value of length characters are deleted from the right end of the initial substring.
Further, where characters of this resulting substring lie outside the original string, the part that lies
within the original string is returned. If the substring lies completely outside of the original string,
the null string is returned

If a number of arguments other than either two or three is given, the function will return ERROR

Integer strcmp(AnyType Expr1, AnyType Expr2)
Both arguments are converted to type String by string(Expr)

The return value is an integer that will be less than 0 if Expr1 is less than Expr2

The return value will be equal to 0 if Expr1 is equal to Expr2

The return value will be greater than 0 if Expr1 is greater than Expr2

Case is significant in the comparison. Where either argument evaluates to ERROR or UNDEFINED,
ERROR is returned

If a number of arguments other than two is given, the function will return ERROR

Integer stricmp(AnyType Expr1, AnyType Expr2)
This function is the same as the strcmp function, except that letter case is not significant

String toUpper(AnyType Expr)
The argument is converted to type String by the string(Expr)

The return value is a string, with all lower case letters converted to upper case

If the argument evaluates to ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

String toLower(AnyType Expr)
The argument is converted to type String by the string(Expr)

The return value is a string, with all upper case letters converted to lower case

If the argument evaluates to ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

Chapter 6. ClassAds

48

Integer size(AnyType Expr)
Returns the number of characters in the string, after calling the string(Expr) function

If the argument evaluates to ERROR or UNDEFINED, ERROR is returned

If a number of arguments other than one is given, the function will return ERROR

The following functions contain string lists. String delimiters are used to define how the string list
should be read. The characters in the string delimiter define the characters used to separate the
elements within the string list.

This example uses the stringListSize function to demonstrate how a string delimiter of ", |" (a
comma, followed by a space character, followed by a pipe) operates.

The function is given as follows:

StringListSize("1,2 3|4&5", ", |")

Firstly, the string is broken up according to the first delimiter - the comma character - resulting in the
following two elements:

"1" and "2 3|4&5"

Now perform the same process, using the second delimiter - the space character - resulting in three
elements:

"1", "2" and "3|4&5"

Finally, apply the third delimiter - the pipe character - resulting in a total of four elements:

"1", "2", "3" and "4&5"

Note that because the & character is not defined as a delimiter, the final group ("4&5") is considered
only one element

Example 6.7. Using a string delimiter of ", |" with string lists

Note
The string delimiter is optional in the following functions. If no string delimiter
is defined, the default string delimiter of " ," (a space character, followed by a comma) is
used.

Integer stringListSize(String list [, String delimiter])
Returns the number of elements in the String list, as delimited by the String delimiter

If one or both of the arguments is not a string, returns ERROR

If a number of arguments other than one is given, the function will return ERROR

Integer stringListSum(String list [, String delimiter]) OR Real stringListSum(String
list [, String delimiter])

Returns the sum of all items in the String list, as delimited by the String delimiter

Writing ClassAd expressions

49

If all items in the list are integers, the return value is also an integer. If any item in the list is a real
value, the return value is real

If any item is not either an integer or real value, the return value is ERROR

Real stringListAve(String list [, String delimiter])
Sums and returns the real-valued average of all items in the String list, as delimited by the
String delimiter

If any item is neither an integer nor a real value, the return value is ERROR

A list containing no items returns the value 0.0

Integer stringListMin(String list [, String delimiter]) OR Real stringListMin(String list
[, String delimiter])

Returns the minimum value from all items in the String list, as delimited by the String
delimiter

If all items in the list are integers, the return value is also an integer. If any item in the list is a real
value, the return value is a real

If any item is neither an integer nor a real value, the return value is ERROR

A list containing no items returns the value UNDEFINED

Integer stringListMax(String list [, String delimiter]) OR Real stringListMax(String
list [, String delimiter])

Returns the maximum value from all items in the String list, as delimited by the String
delimiter

If all items in the list are integers, the return value is also an integer. If any item in the list is a real
value, the return value is a real

If any item is neither an integer nor a real value, the return value is ERROR

A list containing no items returns the value UNDEFINED

Boolean stringListMember(String x, String list [, String delimiter])
Returns TRUE if item x is in the string list, as delimited by the String delimiter

Returns FALSE if item x is not in the string list

Comparison is performed with the strcmp() function

If the arguments are not strings, the return value is ERROR

Boolean stringListIMember(String x, String list [, String delimiter])
This function is the same as the stringListMember function, except that the comparison is
done with the stricmp() function, so letter case is not significant

The following functions contain a regular expression (regex) and an options argument. The options
argument is a string of special characters that modify the use of the regex. The only accepted options
are:

Option Description

I or i Ignore letter case

Chapter 6. ClassAds

50

Option Description

M or m Modifies the interpretation of the carat (^) and
dollar sign ($) characters, so that ^ matches
the start of a string, as well as after each new
line character and $ matches before a new line
character

S or s Modifies the interpretation of the period (.)
character to match any character, including the
new line character.

X or x Ignore white space and comments within the
pattern. A comment is defined by starting with
the # character, and continuing until the new line
character.

Table 6.1. Options for use in functions

Note
For a complete list of regular expressions visit the PCRE Library1

Boolean regexp(String pattern, String target [, String options])
Returns TRUE if the String target is a regular expression as described by pattern. Otherwise
returns FALSE

If any argument is not a String, or if pattern does not describe a valid regular expression,
returns ERROR

String regexps(String pattern, String target, String substitute, [String options])
The regular expression pattern is applied to target. If the String target is a regular
expression as described by pattern, the String substitute is returned, with backslash
expansion performed

If any argument is not a String returns ERROR

Boolean stringListRegexpMember(String pattern, String list [, String delimiter] [,
String options])

Returns TRUE if any of the strings within the list is a regular expression as described by pattern.
Otherwise returns FALSE

If any argument is not a String, or if pattern does not describe a valid regular expression,
returns ERROR

To include the optional fourth argument options, a third argument of String delimiter is
required. If a specific delimiter is not specified, the default value of " ," (a space character
followed by a comma) will be used

Integer time()
Returns the current Unix epoch time, which is equal to the ClassAd attribute CurrentTime. This
is the time, in seconds, since midnight on January 1, 1970

http://www.pcre.org

Writing ClassAd expressions

51

String interval(Integer seconds)
Uses seconds to return a string in the form of days+hh:mm:ss representing an interval of time.
Leading values of zero are omitted from the string

52

Chapter 7.

53

Policy Configuration
Machines in a pool can be configured through the condor_startd daemon to implement policies
that perform actions such as:
• Start a remote job

• Suspend a job

• Resume a job

• Create a checkpoint and vacate a job

• Kill a job without creating a checkpoint

Policy configuration is the at the heart of the balancing act between the needs and wishes of machine
owners and job submitters. This section will outline how to adjust the policy configuration for machines
in your pool.

Note
If you are configuring the policy for a machine with multiple cores, and therefore multiple
slots, each slot will have its own individual policy expressions. In this case, the word
machine refers to a single slot, not to the machine as a whole.

This chapter assumes you know and understand ClassAd expressions. Ensure that you have read
Chapter 6, ClassAds before you begin.

7.1. Machine states and transitioning
Every machine is assigned a state, which changes as machines become available to run jobs. The six
possible states are:

Owner
The machine is not available to run jobs. This state normally occurs when the machine is being
used by the owner. Additionally, machines begin in this state when they are first turned on

Unclaimed
The machine is available to run jobs, but is not currently doing so

Matched
The machine has been matched to a job by the negotiator, but the job has not claimed the
machine

Claimed
The machine has been claimed by a job. The job may be currently executing, or waiting to begin
execution

Preempting
The machine was claimed, but is now being pre-empted. This state is used to evict a running
job from a machine, so that a new job can be started. This can happen for one of the following
reasons:
• The owner has started using the machine

Chapter 7. Policy Configuration

54

• Jobs with a higher priority are waiting to run

• Another request that this resource would rather serve was found

Backfill
The machine is running a backfill computation while waiting for either the machine owner to return
or to be matched with a job. This state is only entered if the machine is specifically configured for
backfill jobs

The following diagram demonstrates the machine states (with the exception of Backfill which is
further described below) and the possible transitions between them.

Possible transitions between machine states
Owner to Unclaimed

This transition occurs when the machine becomes available to run a job. This occurs when the
START expression evaluates to TRUE.

Unclaimed to Owner
This transition occurs when the machine is in use and therefore not available to run jobs. This
occurs when the START expression evaluates to FALSE.

Unclaimed to Matched
This transition occurs when the resource is matched with a job.

Unclaimed to Claimed
This transition occurs if condor_schedd initiates the claiming procedure before the
condor_startd receives notification of the match from the condor_negotiator.

Unclaimed to Backfill
This transition occurs only if the machine is configured to run backfill computations and the
START_BACKFILL expression evaluates to TRUE.

Matched to Owner
This transition occurs if:
• the machine is no longer available to run jobs. This happens when the START expression

evaluates to FALSE.

• the MATCH_TIMEOUT timer expires. This occurs when a machine has been matched but not
claimed. The machine will eventually give up on the match and become available for a new
match.

• condor_schedd has attempted to claim the machine but encountered an error.

• condor_startd receives a condor_vacate command while it is in the Matched state.

Matched to Claimed
This transition occurs when the machine is successfully claimed and the job is running.

Claimed to Pre-empting
From the Claimed state, the only possible destination is the Pre-empting state. This transition
can be caused when:

Machine states and transitioning

55

• The job that has claimed the machine has completed and releases the machine

• The resource is in use. In this case, the PREEMPT expression evaluates to TRUE

• condor_startd receives a condor_vacate command.

• condor_startd is instructed to shut down.

• The machine is matched to a job with a higher priority than than the currently running job.

Pre-empting to Claimed
This transition occurs when the resource is matched to a job with a better priority.

Pre-empting to Owner
This transition occurs if:
• the PREEMPT expression evaluated to TRUE while the machine was in the Claimed state

• condor_startd receives a condor_vacate command

• if the START expression evalutes to FALSE and the job it was running had finished being evicted
when it entered the Pre-empting state.

Backfill to Owner
This transition occurs if:
• The EVICT_BACKFILL expression evalutes to TRUE

• condor_startd receives a condor_vacate command

• condor_startd is instructed to shut down.

Backfill to Matched
This transition occurs when a resource running a backfill computation is matched with a
condor_schedd that wants to run a job.

Backfill to Claimed
This transition occurs if the condor_schedd completes the claiming protocol before the
condor_startd receives notification of the match from the condor_negotiator.

Machine Activities
While a machine is in a particular state, it will also be performing an activity. The possible activities
are:

• Idle

• Benchmarking

• Busy

• Suspended

• Retiring

• Vacating

• Killing

Chapter 7. Policy Configuration

56

Each of these activities has a slightly different meaning, depending on which state they occur in. This
list explains each of the possible activities for a machine in different states:

• Owner

• Idle: This is the only possible activity for a machine in the Owner state. It indicates that the
machine is not currently performing any work for MRG Grid, even though it may be working on
other unrelated tasks.

• Unclaimed

• Idle: This is the normal activity for machines in the Unclaimed state. The machine is available
to run MRG Grid tasks, but is not currently doing so.

• Benchmarking: This activity only occurs in the Unclaimed state. It indicates that benchmarks
are being run to determine the speed of the machine. How often this activity occurs can be
adjusted by changing the RunBenchmarks configuration variable.

• Matched

• Idle: Although the machine is matched, it is still considered Idle, as it is not currently running a
job.

• Claimed

• Idle: The machine has been claimed, but the condor_starter daemon, and therefore the job,
has not yet been started. The machine will briefly return to this state when the job finishes.

• Busy: The condor_starter daemon has started and the job is running.

• Suspended: The job has been suspended. The claim is still valid, but the job is not making any
progress and MRG Grid is not currently generating a load on the machine.

• Retiring: When an active claim is about to be pre-empted, it enters retirement while it waits
for the current job to finish. The MaxJobRetirementTime configuration variable determines
how long to wait. Once the job finishes or the retirement time expires, the Preempting state is
entered.

• Preempting

• Vacating: The job that was running is checkpointing, so it can exit gracefully.

• Killing: The machine has requested the currently running job to exit immediately, without
checkpointing.

• Backfill

• Idle: The machine is ready to run a backfill job, but it has not yet started the backfill manager.

• Busy: The machine is performing a backfill computation.

• Killing: The machine is killing a backfill job to either return the resource to the owner, or to
make room for a MRG Grid job.

The condor_startd daemon

57

7.2. The condor_startd daemon
This section discusses the condor_startd daemon. This daemon evaluates a number of
expressions in order to determine when to transition between states and activities. The most important
expressions are explained here.

The condor_startd daemon represents the machine or slot on which it is running. This daemon
is responsible for publishing characteristics about the machine in the machine's ClassAd. To see the
values for the attributes, run condor_status -l hostname from the shell prompt. On a machine
with more than one slot, the condor_startd will regard the machine as separate slots, each with its
own name and ClassAd.

Normally, the condor_negotiator evaluates expressions in the machine ClassAd against job
ClassAds to see if there is a match. By locally evaluating an expression, the machine only evaluates
the expression against its own ClassAd. If the expression references parameters that can only
be found in another ClassAd, then the expression can not be locally evaluated. In this case, the
expression will usually evaluate locally to UNDEFINED.

The START expression
The most important expression to the condor_startd daemon is the START expression. This
expression describes the conditions that must be met for a machine to run a job. This expression can
reference attributes in the machine ClassAd - such as KeyboardIdle and LoadAvg - and attributes
in a job ClassAd - such as Owner, Imagesize and Cmd (the name of the executable the job will
run). The value of the START expression plays a crucial role in determining the state and activity of a
machine.

The machine locally evaluates the IsOwner expression to determine if it is capable of running
jobs. The default IsOwner expression is a function of the START expression, so that START =?
= FALSE. Any job ClassAd attributes appearing in the START expression, and subsequently in the
IsOwner expression, are undefined in this context, and may lead to unexpected behavior. If the
START expression is modified to reference job ClassAd attributes, the IsOwner expression should
also be modified to reference only machine ClassAd attributes.

The REQUIREMENTS expression
The REQUIREMENTS expression is used for matching machines with jobs. When a machine is
unavailable for further matches, the REQUIREMENTS expression is set to FALSE. When the START
expression locally evaluates to TRUE, the machine advertises the REQUIREMENTS expression as TRUE
and does not publish the START expression.

The RANK expression
A machine can be configured to prefer certain jobs over others, through the use of the RANK
expression in the machine ClassAd. It can reference any attribute found in either the machine ClassAd
or a job ClassAd. The most common use of this expression is to configure a machine so that it prefers
to run jobs from the owner of that machine. Similarly, it is often used for a group of machines to prefer
jobs submitted by the owners of those machines.

Chapter 7. Policy Configuration

58

This example demonstrates a simple application of the RANK expression

In this example there is a small research group consisting of four machines and four owners:
• The machine called tenorsax is owned by the user coltrane

• The machine called piano is owned by the user tyner

• The machine called bass is owned by the user garrison

• The machine called drums is owned by the user jones

To implement a policy that gives priority to the machines in this research group, set the RANK
expression to reference the Owner attribute, where it matches one of the people in the group:

RANK = Owner == "coltrane" || Owner == "tyner" \
|| Owner == "garrison" || Owner == "jones"

Boolean expressions evaluate to either 1 or 0 (TRUE or FALSE). In this case, if the remote job is
owned by one of the preferred users, the RANK expression will evaluate to 1. If the remote job is
owned by any other user, it would evaluate to 0. The RANK expression is evaluated as a floating point
number, so it will prefer the group users because it evaluates to a higher number.

Example 7.1. A simple application of the RANK expression in the machine ClassAd

This example demonstrates a more complex application of the RANK expression. It uses the same
basic scenario as Example 7.1, “A simple application of the RANK expression in the machine ClassAd”,
but gives the owner a higher priority on their own machine.

