
EGEE

R-GMA System Specification

Document identifier: EGEE-JRA1-TEC-490223

Date: September 4, 2006

Activity: JRA1: Middleware Engineering and
Integration (UK Cluster)

Document status: DRAFT

Document link: https://edms.cern.ch/document/490223/

Abstract: This document presents the System Specification for the Information and Monitoring Services
middleware component (R-GMA), in sufficient detail to support design verification, detailed design and
test specification. It describes, in detail, what R-GMA will do.

The document is structured with a single chapter containing a technical overview for the proposed system,
followed by a separate chapter for each of the R-GMA services, with a standard set of headings in each
of these chapters. A chapter on security follows these, and the final chapter specifies the subset of SQL
used in R-GMA.

INFSO-RI-508833 DRAFT 1/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

Document Change Log

Issue Date Comment Author
0.1 31/05/04 First Draft JRA1-UK
2.0 28/07/04 Second Draft JRA1-UK

Document Change Record

Issue Item Reason for Change

Copyright c©Members of the EGEE Collaboration. 2004. See http://eu-egee.org/partners for de-
tails on the copyright holders.

EGEE (“Enabling Grids for E-science in Europe”) is a project funded by the European Union. For
more information on the project, its partners and contributors please see http://www.eu-egee.org.

You are permitted to copy and distribute verbatim copies of this document containing this copy-
right notice, but modifying this document is not allowed. You are permitted to copy this document
in whole or in part into other documents if you attach the following reference to the copied ele-
ments: “Copyright c©2004. Members of the EGEE Collaboration. http://www.eu-egee.org”

The information contained in this document represents the views of EGEE as of the date they are
published. EGEE does not guarantee that any information contained herein is error-free, or up to
date.

EGEE MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY PUBLISHING
THIS DOCUMENT.