This example is on the machine called bass, which is owned by the user garrison. The following
entry would need to be included in the local configuration file called bass.local on that machine:

RANK = (Owner == "coltrane") + (Owner == "tyner") \
+ ((Owner == "garrison") * 10) + (Owner == "jones")

The parentheses in this expression are essential, because the + operator has higher default
precedence than ==. Using + instead of || allows the system to match some terms and not others.

If a user not in the research group is running a job on the machine called bass, the RANK expression
will evaluate to 0, as all of the boolean terms evaluate to 0. If the user jones submits a job, his job
would match this machine and the RANK expression will evaluate to 1. Therefore, the the job submitted
by jones would pre-empt the running job. If the user garrison (the owner of the machine) later
submits a job, the RANK expression will evaluate to 10 because the boolean that matches Jimmy
gets multiplied by 10. In this case, the job submitted by garrison will pre-empt the job submitted by
jones.

Example 7.2. A more complex application of the RANK expression in the machine ClassAd

The RANK expression can reference parameters other than Owner. If one machine has an enormous
amount of memory and other do not have much at all, the RANK expression can be used to run jobs
with larger memory requirements on the machine best suited to it, by using RANK = ImageSize. This
preference will always service the largest of the jobs, regardless of which user has submitted them.
Alternatively, a user could specify that their own jobs should run in preference to those with the largest
ImageSize by using RANK = (Owner == "user_name" * 1000000000000) + Imagesize.

Conditions for state and activity transitions

59

7.3. Conditions for state and activity transitions
This section lists all the possible state and activity transitions, with descriptions of the conditions under
which each transition occurs.

Owner state
The Owner state represents a resource that is currently in use and not available to run jobs. When the
startd is first spawned, the machine will enter the Owner state. The machine remains in the Owner
state while the IsOwner expression evaluates to TRUE. If the IsOwner expression is FALSE, then the
machine will transition to Unclaimed, indicating that it is ready to begin accepting jobs.

On a shared resource, the default value for the IsOwner is optimized to START =?= FALSE. This
causes the machine to remain in the Owner state as long as the START expression locally evaluates
to FALSE. If the START expression locally evaluates to TRUE or cannot be locally evaluated (in
which case, it will evaluate to UNDEFINED), the machine will transition to the Unclaimed state. For
dedicated resources, the recommended value for the IsOwner expression is FALSE.

Note
The IsOwner expression should not reference job ClassAd attributes as this would result
in an evaluation of UNDEFINED.

While in the Owner state, the startd polls the status of the machine. The frequency of this is
determined by the UPDATE_INTERVAL configuration variable. The poll performs the following actions:
• Calculates load average

• Checks the access time on files

• Calculates the free swap space

• Notes if the startd has any critical tasks that need to be performed when the machine moves out
of the Owner state

Whenever the machine is not actively running a job, it will transition back to the Owner state. Once a
job is started, the value of IsOwner is no longer relevant and the job will either run to completion or be
preempted.

Unclaimed state
The Unclaimed state represents a resource that is not currently in use by its owner or by MRG Grid.

Possible transitions from the Unclaimed state are:
1. Owner:Idle

2. Matched:Idle

3. Claimed:Idle

4. Backfill:Idle

Chapter 7. Policy Configuration

60

When the condor_negotiator matches a machine with a job, it sends a notification of the match
to each. Normally, the machine will enter the Matched state before progressing to Claimed:Idle.
However, if the job receives the notification and initiates the claiming procedure before the machine
receives the notification, the machine will transition directly to the Claimed:Idle state.

If the machine has been configured to perform backfill jobs it will evaluate the START_BACKFILL
expression. When START_BACKFILL evaluates to TRUE, the machine will enter the Backfill:Idle
state and begin running backfill jobs.

As long as the IsOwner expression is TRUE, the machine is in the Owner State. When the IsOwner
expression is FALSE, the machine goes into the Unclaimed state. If the IsOwner expression is
not present in the configuration files, then the default value is START =?= FALSE. This causes the
machine to transition to the Owner state when the START expression locally evaluates to TRUE.

Effectively, there is very little difference between the Owner and Unclaimed states. The most obvious
difference is how the resources are displayed in condor_status and other reporting tools. The
only other difference is that benchmarking will only be run on a resource that is in the Unclaimed
state. Whether or not benchmarking is run is determined by the RunBenchmarks expression. If
RunBenchmarks evaluates to TRUE while the machine is in the Unclaimed state, then the machine
will transition from the Idle activity to the Benchmarking activity. Benchmarking performs and
records two performance measures:
• MIPS (Millions of Instructions Per Second); and

• KFLOPS (thousands of FLoating-point Operations Per Second).

When the benchmark is complete the machine returns to Idle.

This example runs benchmarking every four hours while the machine is in the Unclaimed state.

A macro called BenchmarkTimer is used in this example, which records the time since the last
benchmark. When this time exceeds four hours, the benchmarks will be run again. A weighted
average is used, so the more frequently the benchmarks run, the more accurate the data will be.

BenchmarkTimer = (CurrentTime - LastBenchmark)
RunBenchmarks = $(BenchmarkTimer) >= (4 * $(HOUR))

Example 7.3. Setting benchmarks in the machine ClassAd

If RunBenchmarks is defined and set to anything other than FALSE, benchmarking will be run as
soon as the machine transitions into the Unclaimed state. To completely disable benchmarks, set
RunBenchmarks to FALSE or remove it from the configuration file.

Matched state
The Matched state occurs when the machine has been matched to a job by the negotiator, but the job
has not yet claimed the machine. Machines are in this state for a very short period before transitioning.

When the machine is matched to a job, the machine will transition into the Claimed:Idle state.
At any time while the machine is in the Matched state, if the START expression locally evaluates to
FALSE the machine will enter the Owner state.

Machines in the Matched state will adjust the START expression so that the requirements evaluate to
FALSE. This is to prevent the machine being matched again before it has been claimed.

Conditions for state and activity transitions

61

The startd will start a timer when a machine transitions into the Matched state. This is to prevent
the machine from staying in the Matched state for too long. The length of the timer can be adjusted
with the MATCH_TIMEOUT configuration variable, which defaults to 120 seconds (2 minutes). If the
job that was matched with the machine does not claim it within this period of time, the machine gives
up, and transitions back into the Owner state. Normally, it would then transition straight back to the
Unclaimed state to wait for a new match.

Claimed state
The Claimed state occurs when the machine has been claimed by a job. It is the most complex state,
with the most possible transitions.

When the machine first enters the Claimed state it is in the Idle activity. If a job has claimed the
machine and the claim will be activated, the machine will transition into the Busy activity and the job
started. If a condor_vacate arrives, or the START expression locally evaluates to FALSE, it will enter
the Retiring activity before transitioning to the Pre-empting state.

While in Claimed:Busy, the startd daemon will evaluate the WANT_SUSPEND expression
to determine which other expression to evaluate. If WANT_SUSPEND evaluates to TRUE, the
startd will evaluate the SUSPEND expression to determine whether or not to transition to
Claimed:Suspended. Alternatively, if WANT_SUSPEND evaluates to FALSE the startd will evaluate
the PREEMPT expression to determine whether or not to skip the Suspended state and move to
Claimed:Retiring before transitioning to the the Preempting state.

While a machine is in the Claimed state, the startd daemon will poll the machine for a change in
state much more frequently than while in other states. The frequency can be adjusted by changing the
POLLING_INTERVAL configuration variable.

The condor_vacate command affects the machine when it is in the Claimed state. There are a
variety of events that may cause the startd daemon to try to suspend or kill a running job. Possible
causes could be:
• The owner has resumed using the machine

• Load from other jobs

• The startd has been instructed to shut down

• The appearance of a higher priority claim to the machine by a different MRG Grid user.

The startd can be configured to handle interruptions in different ways. Activity on the machine could
be ignored, or it could cause the job to be suspended or even killed. Desktop machines can benefit
from a configuration that goes through successively more dramatic actions to remove the job. The
least costly option to the job is to suspend it. If the owner is still using the machine after suspending
the job for a short while, then startd will attempt to vacate the job. Vanilla jobs are sent a soft kill
signal, such as SIGTERM, so that they can gracefully shut down. If the owner wants to resume using
the machine, and vacating can not be completed, the startd will progress to kill the job. Killing is a
quick death to a job. It uses a hard-kill signal that cannot be intercepted by the application. For vanilla
jobs, vacating and killing are equivalent actions.

Pre-empting state
The Pre-empting state is used to evict a running job from a machine, so that a new job can be
started. There are two possible activities while in the Pre-empting state. Which activity the machine
is in is dependent on the value of the WANT_VACATE expression. If WANT_VACATE evaluates to TRUE,

Chapter 7. Policy Configuration

62

the machine will enter the Vacating activity. Alternatively, if WANT_VACATE evaluates to FALSE, the
machine will enter the Killing activity.

The main function of the Pre-empting state is to remove the condor_starter associated with
the job. If the condor_starter associated with a given claim exits while the machine is still in
the Vacating activity, then the job has successfully completed a graceful shutdown. For standard
universe jobs, this means that a checkpoint was saved. For other jobs, it means that the application
was given the opportunity to intercept the soft kill signal.

While in the Pre-empting state the machine advertises its Requirements expression as FALSE, to
signify that it is not available for further matches. This is because it is about to transition to the Owner
state, or because it has already been matched with a job that is currently pre-empting and further
matches are not allowed until the machine has been claimed by the new job.

While the machine is in the Vacating activity, it continually evaluates the KILL expression. As soon
as it evaluates to TRUE, the machine will enter the Killing activity.

When the machine enters the Killing activity it attempts to force the condor_starter to
immediately kill the job. Once the machine has begun to kill the job, the condor_startd starts
a timer. The length of the timer defaults to 30 seconds and can be adjusted by changing the
KILLING_TIMEOUT macro. If the timer expires and the machine is still in the Killing activity, it is
assumed that an error has occured with the condor_starter and the startd will try to vacate the
job immediately by sending SIGKILL to all of the children of the condor_starter and then to the
condor_starter itself.

Once the condor_starter has killed all the processes associated with the job and exited, and once
the schedd that had claimed the machine is notified that the claim is broken, the machine will leave
the Killing activity. If the job was pre-empted because a better match was found, the machine will
enter Claimed:Idle. If the pre-emption was caused by the machine owner, the machine will enter
the Owner state.

Backfill state
The Backfill state is used whenever the machine is performing low priority background tasks.
This state is only used if the machine has been configured to enable backfill computation, if a specific
backfill manager has been installed and configured, and if the machine is not currently being used
interactively or for regular MRG Grid jobs. If the machine meets all these requirements, and the
START_BACKFILL expression evaluates to TRUE, the machine will move from the Unclaimed:Idle
state to Backfill:Idle.

Once a machine is in the Backfill state, it will immediately attempt to spawn the backfill manager
it has been configured to use. Once the backfill manager is running, the machine will enter the Busy
activity to indicate that it is now performing a backfill computation.

On multi-slot machines the condor_startd will only spawn a single instance of the backfill manager,
even if multiple slots are available to run backfill jobs. The first machine to enter Backfill:Idle
will cause the backfill manager to start. If another slot subsequently enters the Backfill state and
a backfill manager is already running the slot will immediately enter the Busy activity without starting
another instance of the backfill manager.

There are several possible events that could cause the the condor_startd to kill the backfill
manager and enter the Killing activity:
• The machine is matched or claimed for a MRG Grid job

• The owner has resumed using the machine

Defining a policy

63

• The machine has received a condor_vacate command

• The condor_startd has been instructed to shut down

Once the backfill manager and all its children have exited the machine will enter the Idle activity.
Whent his occurs, the machine will go into another state, depending on what caused the backfill
manager to be killed.

While the machine is in the Busy activity, if the EVICT_BACKFILL expression evaluates to TRUE and
the backfill manager has been successfully killed, the machine will return to the Owner:Idle. This
will also occur if the backfill manager was killed as a result of the condor_vacate command, or if the
condor_startd is shut down.

7.4. Defining a policy
When a transition occurs, MRG Grid records the time that the new activity or state was entered.
These times can be used to write expressions for customized transitions. To define a policy, set
expressions in the configuration file (see section 3.3 on Configuring Condor for an introduction to
Condor's configuration files). The expressions are evaluated in the context of the machine's ClassAd
and a job ClassAd. The expressions can therefore reference attributes from either ClassAd.

Default macros
The following default macros assist with writing human-readable expressions.

MINUTE

Defaults to 60

HOUR

Defaults to (60 * $(MINUTE))

StateTimer

Amount of time in the current state

Defaults to (CurrentTime - EnteredCurrentState)

ActivityTimer

Amount of time in the current activity

Defaults to (CurrentTime - EnteredCurrentActivity)

ActivationTimer

Amount of time the job has been running on this machine

Defaults to (CurrentTime - JobStart)

NonCondorLoadAvg

The difference between the system load and the MRG Grid load (equates to the load generated by
everything except MRG Grid)

Defaults to (LoadAvg - CondorLoadAvg)

BackgroundLoad

Amount of background load permitted on the machine and still be able to start a job

Chapter 7. Policy Configuration

64

Defaults to 0.3

HighLoad

If the NonCondorLoadAvg goes over this, the CPU is considered too busy, and eviction of the job
should start

Defaults to 0.5

StartIdleTime

Amount of time the keyboard must be idle before starting a job

Defaults to 15 * $(MINUTE)

ContinueIdleTime

Amount of time the keyboard must to be idle before resumption of a suspended job

Defaults to 5 * $(MINUTE)

MaxSuspendTime

Amount of time a job may be suspended before more drastic measures are taken.

Defaults to 10 * $(MINUTE)

MaxVacateTime

Amount of time a job may spend attempting to checkpoint before giving up and killing it

Defaults to 10 * $(MINUTE)

KeyboardBusy

A boolean expression that evaluates to TRUE when the keyboard is being used

Defaults to KeyboardIdle < $(MINUTE)

CPUIdle

A boolean expression that evaluates to TRUE when the CPU is idle

Defaults to $(NonCondorLoadAvg) <= $(BackgroundLoad)

CPUBusy

A boolean expression that evaluates to TRUE when the CPU is busy

Defaults to $(NonCondorLoadAvg) >= $(HighLoad)

MachineBusy

The CPU or the Keyboard is busy

Defaults to ($(CPUBusy) || $(KeyboardBusy)

CPUIsBusy

A boolean value set to the same value as CPUBusy

CPUBusyTime

the time in seconds since CPUBusy became TRUE. Evaluates to 0 if CPUBusy is FALSE

Defining a policy

65

It is preferable to suspend jobs instead of killing them. This is especially true when the job uses little
memory, when the keyboard is not being used or when the job is running in the vanilla universe. By
default, these macros will gracefully vacate jobs that have been running for more than ten minutes, or
are vanilla universe jobs:

WANT_SUSPEND = ($(SmallJob) || $(KeyboardNotBusy) || $(IsVanilla))
WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) ||
 $(IsVanilla))

Expression Definitions
This list gives examples of typical expressions.

START

Start a job if the keyboard has been idle long enough and the load average is low enough or if the
machine is currently running a job. Note that MRG Grid will only run one job at a time, but it may
pre-empt the currently running job in favour of the new one:

START = ((KeyboardIdle > $(StartIdleTime)) \
 && ($(CPUIdle) || (State != "Unclaimed" \
 && State != "Owner")))

SUSPEND

Suspend a job if the keyboard is in use. Alternatively, suspend if the CPU has been busy for more
than two minutes and the job has been running for more than 90 seconds:

SUSPEND = ($(KeyboardBusy) || \
 ((CpuBusyTime > 2 * $(MINUTE)) \
 && $(ActivationTimer) > 90))

CONTINUE

Continue a suspended job if the CPU is idle, the Keyboard has been idle for long enough, and the
job has been suspended more than 10 seconds:

CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 10) \
 && (KeyboardIdle > $(ContinueIdleTime)))

PREEMPT

There are two conditions that signal pre-emption. The first condition is if the job is suspended,
but it has been suspended too long. The second condition is if suspension is not desired and the
machine is busy:

PREEMPT = (((Activity == "Suspended") && \
 ($(ActivityTimer) > $(MaxSuspendTime))) \
 || (SUSPEND && (WANT_SUSPEND == False)))

MaxJobRetirementTime

Do not give jobs any time to retire on their own when they are about to be pre-empted:

Chapter 7. Policy Configuration

66

MaxJobRetirementTime = 0

KILL

Kill jobs that take too long to exit gracefully:

KILL = $(ActivityTimer) > $(MaxVacateTime)

Example Policies
The following examples show how to use the default macros detailed in this chapter to create
commonly used policies.

Warning
If you intend to change any of the settings as described in this chapter, make sure you
follow the instructions carefully and always test your changes before implementing them.
Mistakes in policy configuration can have a severe negative impact on both the owners of
machines in your pool, and the users who submit jobs to those machines.

This example shows to set up a machine for running test jobs from a specified user.

The machine needs to behave normally unless the user coltrane submits a job. When this occurs,
the job should start execution immediately, regardless of what else is happening on the machine at
that time.

Jobs submitted by coltrane should not be suspended, vacated or killed. This is reasonable because
coltrane will only be submitting very short running programs for testing purposes.

START = ($(START)) || Owner == "coltrane"
SUSPEND = ($(SUSPEND)) && Owner != "coltrane"
CONTINUE = $(CONTINUE)
PREEMPT = ($(PREEMPT)) && Owner != "coltrane"
KILL = $(KILL)

There are no specific settings for the CONTINUE or KILL expressions. Because the jobs submitted by
coltrane will never be suspended, the CONTINUE expression is irrelevant. Similarly, because the
jobs can not be pre-empted, KILL is irrelevant.

Example 7.4. Test-job Policy

Defining a policy

67

This example shows how to set up a machine to only run jobs at certain times of the day.

This is achieved through the ClockMin and ClockDay attributes. These are special attributes which
are automatically inserted by the condor_startd into its ClassAd, so they can always be referenced
in policy expressions. ClockMin defines the number of minutes that have passed since midnight.
ClockDay defines the day of the week, where Sunday = 0, Monday = 1, and so on to Saturday = 7.

To make the policy expressions easier to read, use macros to define the time periods when you want
jobs to run or not run. Regular work hours at your site could be defined as being from 0800 until 1700,
Monday through Friday.

WorkHours = ((ClockMin >= 480 && ClockMin < 1020) && \
 (ClockDay > 0 && ClockDay < 6))
AfterHours = ((ClockMin < 480 || ClockMin >= 1020) || \
 (ClockDay == 0 || ClockDay == 6))

Once these macros are defined, MRG Grid can be instructed to only start jobs after hours:

START = $(AfterHours) && $(CPUIdle) && KeyboardIdle > $(StartIdleTime)

Consider the machine busy during work hours, or if the keyboard or CPU are busy:

MachineBusy = ($(WorkHours) || $(CPUBusy) || $(KeyboardBusy))

Avoid suspending jobs during work hours, so that in the morning, if a job is running, it will be
immediately pre-empted, instead of being suspended for some length of time:

WANT_SUSPEND = $(AfterHours)

By default, the MachineBusy macro is used to define the SUSPEND and PREEMPT expressions. If
you have changed these expressions, you will need to add $(WorkHours) to your SUSPEND and
PREEMPT expressions as appropriate.

Example 7.5. Time of Day Policy

Chapter 7. Policy Configuration

68

This example shows to set up a pool of machines that include desktop machines and dedicated
cluster machines, requiring different policies.
In this scenario, keyboard activity should not have any effect on the dedicated machines. It might be
necessary to log into the dedicated machiens to debug a problem, or change settings, and this should
not interrupt the running jobs. Desktop machines, on the other hand, should do whatever is necessary
to remain responsive to the user.
There are many ways to achieve the desired behavior. One way is to create a standard desktop policy
and a standard non-desktop policy. The appropriate policy is then copied into the local configuration
file for each machine. This example, however, defines one standard policy in condor_config with a
toggle that can be set in the local configuration file.
If IsDesktop is configured, make it an attribute of the machine ClassAd:

STARTD_EXPRS = IsDesktop

If a desktop machine, only consider starting jobs if the load average is low enough or the machine is
currently running a Condor job, and the user is not active:

START = (($(CPUIdle) || (State != "Unclaimed" && State != "Owner")) \
 && (IsDesktop =!= True || (KeyboardIdle > $(StartIdleTime))))

Suspend instead of vacating or killing for small or vanilla universe jobs:

WANT_SUSPEND = ($(SmallJob) || $(JustCpu) \
 || $(IsVanilla))

When pre-empting, vacate instead of killing for jobs that have been running for longer than 10
minutes, or vanilla universe jobs:

WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \
 || $(IsVanilla))

Suspend jobs if the CPU has been busy for more than 2 minutes and the job has been running for
more than 90 seconds. Also suspend jobs if this is a desktop and the user is active:

SUSPEND = (((CpuBusyTime > 2 * $(MINUTE)) && ($(ActivationTimer) > 90)) \
 || (IsDesktop =?= True && $(KeyboardBusy)))

Continue jobs on a desktop machine if the CPU is idle, the job has been suspended more than 5
minutes and the keyboard has been idle for long enough:

CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 300) \
 && (IsDesktop =!= True || (KeyboardIdle > $(ContinueIdleTime))))

Pre-empt jobs if it has been suspended too long or the conditions to suspend the job has been met,
but suspension is not desired:

PREEMPT = (((Activity == "Suspended") && \
 ($(ActivityTimer) > $(MaxSuspendTime))) \
 || (SUSPEND && (WANT_SUSPEND == False)))

The following expression determines retirement time. Replace 0 with the desired amount of retirement
time for dedicated machines. The other part of the expression forces the whole expression to 0 on
desktop machines:

MaxJobRetirementTime = (IsDesktop =!= True) * 0

Kill jobs if they have taken too long to vacate gracefully:

KILL = $(ActivityTimer) > $(MaxVacateTime)

With this policy in condor_config, the local configuration files for desktops can now be configured
with the following line:

IsDesktop = True

In all other cases, the default policy described above will ignore keyboard activity.
Example 7.6. Desktop/Non-Desktop Policy

Defining a policy

69

This example shows how to prevent and disable pre-emption.
Pre-emption can result in jobs being killed. When this happens, the jobs remain in the queue and
will be automatically rescheduled. It is highly recommend designing jobs that work well in this
environment, rather than simply disabling pre-emption. Planning for pre-emption makes jobs more
robust in the face of other sources of failure. The easiest way to do this is to use the standard
universe, which provides the ability to produce checkpoints. If a job is incompatible with the
requirements of the standard universe, the job can still gracefully shutdown and restart by intercepting
the soft kill signal.
However, there can be cases where it is appropriate to force MRG Grid to never kill jobs within an
upper time limit. This can be achieved with the following policy.
Allow a job to run uninterrupted for up to two days before forcing it to vacate:

MAXJOBRETIREMENTTIME = $(HOUR) * 24 * 2

Construction of this expression can be more complex. For example, it could specify a different
retirement time for different users or different types of jobs. Additionally, the job might come with its
own definition of MAXJOBRETIREMENTTIME, but this can only cause less retirement time to be used,
never more than what the machine offers.
The longer the retirement time that is given, the slower reallocation of resources in the pool can
become if there are long-running jobs. However, by preventing jobs from being killed, you may
decrease the number of cycles that are wasted on non-checkpointable jobs that are killed.
Note that the use of MAXJOBRETIREMENTTIME limits the killing of jobs, but it does not prevent the
pre-emption of resource claims. Therefore, it is technically not a way of disabling pre-emption, but
simply a way of forcing pre-empting claims to wait until an existing job finishes or runs out of time.
To limit the pre-emption of resource claims, the following policy can be used. Some of these settings
apply to the execute node and some apply to the central manager, so this policy should be configured
so that it is read by both.
Disable pre-emption by machine activity:

PREEMPT = False

Disable pre-emption by user priority:

PREEMPTION_REQUIREMENTS = False

Disable pre-emption by machine rank by ranking all jobs equally:

RANK = 0

When disabling claim pre-emption, it is advised to also optimize negotiation:

NEGOTIATOR_CONSIDER_PREEMPTION = False

Without any pre-emption of resource claims, once the condor_negotiator gives the
condor_schedd a match to a machine, the condor_schedd may hold onto this claim indefinitely,
as long as the user keeps supplying more jobs to run. To avoid this behavior, force claims to be retired
after a specified period of time bys etting the CLAIM_WORKLIFE variable. This enforces a time limit,
beyond which no new jobs may be started on an existing claim. In this case, the condor_schedd
daemon is forced to go back to the condor_negotiator to request a new match. The execute
machine configuration would include a line that forces the schedd to renegotiate for new jobs after 20
minutes:

CLAIM_WORKLIFE = 1200

It is not advisable to set NEGOTIATOR_CONSIDER_PREEMPTION to False, as it can potentially lead
to some machines never being matched to jobs.
Example 7.7. Disabling Pre-emption

Chapter 7. Policy Configuration

70

This example shows how to create a policy around job suspension.

When jobs with a higher priority are submitted, the executing jobs might be pre-empted. These jobs
can lose whatever forward progress they have made, and are sent back to the job queue to await
starting over again as another machine becomes available.

A policy can be created that will allow jobs to be suspended instead instead of evicted. The policy
utilizes two slots: slot1 only runs jobs identified as high priority jobs; slot2 is set to run jobs
according to the usual policy and to suspend them when slot1 is claimed. A policy for a machine
with more than one physical CPU may be adapted from this example. Instead of having two slots, you
would have twice times the number of physical CPUs. Half of the slots would be for high priority jobs
and the other half would be for suspendable jobs.

Tell MRG Grid that the machine has two slots, even though it only has a single CPU:

NUM_CPUS = 2

slot1 is the high-priority slot, while slot2 is the background slot:

START = (SlotID == 1) && $(SLOT1_START) || \
 (SlotID == 2) && $(SLOT2_START)

Only start jobs on slot1 if the job is marked as a high-priority job:

SLOT1_START = (TARGET.IsHighPrioJob =?= TRUE)

Only start jobs on slot2 if there is no job on slot1, and if the machine is otherwise idle. Note that
the Busy activity is only in the Claimed state, and only when there is an active job:

SLOT2_START = ((slot1_Activity != "Busy") && \
 (KeyboardIdle > $(StartIdleTime)) && \
 ($(CPUIdle) || (State != "Unclaimed" && State != "Owner")))

Suspend jobs on slot2 if there is keyboard activity or if a job starts on slot1:

SUSPEND = (SlotID == 2) && \
 ((slot1_Activity == "Busy") || ($(KeyboardBusy)))

CONTINUE = (SlotID == 2) && \
 (KeyboardIdle > $(ContinueIdleTime)) && \
 (slot1_Activity != "Busy")

Note that in this example, the job ClassAd attribute IsHighPrioJob has no special meaning. It is
an invented name chosen for this example. To take advantage of the policy, a user must submit high
priority jobs with this attribute defined. The following line appears in the job's submit description file as:

+IsHighPrioJob = True

Example 7.8. Job Suspension

Chapter 8.

71

The Virtual Machine Universe
Virtual Machines can be operated under MRG Grid using Xen (with libvirt). MRG Grid requires some
configuration before being used with virtual machine. This chapter contains information on getting
started.

Before you begin configuring MRG Grid to work with virtual machines, you will need to install the
virtualization package according to the vendor's instructions.

For Xen, there are four requirements for MRG Grid to fully support it:
1. A Xen kernel must be running on the executing machine. The running Xen kernel acts as Dom0.

All virtual machines, called DomUs, will be started under this kernel

2. The libvirtd service must be installed and running. This service is provided by the libvirt
package

3. A recent version of the mkisofs utility must be available. This utility is used to create CD-ROM
disk images, and is provided by the mkisofs package

4. The pygrub program must be available. This program executes virtual machines whose disks
contain the kernel they will run. This program is provided by the xen

8.1. Configuring MRG Grid for the virtual machine universe
The configuration files for MRG Grid include various configuration settings for virtual machines. Some
settings are required, while others are optional. This section discusses only the required settings.

Initial setup
1. Specify the type of virtualization software that is installed, using the VM_TYPE setting:

VM_TYPE = xen

2. Specify the location of condor_vm-gahp and its configuration file, using the VM_GAHP_SERVER
settings:

VM_GAHP_SERVER = $(SBIN)/condor_vm-gahp

Configuring condor_vm-gahp
These options belong in the local configuration file.

1. Initially, specify the type of virtualization software that is installed, using the VM_TYPE setting:

VM_TYPE = xen

2. Specify your kernel version. You can check which kernel version you have by running the uname
-r command:

VM_VERSION = your kernel version

Chapter 8. The Virtual Machine Universe

72

3. Although this information is required, it does not alter the behavior of condor_vm-gahp. The
information is added to the machine ClassAd. If your virtualization software supports features that
are desirable for job matching, it can be specified in the RANK expression.

Xen-specific configuration
Additional configuration is necessary for Xen.

1. Specify the location of the control script:

XEN_SCRIPT = $(SBIN)/condor_vm_xen.sh

2. Specify the default kernel image with the XEN_DEFAULT_KERNEL configuration variable. This is
the kernel image to be used in cases where one explicitly specified in a job submission. In most
cases, this is the default kernel from which the system was booted:

XEN_DEFAULT_KERNEL = /boot/vmlinuz-2.6.18-1.2798.fc6xen

3. Although it is not required, it may be necessary to set the default initrd image for Xen to use on
Unix-based platforms. Unlike the kernel image, the default initrd image should not be set to the
same one used to boot the system. In this case, create a new initrd image by running mkinitrd
from the shell prompt and loading the xennet and xenblk drivers into it.

4. Specify the XEN_BOOTLOADER. The bootloader allows you to select a kernel instead of specifying
the Dom0 configuration, and allows the use of the xen_kernel = included specification when
submitting a job to the VM universe. A typical bootloader is pygrub:

XEN_BOOTLOADER = /usr/bin/pygrub

5. A typical configuration file for Xen is:

VM_TYPE = xen
VM_GAHP_SERVER = $(SBIN)/condor_vm-gahp
VM_GAHP_LOG = $(LOG)/VMGahpLog
MAX_VM_GAHP_LOG = 1000000
VM_GAHP_DEBUG = D_FULLDEBUG
VM_VERSION = X.Y.Zxen
VM_MEMORY = 1024
VM_MAX_MEMORY = 1024
XEN_SCRIPT = $(SBIN)/condor_vm_xen.sh
XEN_BOOTLOADER = /usr/bin/pygrub
XEN_DEFAULT_KERNEL = /boot/vmlinuz-X.Y.Zxen
XEN_DEFAULT_INITRD = /boot/initrd-X.Y.Zxen.img

Configuring MRG Grid for the virtual machine universe

73

Restarting MRG Grid with virtualization settings
1. Once the configuration options have been set, restart the condor_startd daemon on the host.

You can do this by running condor_restart. This should be performed on the central manager
machine:

$ condor_restart -startd machine_name

Note
If the condor_startd daemon is currently servicing jobs it will let them finish running
before restarting. If you want to force the condor_startd daemon to restart and kill
any running jobs, add the -fast option to the condor_restart command.

2. The condor_startd daemon will pause while it performs the following checks:
• Exercise the virtual machine capabilities of condor_vm-gahp

• Query the properties

• Advertise the machine to the pool as VM-capable

If these steps complete successfully, condor_status will record the virtual machine type and
version number. These details can be displayed by running the following command from the shell
prompt:

$ condor_status -vm machine_name

If this command does not display output after some time, it is likely that condor_vm-gahp is not
able to execute the virtualization software. The problem could be caused by configuration of the
virtual machine, the local installation, or a variety of other factors. Check the VMGahpLog log file
for diagnostics.