INFSO-RI-508833 DRAFT 2/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

CONTENTS

1 INTRODUCTION 7

1.1 PURPOSE AND STRUCTURE OF THIS DOCUMENT. 7

1.2 APPLICATION AREA . 7

1.3 REFERENCES. 7

1.4 DOCUMENT EVOLUTION PROCEDURE. 7

1.5 TERMINOLOGY . 7

2 BACKGROUND 8

2.1 SCOPE OF THIS SPECIFICATION. 8

2.2 R-GMA ARCHITECTURE. 8

2.2.1 VIRTUAL DATABASE . 8

2.2.2 PRIMARY KEYS AND TIME-STAMPS . 9

2.2.3 PRODUCERS . 9

2.2.4 CONSUMERS. .10

2.2.5 RETENTION PERIODS. 11

2.3 WEB SERVICES ARCHITECTURE . 11

2.3.1 OVERVIEW .11

2.3.2 RESOURCE FRAMEWORK. 11

2.3.3 FACTORY SERVICES. 12

2.4 API .12

2.4.1 USER API .12

2.4.2 SYSTEM/ADMINISTRATION APIS . 12

2.5 SECURITY CONSIDERATIONS. 13

2.6 PERFORMANCE CONSIDERATIONS. 13

2.7 FAULT TOLERANCE, EXCEPTION HANDLING AND RECOVERY 13

2.7.1 REPLICATION. .13

2.7.2 RECOVERY FOLLOWING RESTART. 13

2.7.3 ERROR REPORTING. 13

2.8 HARDWARE/SOFTWARE CONSIDERATIONS. 14

2.9 STANDARD TOOLS. .14

2.9.1 R-GMA COMMAND LINE . 14

2.9.2 SCHEMA BROWSER. 15

2.10 PACKAGING AND INSTALLATION . 15

2.11 EXTERNAL DEPENDENCIES. 15

2.11.1 INTERNET PORT NUMBERS. 15

2.11.2 TIME SYNCHRONIZATION . 16

2.11.3 WEB SERVICES SOFTWARE. 16

2.11.4 RELATIONAL DATABASE MANAGEMENT SYSTEMS. 16

INFSO-RI-508833 DRAFT 3/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

2.11.5 SECURITY MANAGEMENT SOFTWARE 16

2.11.6 LOGGING SOFTWARE. 17

2.12 SERVICE SPECIFICATIONS. 17

3 PRIMARY PRODUCER 17

3.1 DESCRIPTION. .17

3.1.1 SERVICE COMPONENTS. 17

3.1.2 RESOURCE LIFECYCLE. 17

3.1.3 REGISTRATION. 18

3.1.4 SUPPORTED QUERIES. 18

3.1.5 PUBLISHING, STORING AND DELETING TUPLES 18

3.1.6 MESSAGES FROM CONSUMER SERVICE. 19

3.2 INTERFACE .20

3.3 ERROR HANDLING. .21

3.4 EXTERNAL OBJECTS . 21

3.4.1 CONFIGURATION PARAMETERS . 21

4 SECONDARY PRODUCER 22

4.1 DESCRIPTION. .22

4.1.1 SERVICE COMPONENTS. 22

4.1.2 RESOURCE LIFECYCLE. 23

4.1.3 REGISTRATION. 23

4.1.4 SUPPORTED QUERIES. 23

4.1.5 PUBLISHING, STORING AND DELETING TUPLES 23

4.1.6 MESSAGES FROM CONSUMER SERVICE. 23

4.2 INTERFACE .23

4.3 ERROR HANDLING. .24

4.4 EXTERNAL OBJECTS . 25

4.4.1 CONFIGURATION PARAMETERS . 25

5 ON-DEMAND PRODUCER 25

5.1 DESCRIPTION. .25

5.1.1 SERVICE COMPONENTS. 25

5.1.2 RESOURCE LIFECYCLE. 25

5.1.3 REGISTRATION. 25

5.1.4 SUPPORTED QUERIES. 25

5.1.5 PUBLISHING TUPLES. 25

5.1.6 CONSUMER SERVICE MESSAGES. 26

5.2 INTERFACE .26

5.3 ERROR HANDLING. .27

INFSO-RI-508833 DRAFT 4/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

5.4 EXTERNAL OBJECTS . 27

5.4.1 CONFIGURATION PARAMETERS . 27

6 CONSUMER 28

6.1 DESCRIPTION. .28

6.1.1 SERVICE COMPONENTS. 28

6.1.2 RESOURCE LIFECYCLE. 28

6.1.3 MEDIATION AND QUERY PLANNING. 28

6.1.4 QUERY TYPES . 28

6.1.5 STREAMING .29

6.1.6 REGISTRATION. 29

6.1.7 STARTING AND STOPPING QUERIES. 29

6.2 INTERFACE .30

6.3 ERROR HANDLING. .32

6.4 EXTERNAL OBJECTS . 32

6.4.1 CONFIGURATION PARAMETERS . 32

7 REGISTRY 32

7.1 DESCRIPTION. .32

7.1.1 SERVICE COMPONENTS. 32

7.1.2 RESOURCE LIFECYCLE. 33

7.1.3 REPLICATION. .33

7.1.4 MEDIATION .33

7.2 INTERFACE .34

7.3 ERROR HANDLING. .35

7.4 EXTERNAL OBJECTS . 35

7.4.1 CONFIGURATION PARAMETERS . 35

7.4.2 REGISTRY DATABASE. 35

8 SCHEMA 36

8.1 DESCRIPTION. .36

8.1.1 SERVICE COMPONENTS. 36

8.1.2 RESOURCE LIFECYCLE. 36

8.1.3 REPLICATION. .36

8.1.4 CREATING TABLES . 36

8.2 INTERFACE .37

8.3 ERROR HANDLING. .37

8.4 EXTERNAL OBJECTS . 37

8.4.1 CONFIGURATION PARAMETERS . 37

8.4.2 SCHEMA DATABASE. 38

INFSO-RI-508833 DRAFT 5/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

9 SECURITY 38

9.1 REQUIREMENTS .38

9.1.1 CONSUMER USERS. 38

9.1.2 PRODUCER USERS. 38

9.1.3 SITE ADMINISTRATORS . 39

9.1.4 VIRTUAL ORGANISATIONS . 39

9.2 SOLUTIONS .39

9.2.1 AUTHENTICATION . 39

9.2.2 ENCRYPTION. .39

9.2.3 AUTHORIZATION . 40

9.3 BOUNDARIES OF RESPONSIBILITY. 41

9.4 R-GMA RESOURCE OWNERSHIP. 41

9.5 SECURING DATA .42

9.5.1 WHAT DATA NEEDS SECURING? . 42

9.5.2 WHERE IS IT HELD?. 42

9.5.3 HOW IS IT SECURED?. 43

9.6 AUTHORIZING OPERATIONS. 43

9.7 IMPLEMENTING AUTHORIZATION . 45

9.7.1 SITE FILTERING . 45

9.7.2 SERVICE AUTHORIZATION (ACCESS TO OPERATIONS). 46

9.7.3 TABLE AUTHORIZATION . 46

10 SQL IN R-GMA 46

10.1 CONSUMER QUERIES. 46

10.1.1 SIMPLE QUERIES . 46

10.1.2 COMPLEX QUERIES. 46

10.2 CREATING TABLES. .47

10.2.1 DATA TYPES SUPPORTED. 47

10.2.2 DATA TYPE CONVERSIONS . 47

10.3 INSERTING DATA .48

10.4 RETURNING DATA .48

10.5 DATABASE MANAGEMENT . 48

INFSO-RI-508833 DRAFT 6/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

1 INTRODUCTION

1.1 PURPOSE AND STRUCTURE OF THIS DOCUMENT

This document presents the System Specification for the Information and Monitoring Services middle-
ware component (R-GMA), in sufficient detail to support the following activities:

• Design verification: There are few extant requirements documents for this middleware component,
so as the first deliverable of system design activities, this document sets out explicitlywhat R-GMA
will do, so that the project design authorities can verify that it will provide the required services to
other middleware components and users of the EGEE grid infrastructure.

• System design: JRA1-UK will produce detailed designs to show exactlyhow the system specified
here will be implemented.

• System test: This document is the primary input to test specification activities.

This introductory chapter contains the standard headings required for EGEE technical documents. Chap-
ter 2 contains a technical overview for the proposed system. This is followed by a separate chapter for
each of the R-GMA services, with a standard set of headings in each chapter. A chapter on security
follows these, and the final chapter specifies the SQL language subset used by R-GMA.

1.2 APPLICATION AREA

This document affects the following three areas:

• JRA1-UK (system design)

• JRA1 Middlware Design Team and Project Technical Forum (design assurance)

• JRA1 Test Team (system/integration testing)

1.3 REFERENCES

This is the definitive specification document for R-GMA. The main inputs to the specification process
were the DataGrid R-GMA documentation (especially the architecture document), the work already
done on the new R-GMA design and an analysis of the R-GMA code as it was at the end of the DataGrid
project. This document is self-contained, but the following documents, referred to in the text, can provide
additional background information.

1.4 DOCUMENT EVOLUTION PROCEDURE

This document is collectively owned by JRA1-UK. This document will be updated periodically by JRA1-
UK in the light of feedback received. It is held in CVS and new versions will be published on the
JRA1-UK Web page and in EDMS.

1.5 TERMINOLOGY

General project definitions can be found in the Project Glossary. R-GMA and Web Services terminology
is explained in the architecture overview (section2).

INFSO-RI-508833 DRAFT 7/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

2 BACKGROUND

2.1 SCOPE OF THIS SPECIFICATION

The EGEE Grid Information and Monitoring Services component being specified here is a production
version of the R-GMA Information and Monitoring System developed by Work Package 3 of the Euro-
pean DataGrid project - the name R-GMA is being retained. This document specifies the core R-GMA
services and describes the standard tools which will be delivered with the system. It does not explain
how other gLite (EGEE Middleware) components will interact with R-GMA.

2.2 R-GMA A RCHITECTURE

2.2.1 VIRTUAL DATABASE

R-GMA is an implementation of the Grid Monitoring Architecture (GMA) proposed by the Global Grid
Forum (GGF), which models the information infrastructure of a Grid as a set ofConsumers (who request
information),Producers (who provide information) and a singleRegistry (which mediates the communi-
cation between producers and consumers). R-GMA imposes a standard query language (a subset of SQL)
on this model - so producers publishtuples (database rows) with an SQL insert statement and consumers
query them using SQL select statements. R-GMA also ensures that all tuples carry atime-stamp, so that
monitoring systems (which require time-sequenced data) are inherently supported. A full description of
the R-GMA architecture is contained in the EGEE Architecture document [2]: what follows, is a brief
description of the components (services) provided by R-GMA, sufficient for reading this document.

Table 1, Producer P1 details

Table 2, Producer P2 details

Table 2, Producer P3 details

Table 3, Producer P2 details

Table 3, Producer P4 details

Table 2, Producer P1 details
Table 1, Column defs

Table 2, Column defs

Table 3, Column defs

C1

P1

P2

P3

C2Consumer Consumer

Primary Producer On−demand Producer

Secondary Producer

Registry

Table 2

Schema tuples
virtual tables

R-GMA presents the information resources of a Virtual Organisation (VO) as a singlevirtual database
containing a set ofvirtual tables. As the picture above shows, a single1 schema contains the name and
structure (column names, types and settings) of each virtual table in the system. A single registry contains
a list, for each table, of producers who have offered topublish (provide data for) rows for the table. A
consumer runs an SQL query against a table, and the registry selects the best producers to answer the
query in a process calledmediation. The consumer then contacts each producer directly, combines the
information, and returns a set of tuples. The mediation process is hidden from the user. Note that there

1Although there is only one logical schema and registry pair per VO, identical replicas are made for scalability and robust-
ness. This is discussed in detail later.

INFSO-RI-508833 DRAFT 8/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

is no central repository holding the contents of the virtual table; it is in this sense, that the database is
virtual.

2.2.2 PRIMARY KEYS AND TIME-STAMPS

Each virtual table has akey column (or group of columns) declared in the schema. Each tuple published
by a primary producer also carries atime-stamp, added by the producer, which, together with the key
columns, is similar to a primary key for the table. Tuples with the same key, but different values for the
time-stamp, can also be thought of as different versions of the same tuple.

2.2.3 PRODUCERS

There are three classes of producer:Primary, Secondary andOn-demand. Each is created by a user
application and returns tuples in response to queries from other user applications. As the picture below
shows, the main difference is in where the tuples come from.

Producer
Service

Tuple
Storage

Other
Producers

Tuple
Storage

Producer
Service

Producer
API

Producer
API

Producer
API

Producer
Service

Queries

Tuples

TuplesSELECT *
Queries

Tuples

User Code

Primary Producer

User Code

Secondary Producer

User Code

Tuples

On−demand Producer

Queries

Tuples

User Code

Control only

Control only

Control and
inserted tuples

Queries

Consumers

Consumers

Consumers

Theproducer service in these pictures is a process running on a server on behalf of the user code (this is
expanded in the Web Services section which follows). In a Primary Producer, the user code periodically
inserts tuples into storage maintained internally by the Primary Producer service. The producer service
autonomously answers consumer queries from this storage. The Secondary producer service also answers
queries from its internal storage, but it populates this storage itself by running its own query against the
virtual table: the user code only sets the process running; the tuples come from other producers. In the

INFSO-RI-508833 DRAFT 9/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

On-demand Producer, there is no internal storage; data is provided by the user code in direct response to
a query forwarded on to it by the producer service.

The tuple-storage maintained by Primary and Secondary producers can either be in memory, in a file, or
in a real database table. Producers that use non-database storage are optimized to answer simple queries
quickly, but they must support complex queries too (e.g. by creating an in-memory database on the fly).
In an On-demand producer, tuple-storage (if any) is the responsibility of the user code, but may also be
in a real database.

2.2.4 CONSUMERS

In R-GMA, each consumer represents a single SQL SELECT query on the virtual database. The request
is initiated by user code, but theconsumer service carries out all of the work on its behalf. The query
is first passed to the Registry to identify which producers, for each virtual table in the query, must be
contacted to answer it. This process is calledmediation, and the algorithm used in R-GMA is explained
in section 6.2. The query is then passed by the consumer service to each relevant producer, to obtain the
answer tuples directly.