3. When using Xen for virtualization, the VM Universe is only available when MRG Grid is started
with the root user or administrator. These privileges are required to create a virtual machine on top
of a Xen kernel, as well as to use the virsh utility that controls creation and management of Xen
guest virtual machines.

74

Chapter 9.

75

High Availability
MRG Grid can be configured to provide high availability. If a machine is not functioning - either
because of scheduled downtime or due to a system failure - other machines can take on key
functions. There are two specialized cases for the use of high availability with MRG Grid:
• Availability of the job queue - the machine running the condor_schedd daemon; and

• Availability of the central manager - the machine running the condor_negotiator and
condor_collector daemons.

This chapter discusses how to set up high availability for both these scenarios.

9.1. High availability of the job queue
The condor_schedd daemon controls the job queue. If the job queue is not functioning then the
entire pool will be unable to run jobs. This situation can be made worse if one machine is a dedicated
submission point for jobs. When a job on the queue is executed, a condor_shadow process
runs on the mahine it was submitted from. The purpose of this process is to handle all input and
output fuctionality for the job. However, if the machine running the queue becomes non-functional,
condor_shadow can not continue communication and no jobs can continue processing.

Without high availability, the job queue would persist, but further jobs would be made to wait until the
machine running the condor_schedd daemon became available again. By enabling high availability,
management of the job queue can be transferred to other designated schedulers and reduce the
chance of an outage. If jobs are required to stop without finishing, they can be restarted from the
beginning, or can continue execution from the most recent checkpoint.

To enable high availability, the configuration is adjusted to specify alternate machines that can be
used to run the condor_schedd daemon. To prevent multiple instances of condor_schedd running,
a lock is placed on the job queue. When the machine running the job queue fails, the lock is lifted
and condor_schedd is transferred to another machine. Configuration variables are also used to
determine the intervals at which the lock expires, and how frequently polling for expired locks should
occur.

Configuring high availability for the job queue
1. Add the following lines to the local configuration of all machines that are able to run the

condor_schedd daemon and become the single pool submission point:

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = SCHEDD.lock

The MASTER_HA_LIST macro identifies the condor_schedd daemon as a daemon that should
be kept running.

2. Each machine with this configuration must have access to the job queue lock. This synchronizes
which single machine is currently running the condor_schedd. SPOOL identifies the location
of the job queue, and needs to be accessible by all High Availability schedulers. This is typically
accomplished by placing the SPOOL directory in a file system that is mounted on all schedulers.

Chapter 9. High Availability

76

HA_LOCK_URL identifies the location of the job queue lock. Like SPOOL, this needs to be
accessible by all High Availablity Schedulers, and is often found in the same location.

Always add SCHEDD.lock to the VALID_SPOOL_FILES variables. This is to prevent
condor_preen deleting the lock file because it is not aware of it.

When a machine that is able to run the condor_schedd daemon is started, the condor_master
daemon will poll the lock. If no lock is currently held, it will assume that no condor_schedd is
currently running. It will then acquire the lock and start the condor_schedd daemon. If a lock is
currently held by another machine, the condor_schedd dameon will not be started.

The machine running the condor_schedd daemon renews the lock periodically. If the machine fails
to renew the lock, because the machine is not functioning the lock will become stale. The lock can also
be released if condor_off or condor_off -schedd is executed. When another machine that is
capable of running condor_schedd becomes aware that the lock is stale, it will attempt to acquire
the lock and start the condor_schedd.

Remote job submission
1. When submitting jobs remotely, the scheduler needs to be identified, using a command such as $

condor_submit -remote schedd_name myjob.submit

2. The command above assumes a single condor_schedd running on a single machine. When
high availability is configured, there are multiple possible condor_schedd daemons, with any
one of them providing a single submission point.

3. So that jobs can be successfully submitted in a high availability situation, adjust the
SCHEDD_NAME variable in the local configuration of each potential High Availability Scheduler.
They will need to have the same value on each machine that could potentially be running the
condor_schedd daemon. Ensure that the value chosen ends with the @ character. This will
prevent MRG Grid from modifying the value set for the variable.

SCHEDD_NAME = had-schedd@

4. The command to submit a job is now $ condor_submit -remote had-schedd@
myjob.submit

9.2. High availability of the central manager
The condor_negotiator and condor_collector daemons are critical to a pool functioning
correctly. Both daemons usually run on the same machine, referred to as the central manager.
If a central manager machine fails, MRG Grid will not be able to match new jobs or allocate new
resources. Configuring high availability in a pool reduces the chance of an outage.

High availability allows one of multiple machines within the pool to function as the central
manager. While there can be many active condor_collector daemons, only a single, active
condor_negotiator will be running. The machine with the condor_negotiator daemon running
is the active central manager. All machines running a condor_collector daemon are idle central
managers. All submit and execute machines are configured to report to all potential central manager
machines.

Every machine that can potentially be a central manager needs to run the high availability daemon
condor_had. The daemons on each of the machines will communicate to monitor the pool and

High availability of the central manager

77

ensure that a central manager is always available. If the active central manager stops functioning, the
condor_had daemons will detect the failure. The daemons will then select one of the idle machines
to become the new active central manager.

If the outage is caused by a network partition, the idle condor_had daemons on each side of the
partition will choose a new active central manager. As long as the partition exists, there will be an
active central manager on each side. When the partition is removed and the network repaired, the
condor_had daemons will be re-organized and ensure that only one central manager is active.

It is recommended that a single machine is considered the primary central manager. If the primary
central manager stops functioning, a secondary central manager can take over. When the primary
central manager recovers, it will reclaim central management from the secondary machine. This
is particularly useful in situations where the primary central manager is a reliable machine that is
expected to have very short periods of instability. An alternative configuration allows the secondary
central manager to remain active after the failed central manager machine is restarted.

The high availability mechanism on the central manager operates by monitoring communication
between machines. Note that there is a significant difference in communications between machines
when:
1. The machine is completely down - crashed or switched off

2. The machine is functioning, but the condor_had daemon is not running

The high availability mechanism operates only when the machine is down. If the daemons are simply
not running, the system will not select a new active central manager.

The central manager machine records state information, including information about user priorities.
Should the primary central manager fail, a pool with high availability enabled would lose this
information. Operation would continue, but priorities would be re-initialized. To prevent this occurring,
the condor_replication daemon replicates the state information on all potential central manager
machines. The condor_replication daemon needs to be running on the active central manager
as well as all potential central managers.

The high availability of central manager machines is enabled through the configuration settings. It is
disabled by default. All machines in a pool must be configured appropriately in order to make the high
availability mechanism work.

The stabilization period is the time it takes for the condor_had daemons to detect a change in the
pool state and recover from this change. It is computed using the following formula:

stabilization period = 12 * [number of central managers] *
 $(HAD_CONNECTION_TIMEOUT)

Configuring high availability on potential central manager machines
The following is the procedure for configuring machines that are potential central managers.

1. Firstly, remove any parameters from the NEGOTIATOR_HOST and CONDOR_HOST macros:

NEGOTIATOR_HOST=
CONDOR_HOST=

Chapter 9. High Availability

78

2.

Note
The following settings must be the same on all potential central manager machines:

In order to make writing other expressions simpler, define a variable for each potential central
manager in the pool.

CENTRAL_MANAGER1 = cm1.example.com
CENTRAL_MANAGER2 = cm2.example.com

3. List all the potential central managers in the pool:

COLLECTOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

4. Define a macro for the port number that condor_had will listen on. The port number must match
the port number used when defining HAD_LIST. This port number is arbitrary, but ensure that
there are no port number collisions with other applications:

HAD_PORT = 51450
HAD_ARGS = -p $(HAD_PORT)

5. Define a macro for port number that condor_replication will listen on. The port number must
match the port number specified for the replication daemon in REPLICATION_LIST. The port
number is arbitrary, but ensure that there are no port number collisions with other applications:

REPLICATION_PORT = 41450
REPLICATION_ARGS = -p $(REPLICATION_PORT)

6. Specify a list of addresses for the replication list. It must contain the same addresses as
those listed in HAD_LIST. Additionally, for each hostname specify the port number of the
condor_replication daemon running on that host. This parameter is mandatory and has no
default value:

REPLICATION_LIST = $(CENTRAL_MANAGER1):$(REPLICATION_PORT),
$(CENTRAL_MANAGER2):$(REPLICATION_PORT)

7. Specify a list of addresses for the high availability list. It must contain the same addresses in the
same order as the list under COLLECTOR_HOST. Additionally, for each hostname specify the port
number of the condor_had daemon running on that host. The first machine in the list will be
considered the primary central manager if HAD_USE_PRIMARY is set to TRUE:

HAD_LIST = $(CENTRAL_MANAGER1):$(HAD_PORT),$(CENTRAL_MANAGER2):
$(HAD_PORT)

8. Specify the high availability daemon connection time. Recommended values are:

High availability of the central manager

79

• 2 if the central managers are on the same subnet

• 5 if security is enabled

• 10 if the network is very slow, or to reduce the sensitivity of the high availability dameons to
network failures

HAD_CONNECTION_TIMEOUT = 2

9. Select whether or not to use the first central manager in the HAD_LIST as a primary central
manager:

HAD_USE_PRIMARY = true

10. Specify which machines have root or administrator privileges within the pool. This is normally set
to the machine where the MRG Grid administrator works, provided all users who log in to that
machine are trusted:

HOSTALLOW_ADMINISTRATOR = $(COLLECTOR_HOST)

11. Specify which machines have access to the condor_negotiator. These are trusted central
managers. The default value is appropriate for most pools:

HOSTALLOW_NEGOTIATOR = $(COLLECTOR_HOST)

12.

Note
The following settings can vary between machines. They are master specific
parameters:

Specify the location of executable files:

HAD = $(SBIN)/condor_had
REPLICATION = $(SBIN)/condor_replication

13. List the daemons that the master central manager should start. It should contain at least the
following five daemons:

DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION
DC_DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION

The DC_DAEMON_LIST should also include any other daemons running on the node.

14. Specify whether or not to enable the replication feature:

HAD_USE_REPLICATION = true

15. Name of the file to be replicated:

Chapter 9. High Availability

80

STATE_FILE = $(SPOOL)/Accountantnew.log

16. Specify how long (in seconds) to wait in between attempts to replicate the file:

REPLICATION_INTERVAL = 300

17. Specify how long (in seconds) transferer daemons have to complete the download/upload
process:

MAX_TRANSFERER_LIFETIME = 300

18. Specify how long (in seconds) for the condor_had to wait in between sending ClassAds to the
condor_collector:

HAD_UPDATE_INTERVAL = 300

19. Specify the master negotiator controllor and the back-off constant:

MASTER_NEGOTIATOR_CONTROLLER = HAD
MASTER_HAD_BACKOFF_CONSTANT = 360

Important
If the backoff constant value is too small, it can result in the condor_negotiator
churning. This occurs when a constant cycling of the daemons stopping and starting
prevents the condor_negotiator from being able to run long enough to complete
a negotiation cycle. Churning causes an inability for any job to start processing.
Increasing the MASTER_HAD_BACKOFF_CONSTANT variable can help solve this
problem.

20. Specify the maximum size (in bytes) of the log file:

MAX_HAD_LOG = 640000

21. Specify the debug level:

HAD_DEBUG = D_COMMAND

22. Specify the location of the log file for condor_had:

HAD_LOG = $(LOG)/HADLog

23. Specify the maximum size (in bytes) of the replication log file:

MAX_REPLICATION_LOG = 640000

High availability of the central manager

81

24. Specify the debug level for replication:

REPLICATION_DEBUG = D_COMMAND

25. Specify the location of the log file for condor_replication:

REPLICATION_LOG = $(LOG)/ReplicationLog

Configuring high availability on other machines in the pool
Machines that are not potential central managers also require configuration for high availability to
work correctly. The following is the procedure for configuring machines that are in the pool, but are not
potential central managers.

1. Firstly, remove any parameters from the NEGOTIATOR_HOST and CONDOR_HOST macros:

NEGOTIATOR_HOST=
CONDOR_HOST=

2. Define a variable for each potential central manager:

CENTRAL_MANAGER1 = cm1.example.com
CENTRAL_MANAGER2 = cm2.example.com

3. Specify a list of all potential central managers:

COLLECTOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

4. Specify which machines have access to the condor_negotiator. These are trusted central
managers. The default value is appropriate for most pools:

HOSTALLOW_NEGOTIATOR = $(COLLECTOR_HOST)

Using a high availability pool without replication
1. Set the HAD_USE_REPLICATION configuration variable to FALSE. This will disable replication at

the configuration level.

2. Remove REPLICATION from both the DAEMON_LIST and DC_DAEMON_LIST in the configuration
file.

Disabling high availability on the central manager
1. To disable the high availability mechanism on central managers, remove the HAD, REPLICATION,

and NEGOTIATOR settings from the DAEMON_LIST configuration variable on all machines except
the primary machine. This will leave only one condor_negotiator remaining in the pool.

2. To shut down a high availability mechanism that is currently running run the following commands
from a host with root or administrator privileges on all central managers:
a. condor_off -all -neg

Chapter 9. High Availability

82

b. condor_off -all -subsystem -replication

c. condor_off -all -subsystem -had

These commands will kill all the currently running condor_had, condor_replication and
condor_negotiator daemons.

3. Run the command condor_on -neg on the machine where the single condor_negotiator is
going to operate.

Chapter 10.

83

Cloud Computing
The Elastic Compute Cloud - or EC2 - allows the execution of jobs in a virtual computing environment
provided by Amazon Web Services1 (AWS). EC2 can be considered as extra computing capacity you
can leverage when needed as an extension to an existing pool.

EC2 takes advantage of virtual machine technology. A virtual machine image is referred to as an
Amazon Machine Image (AMI). EC2 users can build an AMI specific to the type of application they
wish to run. EC2 also provides command tools and APIs to manage AMIs.

The starting, monitoring and cleaning up of EC2 resources occurs at the local level. The application is
installed in an AMI stored in S3, and, once started, is responsible for the life-cycle of the job and the
termination of the AMI instance.

AMI instances running in EC2 do not have persistent storage directly available. It is advisable to
program the AMI to transfer the output from a job out of the running instance before it is shut down.

An AMI is fixed at creation time. This means that it cannot be customized before an instance of it is
started in EC2. However, an AMI instance can be customized using EC2's user-data functionality.
This allows for an AMI instance to receive instantiation specific input and customize its operation.

MRG Grid uses EC2 in two different ways:
• MRG/EC2 Basic

• MRG/EC2 Enhanced

In order to use MRG/EC2 Basic and MRG/EC2 Enhanced, an Amazon Web Services (AWS) account
is required. For information on how to obtain an AWS account and other information on EC2, including
billing rates and terms and conditions, visit the Amazon Web Services website2.

You will need to create an Amazon Machine Image (AMI). The AMI contains information about your
operating system, binaries, installed software and configuration information and allows you to be able
to run applications in the cloud.

Note
More information about configuring the AMI can be found in the Amazon Getting Started
Guide3

Note
You must purchase Red Hat Enterprise MRG Grid Amazon EC2 Execute Node products
at Amazon to run and be entitled to RHEL+MRG at EC2. Hourly pricing and additional
information for these products are located at http://www.redhat.com/solutions/cloud/

10.1. MRG/EC2 Basic
With MRG/EC2 Basic an AMI can be submitted as a job to EC2. This is useful when deploying a
complete application stack into EC2. The AMI contains the operating system and all the required

1 http://aws.amazon.com/ec2/
2 http://aws.amazon.com/

http://aws.amazon.com/ec2/
http://aws.amazon.com/
http://docs.amazonwebservices.com/AWSEC2/2007-08-29/GettingStartedGuide/
http://docs.amazonwebservices.com/AWSEC2/2007-08-29/GettingStartedGuide/
http://www.redhat.com/solutions/cloud/
http://aws.amazon.com/ec2/
http://aws.amazon.com/

Chapter 10. Cloud Computing

84

packages. EC2 will boot the image and the image can initialize the application stack on boot. MRG/
EC2 Basic knowledge is also important when using MRG/EC2 Enhanced.