Tuple
Storage

Consumer
API

Registry
Service

Consumer
Service Tuples

User Code

Consumer

Producers

Query

Tuples

Query

Query List of producers

There are four types of query:continuous, latest, history andstatic. The set of queries that a particular
producer supports is recorded in the registry. All query types except static can take an optional time
interval parameter.

A continuous query causes all new tuples that match the query, to be streamed into the consumer’s tuple-
storage, as soon as they are inserted into the virtual table by the producers. Streaming continues until
the consumer requests it to stop. If a time interval is specified, the consumer will additionally receive
any tuples which are already in the virtual table when the query starts, and which are no older than the
time interval. There is no guarantee that tuples are time-ordered. All Primary and Secondary producers
support continuous queries. On-demand producers do not.

Latest and history queries areone-time queries: they execute on the current contents of the virtual table,
then terminate. In a history-query, all versions of any matching tuples are returned; in a latest-query,
only those representing the “current state” (see below) are returned. In both cases, a time interval may be
specified with the query, to limit the age of the tuples returned. Primary and Secondary Producers may
optionally support one-time queries. On-demand producer do not.

Static queries are only supported by On-demand producers. They are one-off database-like queries and
do not contain R-GMA time-stamps. The primary purpose of an On-demand producer is to allow large
databases to be accessed through the R-GMA infrastructure, without the overhead of copying tuples into
a producer service.

INFSO-RI-508833 DRAFT 10/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

2.2.5 RETENTION PERIODS

To allow Primary and Secondary producers to periodically purge “old” tuples, and to give a precise
meaning to the “current state” for a latest query,retention periods are used. On-demand producers do
not use retention periods.

A LatestRetentionPeriod (time interval) is inserted into each tuple published by a Primary Producer, and
remains there when a tuple is re-published by a Secondary Producer. In addition, Primary and Secondary
producers declare (in the registry) aHistoryRetentionPeriod for each table to which they are publishing
tuples.

Primary and Secondary producers therefore have two logical tuple-stores, one supporting latest-queries
and the other supporting continuous and history queries. Producers undertake to retain themost recent
version of any tuple which has not exceeded its LatestRetentionPeriod, andall versions of any tuple
which have not exceeded the HistoryRetentionPeriod.

A latest-query returns only the most recent versions of tuples, and only those tuples which have not
exceeded their LatestRetentionPeriod (this is the definition of current state). Conversely, a history-query
returns whatever is available, but that is guaranteed to include at least all versions of tuples which have
not exceeded the producer’s HistoryRetentionPeriod for the table.

The exact details of how retention periods work for each producer type are specified in the corresponding
chapters in this document.

2.3 WEB SERVICES ARCHITECTURE

2.3.1 OVERVIEW

R-GMA conforms to the Web Services Architecture [7]. It consists of six principalservices (Primary
Producer, Secondary Producer, On-demand Producer, Consumer, Registry and Schema), running on one
or more servers. This document contains a chapter for each of these services. Each service has a well de-
fined set ofoperations (such as a producer’sstartStreaming operation) which it can carry out, as specified
in a machine-readable XML document conforming to the Web Services Description Language (WSDL
[8]). There is one WSDL document for each service. All operations are requested by applications
through an exchange of messages with the service. The sequence and format of messages required for
each operation, including any parameters, is also specified in the WSDL.

R−GMA
API

SOAP
stub R−GMA

Service

User Code

R−GMA Web Services Interface

SOAP messages

Response

Request AXIS

R-GMA uses “SOAP messaging over http/s” [6], in a request/response pattern, for all user-to-service
and service-to-service communications apart, from streaming. As the picture shows, if the user chooses
to use the API (described below), the SOAP interface is hidden from them. Apache AXIS software
implements the SOAP interface on the server. Streaming tuples to continuous consumers uses a lower
lever communication, for efficiency.

2.3.2 RESOURCE FRAMEWORK

Each instance of a producer or consumer in a running R-GMA system exists as aresource on a server. A
resource contains the private data or threads associated with that particular instance (such as the tuple-
storage and tuple-streamer in a Primary Producer - see section3.1), and it is created by an R-GMA

INFSO-RI-508833 DRAFT 11/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

service, when a user sends a “create” request. It resides on the server with the service, and is given an
identifier which is passed back to the client. The client then includes the resource identifier with all sub-
sequent requests relating to that instance (the API takes care of this). A resource is normally destroyed at
the explicit request of the user, but in order to protect itself from an accumulation of redundant resources,
an R-GMA service requires the user to specify a termination interval (in a restricted range) when it cre-
ates the resource. If the service doesn’t hear from the user for any period exceeding the termination
interval, the resource is destroyed. This is the concept ofsoft-state registration. It puts the onus on the
user to keep the resource alive, by making periodic contact with the service, but any contact will do. The
registry protects itself in the same way, against producers and consumers which register then disappear,
so a periodic keep-registered message has also to be sent to the registry, by the consumer and producer
services.

R-GMA has a Resource Framework (borrowing from the WSRF [4] work) to manage the life-cycle of
resources running on a server. This includes sending keep-registered messages to the registry on behalf
of producer and consumer resources. It is implemented as part of the R-GMA services, and is hidden
from the user.

Registry and Schema instances also exist as resources created by a Registry or Schema service. This
allows a single service to host registries or schemas for multiple virtual organisations. However they are
not managed by the Resource Framework, the VO is the resource identifier, and they do not time out.

2.3.3 FACTORY SERVICES

For each of the six principal services, R-GMA has a correspondingfactory service to create resources.
This extra level of indirection allows R-GMA to support services with different attributes (quality of
service): the user specifies the attributes required (e.g. reliable delivery of tuples) and the factory service
creates a new resource with the URL of a suitable service. The user only needs to know the URL of their
local factory service.

2.4 API

2.4.1 USER API

R-GMA provides APIs for Java, C++, C and Python languages, to make it easier for user applications to
interact with the R-GMA services. The APIs are independent of each other and are designed to present
an easy-to-use and apropriate interface to R-GMA for each supported language. Each operation of each
service is represented by a method (or function) in the API, and that method simply packages up its pa-
rameters into a SOAP message and sends it to the Web Service for execution. Any return values or errors
(exceptions) are passed back to the caller. The API transparently manages any authentication required
by the server, and looks after the resource identifier. Direct interaction between a user application and
the R-GMA Web Service (by-passing the API) is also supported.

All R-GMA services report errors by sending SOAP Faults. Each API presents these to the user in a
manner appropriate to the language (e.g. as Java Exceptions). The absence of a fault indicates success.
The results of SQL queries (tuples) are returned in Result Sets which are defined in section10.4. Result
Sets will contain a warning if the mediator is unable to guarantee that the result is complete.

2.4.2 SYSTEM/ADMINISTRATION APIS

System APIs exist for communication between R-GMA services, hiding the SOAP interface and man-
aging authentication. An Administration API also exists to support browsing and administration of the

INFSO-RI-508833 DRAFT 12/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

registry and schema. The System APIs are implemented only in Java and are not visible to the user. The
Administration API is implemented in all supported languages.

2.5 SECURITY CONSIDERATIONS

Security for R-GMA is discussed in detail, in chapter9.

2.6 PERFORMANCE CONSIDERATIONS

To be completed(the general requirement is, of course, for services which are robust, fast enough and
highly scalable)

2.7 FAULT TOLERANCE , EXCEPTION HANDLING AND RECOVERY

2.7.1 REPLICATION

The schema and registry databases represent the only single point of failure in an R-GMA system, and
so multiple (running) replicas are maintained on different servers and are periodically synchronized (see
7.1.3 and 8.1.3). A producer or consumer must normally continue to use the replica with which it
originally registered, but it is capable of transferring itself to another replica in its VO, if the original one
fails. The other R-GMA services are self-contained and can be installed on as many servers in the VO as
required.

2.7.2 RECOVERY FOLLOWING RESTART

R-GMA instances (Web Service Resources) are always destroyed when the corresponding service restarts.
All calls to services in R-GMA (either from the user or another service) must therefore be prepared to
discover that a resource no longer exists, or is no longer registered in the registry, and to handle the error
gracefully. The use of time-outs (soft-state registration) on the registry and in the Resource Framework,
ensures entries to non-existent resources are automatically removed within a reasonable length of time.

Those R-GMA services which use permanent storage (registry service, schema service and primary
and secondary producers with user-specified tuple stores) do have some degree of resilience, because
new resources can connect to existing storage, provided the storage itself is recoverable. In the case
of the registry and schema, the database is brought up to date by sending a sychronization request to
other running replicas. In the case of a producer’s file or database tuple-store, existing tuples will be
automatically available, and will remain in the store until they exceed their retention period, in the usual
way.

2.7.3 ERROR REPORTING

Errors are reported by R-GMA services in a consistent way asSOAP Faults across the Web Services
interface. There are three types of fault:

RemoteException Network or security error connecting to service (user can retry later)

UnknownResourceExceptionResource identifier is unknown (user needs to re-create resource)

RGMAException Other R-GMA error (user needs to investigate before retrying)

INFSO-RI-508833 DRAFT 13/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

Each supported language API presents SOAP Faults to the user in a manner appropriate to the language.
Each fault contains an error code, to specify the exact error which has occured, and there is a standard
error message for each code.

Warnings are only issued in R-GMA in response to consumer queries, and only to indicate possible
inadequacies in the results. They are part of the query’s Result Set.

The table below shows how errors that are common to all services are handled by R-GMA. Each service
also has a table of service-specific faults in its own chapter.

Fault Response
API can’t connect to service. Service does nothing. API reports a RemoteException.
User not authenticated. Service does nothing. API reports a RemoteException.
User authenticated but not permitted to con-
nect.

User is not connected. Service reports a RemoteException.

User connected but not authorised to carry out
requested operation.

Operation is not carried out. Service reports a RemoteEx-
ception.

User connected but resource no longer exists.Operation is not carried out. Service reports an Unknown-
ResourceException.

User omits mandatory parameters to operation
or provides invalid values for them.

Operation is not carried out. Service reports an RGMAEx-
ception.

Operation fails for any reason not described
elsewhere, but recovery is possible.

Operation is reversed or resource is made stable. Service
reports an RGMAException.

Operation fails for any reason not described
elsewhere, and recovery is not possible.

Service destroys resource (but not any permanent tuple-
store) and reports an RGMAException.

In all cases, any external resources (especially database and network connections) are freed up wherever
possible, and any threads created by the resource should be terminated as cleanly as possible.