When setting up MRG Grid for use with EC2 for the first time, the following steps are important:

1. Make changes to your local condor configuration file

2. Prepare the job submission file for EC2 use

3. Set up a security group on EC2 (this step is optional)

4. Submit the job

5. Check that the job is running in EC2

6. Check the image using ssh (this step is optional)

1. MRG Grid is configured to work with EC2 by default. The necessary configuration settings are
in the global configuration file. There is one additional setting you may wish to add to the local
configuration:

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE_AMAZON = 10

This setting will limit the number of EC2 jobs that can be submitted at any time. AWS has an
upper limit of 20. Setting the maximum to less than 20 can help avoid problems.

2. The following is an example of a simple job submission file for MRG/EC2 Basic:

Note to submit an AMI as a job we need the grid universe
Universe = grid
grid_resource = amazon

Executable in this context is just a label for the job
Executable = my_amazon_ec2_job
transfer_executable = false

Keys provided by AWS
amazon_public_key = cert-ABCDEFGHIJKLMNOPQRSTUVWXYZ.pem
amazon_private_key = pk-AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPP.pem

The AMI ID
amazon_ami_id = ami-123a456b
amazon_user_data = Hello EC2!

The keypair file if needed for using ssh etc
amazon_keypair_file = /tmp/keypair

The security group for the job
amazon_security_groups = MY_SEC_GRP

MRG/EC2 Basic

85

queue

MRG/EC2 Basic requires the grid universe and the amazon grid resource. The executable is a
label that will show up in the job details when using commands such as condor_q. It is not an
executable file.

The AMI ID of the image needs to be specified in the job submission file. User data can also be
passed to the remote job if it is required. Applications that require user data can access it using
a Representational State Transfer (REST) based interface. Information on how to access image
instance data, including user data, is available from Amazon Web Services Developer Guide4.

EC2 will provide a keypair for access to the image if required. The amazon_keypair_file
command specifies where this will be stored.

EC2 allows users to specify one or more security groups. Security groups can specify what type of
access is available. This can include opening specific ports - e.g. port 22 for ssh access.

Advanced options
This step is optional. EC2 provides several options for instance types:

• m1.small: i386 instance with 1 compute unit

• m1.large: x86_64 instance with 4 compute unit

• m1.xlarge: x86_64 instance with 8 compute units

• c1.medium: i386 instance with 5 compute units

• c1.xlarge: x86_64 instance with 20 compute units

The default instance type is m1.small and assumes an i386 architecture. For example, if
the AMI you are deploying is x86_64 then you will need to set the following value in your job
submission:

amazon_instance_type = m1.large

For more information on instance types see the Amazon EC2 Developer Guide5.

Note
You could be using the wrong instance type if you see a message like this in your job
ClassAd when you run condor_q -l:

HoldReason = "The requested instance type's architecture (i386)
 does not match the architecture in the manifest for ami-
bda347d4 (x86_64)"

3. This step is optional. If ssh or other access is required, EC2 provides APIs and commands
to create and modify a security group. Download the AMI command line utilities here from the

http://docs.amazonwebservices.com/AWSEC2/2007-03-01/DeveloperGuide/AESDG-chapter-instancedata.html
http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/

Chapter 10. Cloud Computing

86

Amazon Web Services Developer Site6. Documentation on the APIs and command line utilities
are also on the Amazon Web Services Developer Site7.

To use the command line utilities provided by AWS, you will need to set some environment
variables.

Set EC2_HOME to point to the location of the tools. The EC2 tools are normally downloaded in a
zip file, using version numbers:

export EC2_HOME=/home/myuser/ec2-api-tools-X.Y-ZZZZ

EC2 requires X509 certificates. These can be downloaded from your AWS account and set using
the following variables:

export EC2_CERT=/home/myuser/keys/cert-
MPMCVULQDTBLIBUEPGBVK2LIEV6AN6GB.pem
export EC2_PRIVATE_KEY=/home/myuser/keys/pk-
MPMCVULQDTBLIBUEPGBVK2LIEV6AN6GB.pem

The EC2 commands require Java, so JAVA_HOME must also be set:

export JAVA_HOME=/etc/alternatives/jre_1.5.0

Use the following commands from the bin directory to create a security group and allow ssh
access to the AMI. The following are examples. For more information see the documentation at
the Amazon Web Services Developer Site8. To create a new group called MY_SEC_GRP and a
short description:

./ec2-add-group MY_SEC_GRP -d "My Security Group"

Open port 22 and allow ssh access:

./ec2-authorize MY_SEC_GRP -p 22

4. Submit the job using condor_submit, as normal.

5. You can check on the status of EC2 jobs, just as regular MRG Grid jobs, by using the condor_q
and condor_q -l commands. When the image has been successfully loaded in EC2 and the
job is running, the condor_q -l command will show the address of the AMI using the label
AmazonRemoteVirtualMachineName:

$ condor_q -l

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=368&categoryID=88
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1665&categoryID=118
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1665&categoryID=118

MRG/EC2 Enhanced

87

AmazonRemoteVirtualMachineName =
 "ec2-99-111-222-44.compute-1.amazonaws.com"

Note
There are tools available for managing running APIs. One of these is the Mozilla™
Firefox™ plugin Elasticfox9.

6. This step is optional. If you are using ssh and have opened the appropriate port, ssh can also
be used to access the running image with a remote shell. The keypair file specified in the job is
required:

$ ssh -i /tmp/keypair root@ec2-99-111-222-44.compute-1.amazonaws.com

This example contains a script for a job to be executed by an AMI. Edit the /etc/rc.local file in the
AMI and place this code at the end.

This example reads data from the user-data field, creates a a file called output.txt and transfers
that file out of the AMI before shutting down.

-- /etc/rc.local --
#!/bin/sh

USER_DATA=`curl http://169.254.169.254/2007-08-29/user-data`

ARGUMENTS="${USER_DATA%;*}"
RESULTS_FILE="${USER_DATA#*;}"

mkdir /tmp/output
cd /tmp/output

/bin/echo "$ARGUMENTS" > output.txt

cd /tmp
tar czf "$RESULTS_FILE" /tmp/output

curl --ftp-pasv -u user:password -T "$RESULTS_FILE" ftp://server/output

shutdown -h -P now

Example 10.1. Creating a script to run an MRG/EC2 Basic job in an AMI

10.2. MRG/EC2 Enhanced
The MRG/EC2 Enhanced feature is an extension of MRG/EC2 Basic that allows vanilla universe
jobs to be run in Amazon's EC2 service. MRG/EC2 Enhanced uses generic AMIs to execute vanilla
universe jobs. Jobs executed with MRG/EC2 Enhanced act like any other vanilla universe job, except
the execution node is in EC2 instead of a local condor pool.

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=609

Chapter 10. Cloud Computing

88

MRG/EC2 Enhanced uses security provided by the AWS X509 certificates as well as AWS access/
secret access keys. Credentials for these measures can be supplied by an administrator on the
MRG Grid configuration files, or on a job-by-job basis in the individual submit files. Credentials in the
configuration files will be checked first, and will override any provided in the submit file.

To use MRG/EC2 Enhanced, you will need an Amazon Web Services (AWS) account with access to
the following features:
• EC2

• SQS (Simple Queue Service)

• S3 (Simple Storage Service)

This chapter provides instructions on how to download and install the necessary RPMs and Amazon
Machine Images (AMIs) for the use and operation of the MRG Grid MRG/EC2 Enhanced feature.

Configuring an Amazon Machine Image
1. On the AMI, use yum to install the condor-ec2-enhanced package:

yum install condor-ec2-enhanced

2. Create a private key file called private key:

$ openssl genrsa -out private_key 1024

Create a public key file called public_key:

$ openssl rsa -in private_key -out public_key -pubout

Note
These keys are generated using openssl, and are not the same as the AWS keys
needed elsewhere.

Copy the contents of private_key into the file /root/.ec2/rsa_key on the AMI. The private
key must match the public key set in set_rsapublickey for a given route or job.

3. The following changes can be specified in any condor configuration file, however it is
recommended that they are added to the local configuration file at /var/lib/condor/
condor_config.local:

Specify the location of the condor_startd hooks:

EC2ENHANCED_HOOK_FETCH_WORK = $(LIBEXEC)/hooks/hook_fetch_work.py
EC2ENHANCED_HOOK_REPLY_FETCH = $(LIBEXEC)/hooks/hook_reply_fetch.py

MRG/EC2 Enhanced

89

4. Specify the location of the starter hooks:

EC2ENHANCED_HOOK_PREPARE_JOB = $(LIBEXEC)/hooks/hook_prepare_job.py
EC2ENHANCED_HOOK_UPDATE_JOB_INFO = $(LIBEXEC)/hooks/
hook_update_job_status.py
EC2ENHANCED_HOOK_JOB_EXIT = $(LIBEXEC)/hooks/hook_job_exit.py

5. Specify the job hook keywords:

STARTD_JOB_HOOK_KEYWORD = EC2ENHANCED
STARTER_JOB_HOOK_KEYWORD = EC2ENHANCED

6. Set the delay for fetching work and the update interval:

FetchWorkDelay = 10
STARTER_UPDATE_INTERVAL = 30

7. The caroniad daemon is used in the MRG/EC2 Enhanced AMI instance to retrieve and process
MRG Grid jobs. In order to do this caroniad communicates with Condor hooks that may or may
not be running on the same machine. The daemon is configured by editing the configuration file
located at /etc/opt/grid/caroniad.conf. The parameters that need to be changed are:

• ip

caroniad will listen on this IP address.

Note
By default, the hooks and caroniad will run on the same machine. In this case, the
loopback IP address is sufficient.

• port

The port caroniad should listen on

• queued_connections

The number of outstanding connections

• lease_time

The amount of time that a job can run without performing an update. If a job has not
performed an update within this time frame, it is assumed that an error has occurred and
the job will be released or re-sent. This value must be longer than the value specified for
STARTER_UPDATE_INTERVAL.

• lease_check_interval

Chapter 10. Cloud Computing

90

The interval to wait between checks to see if a job has had an error

8. The hook configuration file located at /etc/opt/grid/job-hooks.conf also needs to be
configured to communicate with caroniad. Adjust the ip and port parameters to the IP address
and port that the hooks should use to communicate with caroniad.

9. Configure MRG Grid to start on boot using the chkconfig command as the root user at the shell
prompt:

chkconfig --level 2345 condor on

Perform the same action for condor-ec2-enhanced:

chkconfig --level 2345 condor-ec2-enhanced on

10. Package the AMI. This step will vary depending on how you are building your AMI. If you have
changed an existing AMI you should use the following commands (please see the Amazon Getting
Started Guide10 for more information on how to use these commands):

On the AMI instance run:

$ ec2-bundle-vol

$ ec2-upload-bundle

After uploading the bundle it must be registered. On the local machine, register the bundle using
the command:

$ ec2-register

The registration process will return an AMI ID. This ID will be needed when submitting jobs.

Download and install the MRG/EC2 Enhanced RPMs
1. The MRG/EC2 Enhanced RPMs can be downloaded using yum. You will need to ensure that you

are connected to the Red Hat Network.

Important
For further information on installing Red Hat Enterprise MRG components, see the
MRG Grid Installation Guide.

2. On the submit machine, use yum to install the condor-ec2-enhanced-hooks package:

http://docs.amazonwebservices.com/AWSEC2/2007-08-29/GettingStartedGuide/
http://docs.amazonwebservices.com/AWSEC2/2007-08-29/GettingStartedGuide/

MRG/EC2 Enhanced

91

yum install condor-ec2-enhanced-hooks

Configuring the submit machine
1. In order for the local pool to take advantage of the newly created MRG/EC2 Enhanced image,

some changes need to be made to the configuration of a submit node in the pool. A sample
configuration file for the submit machine is located at /usr/share/doc/condor-ec2-
enhanced-hooks-1.0/example/condor_config.example. Copy the required parts of this
file to the submit nodes local configuration file, and edit the following lines to include the AMI ID
you received during the registration process:

set_amazonamiid = "ami-123a456b";

2. Specify the default settings for all routes, including instructions to remove a routed job if it is held
or idle for over 6 hours:

JOB_ROUTER_DEFAULTS = \
 [\
 MaxIdleJobs = 10; \
 MaxJobs = 200; \
\
 set_PeriodicRemove = (JobStatus == 5 && \
 HoldReason =!= "Spooling input data files") || \
 (JobStatus == 1 && (CurrentTime - QDate) > 3600*6); \
 set_requirements = true; \
 set_WantAWS = false; \
]

3. Define each routes for sending jobs. Specify a name, a list of requirements and the amazon
details:

Note
Just one route is shown here. The example configuration file at /usr/share/doc/
ec2-enhanced-hooks-1.0/example/condor_config.example goes into
further detail.

JOB_ROUTER_ENTRIES = \
[GridResource = "condor localhost $(COLLECTOR_HOST)"; \
Name = "Amazon Small"; \
requirements=target.WantAWS is true && (target.Universe is vanilla ||
 target.Universe is 5) && (target.WantArch is "INTEL" || target.WantArch
 is UNDEFINED) && (target.WantCpus <= 1 || target.WantCpus is UNDEFINED)
 && (target.WantMemory < 1.7 || target.WantMemory is UNDEFINED) &&
 (target.WantDisk < 160 || target.WantDisk is UNDEFINED); \
set_gridresource = "amazon"; \

Chapter 10. Cloud Computing

92

set_amazonpublickey = "<path_to_AWS_public key>"; \
set_amazonprivatekey = "<path_to_AWS_private_key>"; \
set_amazonaccesskey = "<path_to_AWS_access_key>"; \
set_amazonsecretkey = "<path_to_AWS_secret_key"; \
set_rsapublickey = "<path_to_RSA_public_key>"; \
set_amazoninstancetype = "m1.small"; \
set_amazons3bucketname = "<S3_bucket_name>"; \
set_amazonsqsqueuename = "<SQS_queue_name>"; \
set_amazonamiid = "<EC2_AMI_ID>"; \
set_remote_jobuniverse = 5; \
] \

4. Add the JOB_ROUTER to the list of daemons to run:

DAEMON_LIST = $(DAEMON_LIST) JOB_ROUTER

5. Define the polling period for the job router. It is recommended that this value be set to a low value
during testing, and a higher value when running on a large scale. This will ensure tests run faster,
but prevent using too much CPU when in production:

JOB_ROUTER_POLLING_PERIOD = 10

6. Set the maximum number of history rotations:

MAX_HISTORY_ROTATIONS = 20

7. Configure the job router hooks:

JOB_ROUTER_HOOK_TRANSLATE_JOB = $(LIBEXEC)/hooks/hook_translate.py
JOB_ROUTER_HOOK_UPDATE_JOB_INFO = $(LIBEXEC)/hooks/
hook_retrieve_status.py
JOB_ROUTER_HOOK_JOB_EXIT = $(LIBEXEC)/hooks/hook_job_finalize.py
JOB_ROUTER_HOOK_JOB_CLEANUP = $(LIBEXEC)/hooks/hook_cleanup.py

8. Restart MRG Grid with the new configuration:

$ service condor restart
Stopping condor daemon: [OK]
Starting condor daemon: [OK]

Submitting a job to MRG/EC2 Enhanced
1. A job that uses MRG/EC2 Enhanced is similar to a usual vanilla universe job. However, some

keys need to be added to the job submit file. This submit file will cause the job to be routed to the
Amazon Small route using administrator defined credentials:

MRG/EC2 Enhanced

93

universe = vanilla
executable = /bin/date
output = date.out
log = ulog
requirements = Arch == "INTEL"
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_executable = false
+WantAWS = True
+WantArch = "INTEL"
+WantCPUs = 1
queue

Important
The requirements attribute for the job will need to be set to match the hardware
of the AMI the job will run on. For example, if the submit machine is x86_64 and
the requirements are not specified, then the above job will not execute because the
Amazon Small AMI type is 32-bit, not 64-bit.