2.8 HARDWARE /SOFTWARE CONSIDERATIONS

In line with EGEE SA1 requirements, R-GMA is designed to run on the following operating systems:

• Linux Red Hat Enterprise 3 (or binary compatible version)

• Microsoft Windows XP

There are no special hardware requirements.

2.9 STANDARD TOOLS

Two simple user-interfaces to R-GMA will be delivered as part of the standard installation, providing
command-line and Web-browser access to an R-GMA installation.

2.9.1 R-GMA COMMAND L INE

The R-GMA command line tool provides a command-line administration facility for all tables in the
virtual database. You can also write to and read from virtual tables by creating producers and consumers,
and by issuing insert and select statements.

The R-GMA User Guide will include full documentation for this utility.

INFSO-RI-508833 DRAFT 14/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

2.9.2 SCHEMA BROWSER

The R-GMA Schema Browser is a Java Servlet application which provides a Web browser-based query
and administration facility for all tables in the virtual database (schema) of a particular VO.

The R-GMA User Guide will also include full documentation for this utility.

2.10 PACKAGING AND INSTALLATION

R-GMA will be packaged, installed and configured in accordance with EGEE SA1 requirements. It will
be delivered in the following packages.

• Base (one package: all common configuration and documentation files)

• Services (one package: all six services)

• WSDL (six packages: each service’s WSDL in a separate one)

• Java API: (two packages: interface and implementation)

• C++ API: (two packages: interface and implementation)

• C API: (two packages: interface and implementation)

• Python API (two packages: interface and implementation)

• Command Line and Browser (two packages: one for each tool)

All packages depend on the Base package, but the others can be installed independently (the Services
package will contain a copy of any part of the Java API which it requires). Any other tools built on
R-GMA (e.g. Service Status, Accounting, etc.) will be delivered in separate packages.

The WSDL is split off from the services because alternative implementations of the services may be
provided by others (e.g. for logging and bookkeeping). The reason for splitting the APIs into two
packages is to allow the implementation (e.g. SOAP stubs) to change without affecting the API interface.

An installation/configuration guide will be delivered with the system.

2.11 EXTERNAL DEPENDENCIES

2.11.1 INTERNET PORT NUMBERS

An R-GMA server needs three configurable ports with the following default assignments:

8080 - for http connections to services

8088 - for streaming to consumers

8443 - for https connections

Users creating On-demand producers will need to provide a port on the client system to handle queries
and return data.

INFSO-RI-508833 DRAFT 15/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

2.11.2 TIME SYNCHRONIZATION

Time intervals are used throughout the R-GMA system, and for consistency, they will be represented as
integer milliseconds everywhere. Absolute time is held in only two places, in resource termination times
and in tuple time-stamps.

The use of absolute termination times for resources in the Resource Framework is entirely internal to that
system and therefore presents no time synchronization issues. The user specifies a terminationinterval
when a resource is created and simply sends sign-of-life signals to keep it alive.

The UTC time-stamps on each tuple in R-GMAdo have visibility beyond the system which creates them,
so synchronization problems can occur when time-stamps are compared. This happens at three points in
R-GMA:

• where tuples are inserted into a latest-type producer

• when deleting tuples which have exceeded their minimum retention period

• where a user runs a query which involves the time-stamp fields

A perfect solution is not needed. R-GMA time-stamps only have a resolution of one second2, and
system/network latencies will further reduce the resolution of any monitoring system using them. It is
suggested therefore, that all computer systems within a VO which connect to an R-GMA installation,
should synchronize their system clocks using something like NTP. R-GMA will contain a warning to
this effect in the User Guide and in the installation software, but will not enforce it.

2.11.3 WEB SERVICES SOFTWARE

The R-GMA Web Service is currently implemented using a SOAP/https binding and uses Apache Axis
software to handle that interface. Axis is a Java Web Application running in the Apache Tomcatservlet
container, and is accessed by client programs via a URL, over http/https. R-GMA services (port types)
are implemented as Java classes registered with Axis, and Axis simply hands off incoming messages to
the appropriate R-GMA service, running in the same Tomcat installation. The R-GMA Schema Browser
tool runs as a stand-alone Java servlet, also in Tomcat. A Java 2 SDK is a pre-requisite for installing
Apache Tomcat.

2.11.4 RELATIONAL DATABASE MANAGEMENT SYSTEMS

R-GMA services use JDBC to interface to the Registry database, Schema database and the tuple-storage
databases used by some producers.

It is intended to support any database for which a JDBC driver is available, but R-GMA is primarily
tested with MySQL (disk) and HSQLDB (in-memory).

See section10.1for information about the subset of SQL used by R-GMA.

2.11.5 SECURITY MANAGEMENT SOFTWARE

R-GMA will use the standard EGEE security middleware (as yet undefined) to access user/service cre-
dentials for authentication and authorization purposes. Interfaces for each language used by R-GMA
(services and API) will be required.

2This may change

INFSO-RI-508833 DRAFT 16/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

2.11.6 LOGGING SOFTWARE

R-GMA uses the open-source Log4j software for configurable debug logging in R-GMA services and
the Java API. It is intended to make use of the Apache Logging Services [1] for consistent logging across
all APIs.

2.12 SERVICE SPECIFICATIONS

The chapters which follow contain detailed specifications for each of the six R-GMA services. Each
chapter has a standard set of headings: Thedescription section describes what the service does and what
its principle components are.