2. The following fields are available for routing the job to the correct AMI. If only WantAWS is defined,
then the job will be routed to the small AMI type by default.
WantAWS

Must be either TRUE or FALSE. Use EC2 for executing the job. Defaults to false

WantArch

Must be either INTEL or X86_64. Designates the architecture desired for the job. Defaults to
Intel

WantCpus

Must be an integer. Designates the number of CPUs desired for the job

WantMemory

Must be a float. Designates the amount of RAM desired for the job, in gigabytes

WantDisk

Must be an integer. Designates the amount of disk space desired for the job, in gigabytes

3. User credentials for accessing EC2 can be supplied for the submit machine by the site
administrator. If this is not the case, the submit file can be used to supply the required information,
by adding the following entries:

+AmazonAccessKey = "<path>/access_key"
+AmazonSecretKey = "<path>/secret_access_key"
+AmazonPublicKey = "<path>/cert.pem"
+AmazonPrivateKey = "<path>/pk.pem"
+RSAPublicKey = "<path>/rsa_key.pub"

Chapter 10. Cloud Computing

94

These credentials will only be used if the submit machine does not already have credentials
defined in condor_config for the route that the job will use.

Chapter 11.

95

Concurrency Limits
MRG Grid provides the ability to limit the number of jobs that run concurrently. Concurrency limits can
be used to limit job access to software licences, database connections, shares of overlall load on a
server, or the number of concurrently run jobs by a particular user or group of users.

Configuring MRG Grid to operate with concurrency limits is achieved by specifying
concurrency_limits in the job submit file. The limits referenced in the submit file are defined in the
configuration file. A job submit file can also reference more than one limit. The condor_negotiator
then uses this information when it matches the job to a resource. Firstly, it checks that the limits
have not been reached, and then stores the job's limits in the machine ClassAd to which it has been
matched.

Configuration variables for concurrency limits are located in the condor_negotiator daemon's
configuration file. The important configuration variables for concurrency limits are:
*_LIMIT

In this case, the * is the name of the limit. This variable sets the allowable number of concurrent
jobs for jobs that reference this limit in their submit file. Any number of *_LIMIT variables can be
set, as long as they all have different names

CONCURRENCY_LIMIT_DEFAULT

All limits that are not specified with *_LIMIT, will use the default limit

This example demonstrates the use of the *_LIMIT and CONCURRENCY_LIMIT_DEFAULT
configuration variables

In the following configuration file, Y_LIMIT is set to 2 and CONCURRENCY_LIMIT_DEFAULT to 1. In
this case, any job that includes the line concurrency_limits = y in the submit file will have a limit
of 2. All other jobs that have a limit other than Y will be limited to 1:

CONCURRENCY_LIMIT_DEFAULT = 1
Y_LIMIT = 2

The *_LIMIT variable can also be set without the use of CONCURRENCY_LIMIT_DEFAULT. With the
following configuration, any job that includes the line concurrency_limits = x in the submit file
will have a limit of 5. All other jobs that have a limit other than X will not be limited:

X_LIMIT = 5

Example 11.1. Using *_LIMIT and CONCURRENCY_LIMIT_DEFAULT

Creating a job submit file with concurrency limits
1. The concurrency_limits attribute references the *_LIMIT variables:

universe = vanilla
executable = /bin/sleep
arguments = 28
concurrency_limits = Y, x, z

Chapter 11. Concurrency Limits

96

queue 1

2. When the job has been submitted, condor_submit will sort the given concurrency limits and
convert them to lowercase:

$ condor_submit job
Submitting job(s).
1 job(s) submitted to cluster 28.

$ condor_q -long 28.0 | grep ConcurrencyLimits
ConcurrencyLimits = "x,y,z"

3. Concurrency limits can also be adjusted with condor_config_val. In this case, three
configuration variables need to be set. Set the ENABLE_RUNTIME_CONFIG variable to TRUE:

ENABLE_RUNTIME_CONFIG = TRUE

Allow access from a specific machine to the CONFIG access level. This allows you to change the
limit from that machine:

HOSTALLOW_CONFIG = $(CONDOR_HOST)

List the configuration variables that can be changed. The following example allows all limits to be
changed, and new limits to be created:

NEGOTIATOR.SETTABLE_ATTRS_CONFIG = *_LIMIT

4. Once the configuration is set, change the limits from the shell prompt:

$ condor_config_val -negotiator -rset "X_LIMIT = 3"

5. After the limits have been changed, reconfigure the condor_negotiator to pick up the
changes:

$ condor_reconfig -negotiator

6. Information about all concurrency limits can be viewed at the shell prompt by using the
condor_userprio command with the -l option:

$ condor_userprio -l | grep ConcurrencyLimit
ConcurrencyLimit.p = 0

97

ConcurrencyLimit.q = 2
ConcurrencyLimit.x = 6
ConcurrencyLimit.y = 1
ConcurrencyLimit.z = 0

This command displays the current number of jobs using each limit. In the example used above,
6 jobs using the X limit, 2 are using the Q limit, and 0 are using the Z and P limits. The limits with
zero users are returned because they have been used at some point in the past. If a limit has
been configured but never used, it will not appear in the list.

Note
If, for example, ten jobs are currently using the X limit, and X_LIMIT is changed to five,
those ten jobs will continue to run. However, no new matches will be accepted against the
X limit until the number of running jobs drops below five.

98

Chapter 12.

99

Dynamic provisioning
Dynamic provisioning, also referred to as partitionable startd or dynamic slots, allows users to mark
slots as partitionable. This means that more than one job can occupy a single slot at any one time.
Typically, slots have a fixed set of resources, such as associated CPUs, memory and disk space. By
partitioning the slot, those resources become more flexible and able to be better utilized.

Important
Dynamic provisioning is a new feature that provides some powerful configuration
possibilities and should be used with care. Specifically, while pre-emption occurs for each
individual dynamic slot, it cannot occur directly for the partitionable slot, or for groups of
dynamic slots. For example, for a large number of jobs requiring 1GB of memory, a pool
will be split up into 1GB dynamic slots. In this instance a job requiring 2GB of memory
would be starved, and unable to run.

This example shows how more than one job can be matched to a single slot through dyanmic
provisioning.

In this example, Slot1 has the following resources:
• cpu=10

• memory=10240

• disk=BIG

JobA is allocated to the slot. JobA has the following requirements:
• cpu=3

• memory=1024

• disk=10240

The portion of the slot that is being used is referred to as Slot1.1, and the slot now advertises that it
has the following resources still available:
• cpu=7

• memory=9216

• disk=BIG-10240

As each new job is allocated to Slot1, it breaks into Slot1.1, Slot1.2 ... until the entire resources
available have been consumed by jobs.

Example 12.1. Matching multiple jobs to a single slot

To enable dynamic provisioning, set the SLOT_TYPE_X_PARTITIONABLE configuration variable to
TRUE. The X component of the variable changes, depending on which slot is being configured.

In a pool that uses dynamic provisioning, jobs can have extra desirable resources specified in their
submit files:
• request_cpus

• request_memory (in megabytes)

Chapter 12. Dynamic provisioning

100

• request_disk (in kilobytes)

This example gives a truncated job submit description file for use when submitting a job to a pool with
dynamic provisioning.

JobA:
universe = vanilla
executable = ...
...
request_cpus = 3
request_memory = 1024
request_disk = 10240
...
queue

Example 12.2. Job submit file for a dyanmic provisioning pool

For each type of slot - the original, partionable slot and the new smaller, dynamic slots - an attribute
is added to identify it. The original slot will have an attribute stating PartitionableSlot=TRUE
and the dynamic slots will have an attribute DynamicSlot=TRUE. These attributes can be used in a
START expression for the purposes of creating detailed policies.

A partitionable slot will always appear as though it is not running a job. It will eventually show as
having no available resources, which will prevent it being matched to new jobs. Because it has been
effectively broken up into smaller slots, these will show as running jobs directly. These dynamic slots
can also be pre-empted in the same way as ordinary slots.

Chapter 13.

101

Low-latency scheduling
Low-latency scheduling allows jobs to begin execution immediately, without going through the
standard scheduling process. This decreases the amount of time before a job can begin execution,
but bypasses the scheduling process. This can increase the possibility that a job will not be able
to execute on the first node that tries to run it. This type of scheduling is performed using the MRG
Messaging component of Red Hat Enterprise MRG, instead of the Condor daemons. The machines
in the pool capable of executing jobs - execute nodes - communicate directly with a MRG Messaging
broker. The advantage of this is that any machine capable of sending messages to the broker can
submit jobs to the pool.

Note
For more information on MRG Messaging, the broker, and the AMQP protocol, see the
MRG Messaging User Guide

Installing the condor-low-latency packages
1.

Important
You will require the MRG Messaging broker from the Red Hat Network in order to use
low-latency scheduling. For instructions on downloading and configuring the MRG
Messaging packages, see the MRG Messaging Installation Guide.

You will require the following packages, in addition to the MRG Messaging components:
• condor-low-latency

• condor-job-hooks

• condor-job-hooks-common

Use yum to install these components:

yum install condor-low-latency

yum install condor-job-hooks

yum install condor-job-hooks-common

2. Configure MRG Grid to use the new job hooks by opening the condor_config file in your
preferred text editor and adding the following lines:

Startd hooks
LOW_LATENCY_HOOK_FETCH_WORK = $(LIBEXEC)/hooks/hook_fetch_work.py
LOW_LATENCY_HOOK_REPLY_FETCH = $(LIBEXEC)/hooks/hook_reply_fetch.py

Starter hooks

Chapter 13. Low-latency scheduling

102

LOW_LATENCY_JOB_HOOK_PREPARE_JOB = $(LIBEXEC)/hooks/hook_prepare_job.py
LOW_LATENCY_JOB_HOOK_UPDATE_JOB_INFO =
$(LIBEXEC)/hooks/hook_update_job_status.py
LOW_LATENCY_JOB_HOOK_JOB_EXIT = $(LIBEXEC)/hooks/hook_job_exit.py

STARTD_JOB_HOOK_KEYWORD = LOW_LATENCY

3. Set the FetchWorkDelay setting. This setting controls how often the condor-low-latency feature
will look for jobs to execute, in seconds:

FetchWorkDelay = 10 * (Activity == "Idle")
STARTER_UPDATE_INTERVAL = 30

4. The daemon that controls the communication between MRG Messaging and MRG Grid is
called the caro daemon. It can be configured by editing the file located at /etc/opt/grid/
carod.conf. This file controls the active broker other options such as the exchange name,
message queue and IP information.

The Condor job hooks are configured by editing the file located at /etc/opt/grid/job-
hooks.conf. This file specifies the port and IP information that the job hooks can use to contact
the caro daemon. The IP and port information in this file must match the information used in the
carod configuration file.

5. When all the components are configured, start the MRG Messaging broker.

service qpidd start
Starting qpidd daemon: [OK]

6. Start the Condor low latency daemon as a service:

service condor-low-latency start
Starting condor-low-latency service: [OK]

7. Submitting a job using condor-low-latency scheduling is similar to submitting a regular Condor
job, with the main difference being that instead of using a file for submission the job's attributes
are defined in the application headers field of a MRG Messaging message. There are however
some differences between the job description fields. To ensure the fields are correct, a normal
Condor job submission file can be translated into the appropriate fields for the application headers
by using the condor_submit command with the -dump option:

$ condor_submit myjob.submit -dump output_file

This command would produce a file named output_file. This file contains the information
contained in the myjob.submit in a format suitable for placing directly into the the application
header of a message. This method only works when queuing a single message at a time.

103

8. When submitting jobs in messages using this method, it is only possible to submit one job for
every message. To submit multiple jobs of the same type, multiple messages - each containing
one job - will need to be sent to the broker.

Any messages submitted this way must have a reply-to field set, or the jobs will not run. They
must also include a unique message ID.

If data needs to be submitted with the job, it will need to be compressed and the archive placed in
the body of the message. Similarly, results of the job will be placed in the body of the message to
signify completion.

104

Chapter 14.

105

Application Program Interfaces (APIs)
The MRG Grid Web Service (WS) API provides a method of interaction for application developers.
The MRG Grid daemons implement the SOAP (Simple Object Access Protocol) XML protocol. Job
submission and management is provided through a web interface. A two phase commit mechanism is
used to ensure reliability and fault-tolerance.

This chapter discusses the interaction between a client using the API and the condor_schedd and
condor_collector daemons. It will explain the transactions and methods used for job submission,
queue management and ClassAd management functions.

14.1. Using the MRG Grid API
The MRG Grid daemons communicate using the SOAP XML protocol. An application using this
protocol needs to contain code that can handle the communication. The XML WSDL (Web Services
Description Language) required by MRG Grid is included in the distribution, and can be found at
$(RELEASE_DIR)/lib/webservice. The WSDL must be run through a toolkit to produce the
language-specific routines required for communication. The application can be compiled as follows:
1. Condor must be configured to enable responses to SOAP calls. The WS interface listens on

the condor_schedd daemon's command port. To obtain a list of all the the condor_schedd
daemons in the pool that have a WS interface, use this command at the shell prompt:

$ condor_status -schedd -constraint "HasSOAPInterface=?=TRUE"

2. To determine the port number to use:

$ condor_status -schedd -constraint "HasSOAPInterface=?=TRUE" -l |
 grep MyAddress

3. To authorize access to the SOAP client, it is also important to set the ALLOW_SOAP and
DENY_SOAP configuration variables.

Transactions
All applications that use the API to interact with the condor_schedd daemon use transactions. The
lifetime of a transaction is limited by the API, and can be further limited by the client application or the
condor_schedd daemon.

Transactions are controlled by methods. They are initiated with a beginTransaction() method and
completed with either a commitTransaction() or an abortTransaction() method.

Some operations will have access to more information when they are performed within a transaction.
As an example of this, a getJobAds() query would have access to information about pending jobs
within the transaction. Because these jobs are not committed they would not be visible outside of the
transaction. However, transactions are designed to be ACID, or Atomic, Consistent, Isolated, and
Durable. For this reason, information outside of a transaction should not be queried in order to make a
decision within the transaction.

Chapter 14. Application Program Interfaces (APIs)

106

If required, the API can also accept null transactions. A null transaction can be created by inserting the
programming language's equivalent of null in place of the transaction identifier. In a SOAP message,
the following line achieves this:

 <transaction xsi:type="ns1:Transaction" xsi:nil="true"/>

Submitting jobs
A job must be described with a ClassAd. The job ClassAd is then submitted to the condor_schedd
within a transaction using the submit() method. To simplify the creation of a job ClassAd, the
createJobTemplate() method can be called. This method returns a ClassAd structure that can
then be modified to suit.

Important
For jobs that will be executed on Windows platforms, explicitly set the job ClassAd
NTDomain attribute. The owner of the job will authenticate to this NT domain. This
attribute is required but is not set by the createJobTemplate() function.

A necessary part of the job ClassAd are the ClusterId and ProcId attributes, which uniquely
identify the cluster and the job. When the newCluster() method is called, it is assigned a
ClusterId. Every job submitted is then assigned a ProcId, starting at 0 and incrementing by one
for every job. When newCluster() is called again, it is assigned the next ClusterId and the job
numbering starts again at 0.

Using the MRG Grid API

107

This example demonstrates the ClusterId and ProcId attributes.

The following list contains an ordered set of method calls, showing the assigned ClusterId and
ProcId values:
1. A call to newCluster() assigns a ClusterId of 6

2. A call to newJob() assigns a ProcId of 0 as this is the first job within the cluster

3. A call to submit() results in a job submission numbered 6.0

4. A call to newJob(), assigns a ProcId of 1

5. A call to submit() results in a job submission numbered 6.1

6. A call to newJob(), assigns a ProcId of 2

7. A call to submit() results in a job submission numbered 6.2

8. A call to newCluster(), assigns a ClusterId of 7

9. A call to newJob(), assigns a ProcId of 0 as this is the first job within the cluster.

10. A call to submit() results in a job submission numbered 7.0

11. A call to newJob() assigns a ProcId of 1

12. A call to submit() results in a job submission numbered 7.1

Example 14.1. Demonstrating the ClusterId and ProcId attributes

There is always a chance that a call to submit() will fail. Mostly this occurs when the job is in the
queue but something required by the job has not been sent and the job will not be able to be run
succesfully. Sending the information required could potentially resolve this problem. To assist in
determining what requirements a job has, the discoverJobRequirements() method can be called
with a job ClassAd, and will return with a list of requirements for the job.

File transfer
Often, a job submission requires the job's executable and input files to be transferred from the
machine where the application is running to the machine where the condor_schedd is running. The
executable and input files must be sent directly to the condor_schedd daemon and placed in a spool
location. This can be achieved with the declareFile() and sendFile() methods.

The declareFile() and sendFile() methods work together to transfer files to the
condor_schedd. The declareFile() method causes condor_schedd to check if the file exists
in the spool location. This prevents sending a file that already exists. The sendFile() method then
sends the required file, or parts of a file, as base64 encoded data.

The declareFile() method requires the name of the file and its size in bytes. It also accepts
optional information that relates to the hash (encryption) information for the file. When the hash type is
specified as NOHASH, the condor_schedd daemon can not reliably determine if the file exists.

Retrieving files is most useful when a job is completed. When a job is completed and waiting to be
removed, the listSpool() method provides a list of all the files for that job in the spool location. The
getFile() method then retrieves a file.

Chapter 14. Application Program Interfaces (APIs)

108

Once the closeSpool() method has been called, the condor_schedd daemon removes the job
from the queue and the spool files are no longer available. There is no requirement for the application
to invoke the closeSpool() method, which results in jobs potentially remaining in the queue forever.
The configuration variable SOAP_LEAVE_IN_QUEUE can help to mitigate this problem. It is a boolean
value, and when it evaluates to False, the job will be reoved from the queue, and its information
moved into the history log.

This example demonstrates the use of the SOAP_LEAVE_IN_QUEUE configuration variable

The following line inserted in the configuration file will result in a job being reoved from the queue once
it has been completed for 24 hours:

SOAP_LEAVE_IN_QUEUE = ((JobStatus==4) && ((ServerTime - CompletionDate) <
 (60 * 60 * 24)))

Example 14.2. Use of the SOAP_LEAVE_IN_QUEUE configuration variable

14.2. Methods

Method Description Parameters Return Value

beginTransaction Begin a transaction. duration - The
expected duration of
the transaction.

If the function
succeeds, the return
value is SUCCESS
and contains the new
transaction.

commitTransaction Commits a transaction. transaction - The
transaction to be
committed.

If the function
succeeds, the return
value is SUCCESS.

abortTransaction Abort a transaction. transaction - The
transaction to be
aborted.

If the function
succeeds, the return
value is SUCCESS.

extendTransaction Request an extension
in duration for a
specific transaction.

transaction -
The transaction
to be extended
and duration -
The duration of the
extension.

If the function
succeeds, the return
value is SUCCESS
and contains the
transaction with the
extended duration.

Table 14.1. Methods for transaction management

Methods

109

beginTransaction

Begin a transaction. For example:

StatusAndTransaction beginTransaction(int duration);

commitTransaction

Commits a transaction. For example:

Status commitTransaction(Transaction transaction);

abortTransaction

Abort a transaction. For example:

Status abortTransaction(Transaction transaction);

extendTransaction

Request an extension in duration for a specific transaction. For example:

StatusAndTransaction extendTransaction(Transaction transaction, int
 duration);

Example 14.3. Examples of methods for transaction management

Method Description Parameters Return Value

submit Submit a job. transaction - The
transaction in which
the submission takes
place; clusterId -
The cluster identifier;
jobId - The job
identifier; jobAd - The
ClassAd describing the
job.

If the function
succeeds, the return
value is SUCCESS
and contains the
transaction with the job
requirements.

createJobTemplate Request a job ClassAd,
given some of the
job requirements.
This ClassAd will be
suitable for use when
submitting the job.

clusterId - The
cluster identifier;
jobId - The job
identifier; owner - The
name to be associated
with the job; type -
The universe under
which the job will
run; command - The
command to execute
once the job has
started; arguments
- The command-
line arguments
for command;

If the function
succeeds, the return
value is SUCCESS.

Chapter 14. Application Program Interfaces (APIs)

110

Method Description Parameters Return Value

requirements -
The requirements
expression for the
job. type can be any
one of the following:
VANILLA = 5,
SCHEDULER = 7, MPI
= 8, GRID = 9, JAVA
= 10, PARALLEL =
11, LOCALUNIVERSE
= 12 or VM = 13.

discoverJobRequirementsDiscover the
requirements of a job,
given a ClassAd.

jobAd - The ClassAd
of the job.

If the function
succeeds, the return
value is SUCCESS
and contains the job
requirements.

Table 14.2. Methods for job submission

submit

Submit a job. For example:

StatusAndRequirements submit(Transaction transaction, int clusterId, int
 jobId, ClassAd jobAd);

createJobTemplate

Request a job ClassAd, given some of the job requirements. This ClassAd will be suitable for use
when submitting the job. For example:

StatusAndClassAd createJobTemplate(int clusterId, int jobId, String owner,
 UniverseType type, String command, String arguments, String requirements);

discoverJobRequirements

Discover the requirements of a job, given a ClassAd. For example:

StatusAndRequirements discoverJobRequirements(ClassAd jobAd);

Example 14.4. Examples of methods for job submission

Method Description Parameters Return Value

declareFile Declare a file to be
used by a job.

transaction - The
transaction in which
the file is declared;
clusterId - The
cluster identifier;
jobId - The identifier
of the job that will use
the file; name - The

If the function
succeeds, the return
value is SUCCESS.

Methods

111

Method Description Parameters Return Value

name of the file; size
- The size of the file;
hashType - The type
of hash mechanism
used to verify file
integrity; hash - An
optionally zero-length
string encoding of the
file hash. hashType
can be either NOHASH
or MD5HASH

sendFile Send a file that a job
may use.

transaction -
The transaction in
which this file is send;
clusterId - The
cluster identifier;
jobId - An identifier of
the job that will use the
file; name - The name
of the file being sent;
offset - The starting
offset within the file
being sent; length
- The length from the
offset to send; data -
The data block being
sent. This could be
the entire file or a sub-
section of the file as
defined by offset and
length.

If the function
succeeds, the return
value is SUCCESS.

getFile Get a file from a job's
spool.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster in which to
search; jobId - The
job identifier the file is
associated with; name
- The name of the file
to retrieve; offset
- The starting offset
within the file being
retrieved; length -
The length from the
offset to retrieve.

If the function
succeeds, the return
value is SUCCESS and
contains the file or a
sub-section of the file
as defined by offset
and length.

Chapter 14. Application Program Interfaces (APIs)

112

Method Description Parameters Return Value

closeSpool Close a job's spool.
All the files in the job's
spool can be deleted.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster identifier which
the job is associated
with; jobId - The job
identifier for which the
spool is to be removed.

If the function
succeeds, the return
value is SUCCESS.

listSpool List the files in a job's
spool.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster in which to
search; jobId - The
job identifier to search
for.

If the function
succeeds, the return
value is SUCCESS and
contains a list of files
and their respective
sizes.

Table 14.3. Methods for file transfer

Methods

113

declareFile

Declare a file to be used by a job. For example:

Status declareFile(Transaction transaction, int clusterId, int jobId,
 String name, int size, HashType hashType, String hash);

sendFile

Send a file that a job may use. For example:

Status sendFile(Transaction transaction, int clusterId, int jobId, String
 name, int offset, Base64 data);

getFile

Get a file from a job's spool. For example:

StatusAndBase64 getFile(Transaction transaction, int clusterId, int jobId,
 String name, int offset, int length);

closeSpool

Close a job's spool. All the files in the job's spool can be deleted. For example:

Status closeSpool(Transaction transaction, int clusterId, int jobId);

listSpool

List the files in a job's spool. For example:

StatusAndFileInfoArray listSpool(Transaction transaction, int clusterId,
 int jobId);

Example 14.5. Examples of methods for file transfer

Method Description Parameters Return Value

newCluster Create a new job
cluster.

transaction - The
transaction in which
this cluster is created.

If the function
succeeds, the return
value is SUCCESS and
contains the cluster ID.

removeCluster Remove a job cluster,
and all the jobs within
it.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster to remove;
reason - The reason
for the removal.

If the function
succeeds, the return
value is SUCCESS.

Chapter 14. Application Program Interfaces (APIs)

114

Method Description Parameters Return Value

newJob Creates a new job
within the most recently
created job cluster.

transaction - The
transaction in which
this job is created;
clusterId - The
cluster identifier of the
most recently created
cluster.

If the function
succeeds, the return
value is SUCCESS and
contains the job ID.

removeJob Remove a job,
regardless of the job's
state.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster identifier to
search in; jobId - The
job identifier to search
for; reason - The
reason for the release;
forceRemoval - Set
if the job should be
forcibly removed.

If the function
succeeds, the return
value is SUCCESS.

holdJob Put a job into the Hold
state, regardless of the
job's current state.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster in which to
search; jobId - The
job identifier to search
for; reason - The
reason for the release;
emailUser - Set if
the submitting user
should be notified;
emailAdmin - Set
if the administrator
should be notified;
systemHold - Set if
the job should be put
on hold.

If the function
succeeds, the return
value is SUCCESS.

releaseJob Release a job that has
been in the Hold state.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster in which to
search; jobId - The

If the function
succeeds, the return
value is SUCCESS.

Methods

115

Method Description Parameters Return Value

job identifier to search
for; reason - The
reason for the release;
emailUser - Set if
the submitting user
should be notified;
emailAdmin - Set
if the administrator
should be notified.

getJobAds Find an array of job
ClassAds.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
constraint - A
string constraining the
number of ClassAds to
return.

If the function
succeeds, the return
value is SUCCESS
and contains all job
ClassAds matching the
given constraint.

getJobAd Finds a specific job
ClassAd.

transaction - An
optionally nullable
transaction, this call
does not need to
occur in a transaction;
clusterId - The
cluster in which to
search; jobId - The
job identifier to search
for.

If the function
succeeds, the return
value is SUCCESS and
contains the requested
job ClassAd.

requestReschedule Request a
condor_reschedule
from the
condor_schedd
daemon.

If the function
succeeds, the return
value is SUCCESS.

Table 14.4. Methods for job management

Chapter 14. Application Program Interfaces (APIs)

116

newCluster

Create a new job cluster. For example:

StatusAndInt newCluster(Transaction transaction);

removeCluster

Remove a job cluster, and all the jobs within it. For example:

Status removeCluster(Transaction transaction, int clusterId, String
 reason);

newJob

Creates a new job within the most recently created job cluster. For example:

StatusAndInt newJob(Transaction transaction, int clusterId);

removeJob

Remove a job, regardless of the job's state. For example:

Status removeJob(Transaction transaction, int clusterId, int jobId, String
 reason, boolean forceRemoval);

holdJob

Put a job into the Hold state, regardless of the job's current state. For example:

Status holdJob(Transaction transaction, int clusterId, int jobId, string
 reason, boolean emailUser, boolean emailAdmin, boolean systemHold);

releaseJob

Release a job that has been in the Hold state. For example:

Status releaseJob(Transaction transaction, int clusterId, int jobId, String
 reason, boolean emailUser, boolean emailAdmin);

getJobAds

Find an array of job ClassAds. For example:

StatusAndClassAdArray getJobAds(Transaction transaction, String
 constraint);

requestReschedule

Request a condor_reschedule from the condor_schedd daemon. For example:

Status requestReschedule();

Example 14.6. Examples of methods for job management

Methods

117

Method Description Parameters Return Value

insertAd type - The type of
ClassAd to insert; ad -
The ClassAd to insert.
type can be any one
of: STARTD_AD_TYPE,
QUILL_AD_TYPE,
SCHEDD_AD_TYPE,
SUBMITTOR_AD_TYPE,
LICENSE_AD_TYPE,
MASTER_AD_TYPE,
CKPTSRVR_AD_TYPE,
COLLECTOR_AD_TYPE,
STORAGE_AD_TYPE,
NEGOTIATOR_AD_TYPE,
HAD_AD_TYPE or
GENERIC_AD_TYPE.

If the function
succeeds, the return
value is SUCCESS.

queryStartdAds Search for
condor_startd
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the
condor_startd
ClassAds matching the
given constraint.

queryScheddAds Search for
condor_schedd
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the
condor_schedd
ClassAds matching the
given constraint.

queryMasterAds Search for
condor_master
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the
condor_master
ClassAds matching the
given constraint.

querySubmittorAds Search for submitter
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the
submitter ClassAds
matching the given
constraint.

queryLicenseAds Search for license
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the license
ClassAds matching the
given constraint.

queryStorageAds Search for storage
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the storage
ClassAds matching the
given constraint.

queryAnyAds Search for any
ClassAds.

constraint - A
string constraining the
number ClassAds to
return.

A list of all the
ClassAds matching the
given constraint.

Table 14.5. Methods for ClassAd management

Chapter 14. Application Program Interfaces (APIs)

118

insertAd

For example:

Status insertAd(ClassAdType type, ClassAdStruct ad);

queryStartdAds

Search for condor_startd ClassAds. For example:

ClassAdArray queryStartdAds(String constraint);

queryScheddAds

Search for condor_schedd ClassAds. For example:

ClassAdArray queryScheddAds(String constraint);

queryMasterAds

Search for condor_master ClassAds. For example:

ClassAdArray queryMasterAds(String constraint);

querySubmittorAds

Search for submitter ClassAds. For example:

ClassAdArray querySubmittorAds(String constraint);

queryLicenseAds

Search for license ClassAds. For example:

ClassAdArray queryLicenseAds(String constraint);

queryStorageAds

Search for storage ClassAds. For example:

ClassAdArray queryLicenseAds(String constraint);

queryAnyAds

Search for any ClassAds. For example:

ClassAdArray queryAnyAds(String constraint);

Example 14.7. Examples of methods for ClassAd management

Methods

119

Method Description Return Value

getVersionString Determine the Condor version. Returns the Condor version as a
string.

getPlatformString Determine the platform
information.

Returns the platform information
as string.

Table 14.6. Methods for version information

getVersionString

Determine the Condor version. For example:

StatusAndString getVersionString();

getPlatformString

Determine the platform information. For example:

StatusAndString getPlatformString();

Example 14.8. Examples of methods for version information

Many methods return a status, Table 14.7, “StatusCode return values” lists the possible return values:

Value Identifier Definition

0 SUCCESS No errors returned.

1 FAIL An error occurred that is not
specific to another error code

2 INVALIDTRANSACTION No such transaction exists

3 UNKNOWNCLUSTER The specified cluster is not the
currently active one

4 UNKNOWNJOB The specified job does not exist,
or can not be found.

5 UNKNOWNFILE The specified file does not exist,
or can not be found.

6 INCOMPLETE The request is incomplete.

7 INVALIDOFFSET The specified offset is invalid.

8 ALREADYEXISTS For this job, the specified file
already exists

Table 14.7. StatusCode return values

120

Chapter 15.

121

Frequently Asked Questions
15.1. Installing MRG Grid

Q: How do I download MRG Grid

A: MRG Grid is available through the Red Hat Network. For full instructions on downloading and
installing MRG Grid, read the MRG Grid Installation Guide available from the Red Hat Enterprise
MRG documentation page1.

Q: What platforms are supported?

A: MRG Grid is supported under most recent versions of both Red Hat Enterprise Linux and
Microsoft Windows. Full information is available from the Red Hat Enterprise MRG hardware
page2. Note however that not all features are currently supported under Windows.

Q: Can I access the source code?