Theinterface section lists all of the operations provided by the service, because these comprise the entire
interface to the service. We provide a precise description of the functionality of each operation, but
details of parameters and return values are relegated to the WSDL document and the R-GMA Interface
Specification document, which will be delivered with the system.

The error-handling section describes how major service-specific failures (e.g. buffers filling up) are
dealt with, because in some instances, the correct response is not simply to report an error and give up.
Minor/common errors are covered by the general headings in section2.7.3.

Theexternal objects section lists all of the externally configured things (such as databases and configu-
ration parameters) on which this service depends.

Finally, the schema and registry services have an extra section onreplication, and the registry service has
an extra one onmediation.

3 PRIMARY PRODUCER

3.1 DESCRIPTION

3.1.1 SERVICE COMPONENTS

The Primary Producer Service allows a user to publish tuples to one or more virtual tables. The picture
below shows its principal components.

Continuous
Queries

History
Queries

Latest
Queries

Latest
Tuple
Store

History
Tuple
Storeprimary

producer

Tuple
StreamerSQL

Command
Processor

List of
Continuous
Consumers

tuples

tuples

startStreaming

execute

tuples

execute

insert

C

H

L

3.1.2 RESOURCE L IFECYCLE

A new Primary Producer Resource is created when a user calls the Primary Producer Factory Service’s
createPrimaryProducer operation. The resource holds the private data and threads for a single producer

INFSO-RI-508833 DRAFT 17/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

instance. The user must declare the type of queries they wish the producer to support, and the type of
tuple-storage they wish it to use. It is the job of the Producer Factory Service to identify a compatible
Producer Service to create and store the resource.

Each Primary Producer resource has a Termination Interval that is a time interval within which the user
must make contact with the producer service, in order to keep the resource alive and maintain its table
entries in the registry. The Termination Interval is set by the user when the resource is created (the
service imposes a maximum value) and can be subsequently changed by callingsetTerminationInterval.
If the producer’s publication interval (the interval between calls toinsert) is greater than the Termination
Interval, then the user should callshowSignOfLife perodically to keep it alive.

The resource is destroyed after the user sends aclose or destroy request, or the resource exceeds its
termination interval without any contact from the user.

3.1.3 REGISTRATION

Users must declare (declareTable) their intention to publish to a virtual table before they can do so. The
table must already exist in the schema. The Primary Producer Service obtains the table structure from
the schema and creates a corresponding table (with columns of the same types) in the resource’s tuple
storage. It then registers the producer in the registry as a publisher for that table. Once the producer
is registered, the Producer Service will autonomously service SQL queries from consumers, from its
internal tuple storage.

The user can declare more than one table in a single producer. They are treated independently by the
Producer Service, except for processing “join” queries which involve more than one of the tables for
which the producer is registered.

A producer always publishes complete tuples (i.e. all columns), but it might choose to publish only a
subset of the tuples in the virtual table. The user indicates this by including apredicate in the form of
an SQL WHERE clause, when the table is declared. A producer is only permitted to publish tuples that
match its predicate; inserts which don’t match will fail. The mediator requires that a producer’s predicate
consists only of a union of column equality constraints (“WHERE col1=val1 AND col2=val2. . . ”).

A producer may publish to more than one VO. The user supplies a list of VOs when the producer resource
is created. The producer service registers tables in each VO’s registry (and keeps them registered in all
of the registries).

3.1.4 SUPPORTED QUERIES

All Primary Producers support continuous queries (so they can always be used by Secondary Producers).
They may optionally support latest and/or history queries as well. Primary Producers do not support
static queries. The type of queries a producer supports is the same for all tables for which it is registered,
and is recorded against each table entry in the registry, so the mediator can check it.

3.1.5 PUBLISHING , STORING AND DELETING TUPLES

Primary Producers have up to two logical tuple-stores. Continuous queries are answered from ahistory
tuple-store, as are history queries, if they are supported. If latest queries are supported, they are answered
from a latest tuple-store. Tuple-stores may be physically in memory, file or database storage. Memory-
based producers are optimized for fast streaming to continuous consumers, while database producers are
optimized for answering complex one-time queries. A single producer uses only one type of storage for
all types of queries that it supports. Users may specify their own databases (as a JDBC connection string)
for use as tuple stores.

INFSO-RI-508833 DRAFT 18/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

Tuples are inserted into the producer service’s tuple storage by the original user through theinsert oper-
ation, and are checked for type against the schema. The following tuple metadata is added to each tuple
as extra columns, by the Primary Producer Service (still to be agreed):

RgmaDate Date part of time-stamp, in the form ”YYYY-MM-DD”: only added if not
already filled in by user.

RgmaTime Time part of time-stamp, in the form ”HH:MM:SS”: only added if not already
filled in by user.

RgmaLRP Latest Retention Period (see below), in integer milliseconds.
RgmaHost DNS name of host publishing the information.
RgmaUser DN (distinguished name) of user publishing data (NULL if not authenticated).

The Producer Service puts the tuple into the history tuple store and, if present, the latest tuple-store,
where it will replace any existing one with the same key, provided its time-stamp is not older.

The user must set a History Retention Period and a Latest Retention Period for each declared table. The
History Retention Period is recorded in the registry. The Latest Retention Period is added by the service
into each inserted tuple. All Primary Producers must insert the Latest Retention Period, even if they
don’t support latest queries: this ensures that any Secondary Producers to which they are streaming can
choose to support latest queries. The two retention periods are independent.