A: Yes! The source code is made available in the source RPM distributed by Red Hat. MRG Grid
source code is distributed under the Apache ASL 2.0 license3.

15.2. Running MRG Grid jobs

Q: I receive too much email. What should I do with it all?

A: You should not ignore all the mail sent to you, but you can dramatically reduce the amount you
get. When jobs are submitted, ensure they contain the following line:

Notification = Error

This will make sure that you only receive an email if an error has occurred. Note that this means
you will not receive emails when a job completes successfully.

Q: My job starts but exits right away with signal 9. What's wrong?

A: This error occurs most often when a shared library is missing. If you know which file is missing,
you can re-install it on all machines that might execute the job. Alternatively, re-link your program
so that it contains all the information it requires.

Q: None or only some of my jobs are running, even though there's resources available in the pool.
How can I fix this?

A: Firstly, you will need to discover where the problem lies. Try these steps to work out what is
wrong:
1. Run condor_q -analyze and see what output it gives you

2. Look at the User Log file. This is the file that you specified as log = path/to/
filename.log in the submit file. From this file you should be able to tell if the jobs are
starting to run, or if they are exiting before they begin.

http://redhat.com/docs/en-US/Red_Hat_Enterprise_MRG
http://redhat.com/docs/en-US/Red_Hat_Enterprise_MRG
http://www.redhat.com/mrg/hardware/
http://www.redhat.com/mrg/hardware/
http://www.apache.org/licenses/LICENSE-2.0

Chapter 15. Frequently Asked Questions

122

3. Look at the SchedLog on the submit machine after it has performed the negotiation for the
user. If a user doesn't have a high enough enough priority to access more resources, then
this log will contain a message that says Lost priority, no more jobs.

4. Check the ShadowLog on the submit machine for warnings or errors. If jobs are successfully
being matched with machines, they still might be failing when they try to execute. This can
be caused by file permission problems or similar errors.

5. Look at the NegotiatorLog during the negotiation for the user. Look for messages about
priority or errors such as No more machines.

Another common problem that will stop jobs running is if the submit machine does not have
adequate swap space. This will produce an error in the SCHEDD_LOG file:

[date] [time] Swap space estimate reached! No more jobs can be run!
[date] [time] Solution: get more swap space, or set RESERVED_SWAP = 0
[date] [time] 0 jobs matched, 1 jobs idle

The amount of swap space on the submit machine is calculated by the system. Serious errors
can occur in a situation where a machine has a lot of physical memory and little or no swap
space. Because physical memory is not considered, Condor might calculate that it has little or no
swap space, and so it will not run the submitted jobs.

You can check how much swap space has been calculated as being available, by running the
following command from the shell prompt:

$ condor_status -schedd [hostname] -long | grep VirtualMemory

If the value in the output is 0, then you will need to tell the system that it has some swap space.
This can be done in two ways:
1. Configure the machine with some more actual swap space; or

2. Disable the check. Define the amount of reserved swap space for the submit machine as
0, and change the RESERVED_SWAP configuration variable to 0. You will need to perform
condor_restart on the submit machine to pick up the changes.

Q: I submitted a job, but now my requirements expression has extra things in it that I didn't put
there. How did they get there and why do I need them?

A: This occurs automatically, and are extensions that are required by Condor. This is a list of the
things that are automatically added:
• If arch and opsys are not specified in the submit description file, they will be added. It will

insert the same platform details as the machine from which the job was submitted.

• The expression Memory * 1024 > ImageSize is automatically added. This makes sure
that the job runs on a machine with at least as much physical memory as the memory footprint
of the job.

123

• If the Disk >= DiskUsage is not specified, it will be added. This makes sure that the job will
only run on a machine with enough disk space for the job's local input and output.

• A pool administrator can request that certain expressions are added to submit files. This is
done using the following configuration variables:
• APPEND_REQUIREMENTS

• APPEND_REQ_VANILLA

• APPEND_REQ_STANDARD

Q: What signals get sent to my jobs when they are pre-empted or killed, or when I remove them
from the queue? Can I tell Condor which signals to send?

A: The signal jobs are sent can be set in the submit description file, by adding either of the following
lines:

remove_kill_sig = SIGWHATEVER

kill_sig = SIGWHATEVER

If no signal is specified, the SIGTERM signal will be used. In the case of a hard kill, the SIGKILL
signal is sent instead.

Q: Why does the time output from condor_status appear as [?????]?

A: Collecting time data from an entire pool of machines can cause errant timing calculations if the
system clocks of those machines differ. If a time is calculated as negative, it will be displayed as
[?????]. This can be fixed by synchronizing the time on all machines in the pool, using a tool
such as NTP (Network Time Protocol).

Q: Condor commands are running very slowly. What is going on?

A: Some Condor commands will react slowly if they expect to find a condor_collector daemon,
but can not find one. If you are not running a condor_collector daemon, change the
COLLECTOR_HOST configuration variable to nothing:

COLLECTOR_HOST=

Q: If I submit jobs under NFS, they fail a lot. What's going on?

A: If the directory you are using when you run condor_submit is automounted under NFS
(Network File System), Condor might try to unmount the volume before the job has completed.

To fix the problem, use the initialdir command in your submit description file with a
reference to the stable access point. For example, if the NFS automounter is configured to
mount a volume at /a/myserver.company.com/vol1/user whenever the directory /home/
user is accessed, add this line to the submit description file:

Chapter 15. Frequently Asked Questions

124

initialdir = /home/user

Q: Why is my Java job completing so quickly?

A: The java universe executes the Java program's main() method and waits for it to return. When
it returns, Condor considers your job to have been completed. This can happen inadvertantly
if the main() method is starting threads for processing. To avoid this, ensure you join() all
threads spawned in the main() method.

15.3. Running MRG Grid on Windows platforms

Q: My pool uses a mixture of Unix/Linux and Windows machines. Will MRG Grid still work properly?

A: Yes! The central manager can be either Unix/Linux or Windows. Jobs can be submitted from
either, and run on either platform.

Q: My Windows program works fine when executed on its own, but it does not work when submitted
to the pool. What's going wrong?

A: Some Windows programs will not run properly because it can not find the .dll file that it
depends on. To avoid this problem, try the following:
• Use a static link for the program, instead of a dynamic link

• Use a script for the job that will set up the necessary environment

• Use a machine where the job runs correctly, and submit the job with getenv = true in the
submit description file to copy the current environment

• Send the required .dll files with the job by adding transfer_input_files to the submit
description file

Q: Why won't the condor_master start, saying In StartServiceCtrlDispatcher, Error
number: 1063?

A: Under Windows, the condor_master daemon is started as a service. To start the daemon,
type the following command at the command prompt:

> net start condor

You can also start the service by going to the Windows Control Panel, opening the Service
Control Manager and selecting the condor_master daemon.

Q: When I submit a job from a Windows machine, I receive an error about a credential. What does
this mean?

A: Jobs submitted from a Windows machine require a stored password to perform some operations.
If this password is not stored, it will give an error saying ERROR: No credential stored
for username@machinename.

125

To store a password, type the following command at the command prompt:

> condor_store_cred add

Q: When a job executes on a Windows machine, if it has been submitted from a Unix/Linux
machine, it doesn't work properly. How do I fix this?

A: This can happen sometimes if a file transfer has not been performed. To fix the problem, add the
line TRANSFER_FILES = ALWAYS to the job submit description file.

Q: Why does my job start but then exit right away with status 128?

A: This happens when the machine executing the job is missing a required .dll file. To determine
what .dll files your program requires, open Windows Explorer, right-click the program and
select Quickview. Click Import List to see the required files. Once you know what files are
required, include them and add the TRANSFER_INPUT_FILES line to the job submit file.

Q: Does the USER_JOB_WRAPPER configuration variable work on Windows machines?

A: No. This configuration variable does not work on Windows machines, due to differences in the
way Windows and Unix/Linux handle batch scripts.

Q: Why do the Condor daemons exit with an error saying 10038 (WSAENOTSOCK)?

A: This can be caused if a machine has installed a non-standard Winsock Layered Service Provider
(LSP). These are commonly installed as part of anti-virus or other security-related software.
There are freely available tools to detect and remove LSPs from Windows machines.

15.4. Grid computing

Q: My log files contain errors saying PERMISSION DENIED. What does that mean?

A: This can happen if the configuration variables HOSTALLOW_* and HOSTDENY_* are not
configured correctly. Check these parameters and set ALLOW_* and DENY_* as appropriate.

Q: What happens if the central manager crashes?

A: If the central manager crashes, jobs that are already running will continue as normal. Queued
jobs will remain in the queue but will not begin running until the central manager is restarted and
begins matchmaking again.

Q: The condor daemons are running, but I get no output when I run condor_status. What is
wrong?

A: Check the collector log. You should see a message similar to this:

DaemonCore: PERMISSION DENIED to host 128.105.101.15:9618 for command 0
 (UPDATE_STARTD_AD)

Chapter 15. Frequently Asked Questions

126

This type of error is caused when permissions are configured correctly. Try the following:
• Ensure that DNS inverse lookup works on your machines (when you type in an IP address,

you machine can find the domain name). If it is not working, either fix the DNS problem itself,
or set the DEFAULT_DOMAIN_NAME setting in the configuration file

• Use numeric IP addresses instead of domain names when setting the HOSTALLOW_WRITE
and HOSTDENY_WRITE configuration macros

• If the problem is caused by being too restrictive, try using wildcards when defining the
address. For example, instead of using:

HOSTALLOW_WRITE = condor.your.domain.com

try using:

HOSTALLOW_WRITE = *.your.domain.com

Q: How do I stop my job moving to different CPUs?

A: You will need to define which slot you want the job to run on. You can do this using
either numactl or taskset. If you are running jobs from within your own program, use
sched_setaffinity and pthred_{,attr_}setaffinity to achieve the same result.

Q: I have a High Availability setup, but sometimes the scheddd keeps on trying to start but exits
with a status 0. Why is this happening?

A: In an High-Available Scheduler setup with 2 nodes (Node A and Node B), Condor will start
on Node A and brings up the schedd, before it starts on Node B. On node B, the schedd
continually attempts to start and exits with status 0.

This can be caused by the two nodes using different HA schedd names. In this case, the
schedd on Node B will continually try to start, but will not be able to because of lock conflicts.

This problem can be solved by using the same name for the schedd on both nodes. This will
make the schedd on Node B realize that one is already running, and it doesn't need to start.
Change the SCHEDD_NAME configuration entry on both nodes so that the name is identical.

Note that this configuration will allow other schedulers to run on other nodes besides the HA
SCHEDD_NAME. So you can have HA (on two nodes) and other schedds elsewhere.

Chapter 16.

127

More Information

Reporting Bugs
Follow these instructions to enter a bug report:

1. You will need a Bugzilla1 account. You can create one at Create Bugzilla Account2.

2. Once you have a Bugzilla account, log in and click on Enter A New Bug Report3.

3. You will need to identify the product (Red Hat Enterprise MRG), the version (1.1), and
whether the bug occurs in the software (component=grid) or in the documentation
(component=Grid_Installation_Guide).

Further Reading
• Red Hat Enterprise MRG and MRG Grid Product Information

• http://www.redhat.com/mrg

• MRG Grid Installation Guide and other Red Hat Enterprise MRG manuals

• http://redhat.com/docs/en-US/Red_Hat_Enterprise_MRG

• University of Wisconsin's Condor Manual

• http://www.cs.wisc.edu/condor/manual/

https://bugzilla.redhat.com/index.cgi
https://bugzilla.redhat.com/createaccount.cgi
https://bugzilla.redhat.com/enter_bug.cgi
http://www.redhat.com/mrg
http://redhat.com/docs/en-US/Red_Hat_Enterprise_MRG
http://www.cs.wisc.edu/condor/manual/

128

129

Appendix A. Revision History
Revision 21 Mon Jan 12 2009 Lana Brindley lbrindle@redhat.com

BZ #479198
BZ #473111

Revision 20 Wed Jan 7 2009 Lana Brindley lbrindle@redhat.com

BZ #479053

Revision 19 Wed Jan 7 2009 Lana Brindley lbrindle@redhat.com

BZ #477801
BZ #477805

Revision 18 Mon Dec 22 2008 Michael Hideo mhideo@redhat.com

BZ #477070
Removed issuenum in Book_Info.xml
Changed edition to 1

Revision 0.15 Mon Dec 8 2008 Lana Brindley lbrindle

BZ #474939
BZ #474938

Revision 0.14 Fri Dec 5 2008 Lana Brindley lbrindle

Further minor updates

Revision 0.13 Tue Nov 25 2008 Lana Brindley lbrindle

Further minor updates
Restructure of EC2 Chapter

Revision 0.12 Mon Nov 24 2008 Lana Brindley lbrindle

Minor updates prior to releasing document to Quality Engineering

Revision 0.11 Mon Nov 24 2008 Lana Brindley lbrindle@redhat.com

Completion of EC2 chapter

Revision 0.10 Fri Nov 21 2008 Lana Brindley lbrindle@redhat.com

Split EC2 chapter into EC2 and EC2 Enahnced - BZ #471695

Revision 0.9 Thu Nov 20 2008 Lana Brindley lbrindle@redhat.com

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:mhideo@redhat.com
mailto:lbrindle
mailto:lbrindle
mailto:lbrindle
mailto:lbrindle
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

Appendix A. Revision History

130

Added remote configuration chapter - BZ #471707

Revision 0.8 Wed Nov 19 2008 Lana Brindley lbrindle@redhat.com

Changes and updates arising from technical review

Revision 0.7 Fri Nov 7 2008 Lana Brindley lbrindle@redhat.com

Configuration

Revision 0.6 Mon Nov 3 2008 Lana Brindley lbrindle@redhat.com

Concurrency limits - BZ #459937
Dynamic provisioning - BZ #468942
Low-latency scheduling - BZ #454455
FAQs
More Information

Revision 0.5 Wed Oct 29 2008 Lana Brindley lbrindle@redhat.com

Added download and configuration information to EC2 chapter
APIs

Revision 0.4 Tue Oct 28 2008 Lana Brindley lbrindle@redhat.com

EC2
Removed future chapters from current build

Revision 0.3 Tue Oct 21 2008 Lana Brindley lbrindle@redhat.com

Policy Configuration
Virtual Machine Universe
High Availability

Revision 0.2 Wed Oct 1 2008 Lana Brindley lbrindle@redhat.com

Front matter
Preface
Overview
Configuration (not completed)
Jobs
Users
ClassAds
Policy Configuration (not completed)

Revision 0.1 Wed Aug 6 2008 Lana Brindley lbrindle@redhat.com

Initial Document Creation

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

	Grid User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Overview
	Chapter 2. Configuration
	2.1. System Wide Configuration File Variables
	2.2. Logging configuration variables

	Chapter 3. Remote configuration tool
	Chapter 4. Jobs
	4.1. Choosing a universe
	4.2. Writing a submit description file
	4.3. Time scheduling for job execution
	4.4. Job Hooks

	Chapter 5. User Priorities and Negotiation
	Chapter 6. ClassAds
	6.1. Writing ClassAd expressions

	Chapter 7. Policy Configuration
	7.1. Machine states and transitioning
	7.2. The condor_startd daemon
	7.3. Conditions for state and activity transitions
	7.4. Defining a policy

	Chapter 8. The Virtual Machine Universe
	8.1. Configuring MRG Grid for the virtual machine universe

	Chapter 9. High Availability
	9.1. High availability of the job queue
	9.2. High availability of the central manager

	Chapter 10. Cloud Computing
	10.1. MRG/EC2 Basic
	10.2. MRG/EC2 Enhanced

	Chapter 11. Concurrency Limits
	Chapter 12. Dynamic provisioning
	Chapter 13. Low-latency scheduling
	Chapter 14. Application Program Interfaces (APIs)
	14.1. Using the MRG Grid API
	14.2. Methods

	Chapter 15. Frequently Asked Questions
	Chapter 16. More Information
	Appendix A. Revision History