A Primary Producer retains any published tuple in its history tuple-store until it has exceeded the History
Retention Period for the table. It also retains the latest version of any published tuple in its latest tuple-
store, if it supports latest queries, until the tuple has exceeded its Latest Retention Period. The producer
service has site-configured maximum values for both retention periods, to protect the service itself.

Latest tuples will never be returned in any query once they have expired, so they may be deleted as
soon the Latest Retention Period has been exceeded. Tuples in the history store, however, will usually
be retained even when they have expired, if there is at least one continuous consumer still waiting for
them. In this instance, the producer will block all future inserts when its tuple storage fills up, until a
tuple has finally been delivered and deleted. A producer service may choose not to implement this and
delete expired tuples regardless of any waiting consumers: the user selects a service with the appropriate
behaviour via theignoreSlowConsumers flag when the producer resource is created. When a Primary
Producer resource is closed (via theclose operation), the resource persists until the tuples have expired
according to the rules just described. By contrast, thedelete operation will cause a Primary Producer
resource to terminate immediately.

3.1.6 MESSAGES FROM CONSUMER SERVICE

Consumer Services send astartStreaming message to the Primary Producer Service when they want a
continuous consumer to start receiving newly inserted tuples from it. Tuples are streamed to consumers
using an autonomous tuple-streamer (owned by the Primary Producer resource), as soon as they are in-
serted into the tuple-store. They are filtered on-the-fly according to the column expression and predicate
of each consumer’s query, before being pushed by the tuple-streamer into the consumer’s own tuple-
store. Only simple queries are supported (see section10.1.1). There is also astopStreaming message to
turn streaming off for a particular consumer.

Consumer Services send anexecute message to run a One-Time query against the current contents of
a Primary Producer’s tuple-store. Results are buffered for retrieval by the Consumer Service. Complex
queries are supported, including those involving joins between the tables for which this producer is
registered. Section10.1.2specifies the minimum subset of SQL which any Primary Producer, regardless
of its tuple-storage type, must support. Beyond that, the complexity of one-time queries a Primary
Producer will support is not restricted by R-GMA.

INFSO-RI-508833 DRAFT 19/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

3.2 INTERFACE

The Primary Producer service provides the following operations:

createPrimaryProducer (FACTORY SERVICE INTERFACE) Creates a new Primary Producer re-
source and registers it with the Resource Framework, with the specified ter-
mination interval;
• query type (latest and/or history), storage type (memory, file or database) and
handling for slow consumers are fixed at this point;
• all Primary Producers support continuous queries;
• the user must provide a list of one or more VO’s to which this producer will
publish; the producer will be registered in each VO’s registry;

declareTable (USER INTERFACE) Registers this producer in the registry as a publisher for
a specified table, which must already exist in the schema;
• must declare a predicate to restrict the tuples it will publish (this is an SQL
WHERE clause which is limited (by the Registry mediator) to a union (AND)
of equality constraints on columns in the table); may be empty
• Latest Retention Period and History Retention Period fixed at this point;
•Corresponding table is created in resource’s tuple-store; if this already exists,
its structure is checked and any existing tuples will be automatically available
for consumer queries until they expire;

insert (USER INTERFACE) Inserts one complete tuple of data into the producer’s
tuple storage;
• tuples are provided in the form of SQL INSERT statements and must match
the producer’s predicate;
• a time-stamp is added to the tuples if they do not already have one, or if set
to NULL; the Latest Retention Period is also added;
• new tuples are automatically streamed to any registered (continuous) con-
sumers, evaluating the consumer’s SQL SELECT statement on the fly;

insertList (USER INTERFACE) Inserts multiple tuples of data in one operation (seein-
sert).

startStreaming (SYSTEM INTERFACE) Requests a producer to start streaming new tuples to
the specified consumer, for a given SQL SELECT query and a given table;
• consumer may also request existing contents of producer’s tuple store, newer
than a certain date/time, to be streamed first;

INFSO-RI-508833 DRAFT 20/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

stopStreaming (SYSTEM INTERFACE) Requests a producer to stop streaming new tuples to
the specified consumer;

execute (SYSTEM INTERFACE) Requests a producer to execute a consumer’s SQL
SELECT query on the contents of the producer’s tuple store and return the
answer immediately;
• request will be either for latest or all (history) tuples;

showSignOfLife (USER INTERFACE) Updates the contact time for the resource: if it exceeds
its termination interval without any contact, the Resource Framework will un-
register and close it;
• the contact time is also updated following any operation exceptping

getHistoryRetentionPeriod (USER INTERFACE) Returns History Retention Period for specified table.
getLatestRetentionPeriod (USER INTERFACE) Returns Latest Retention Period for specified table.
getEndpoint (USER INTERFACE) Returns URL for specified Primary Producer resource.
getTerminationInterval (USER INTERFACE) Returns Termination Interval for specified resource.
setTerminationInterval (USER INTERFACE) Changes Termination Interval for specified resource.
ping (USER INTERFACE) Checks whether the resource is still alive.
close (USER INTERFACE) Schedules the Primary Producer for destruction. The

Primary Producer is destroyed by the Resource Framework in accordance with
the rules specified above.

destroy (USER INTERFACE) Destroys the Primary Producer resource immediately;
terminates any threads and frees up any operating system resources associated
with it.

3.3 ERROR HANDLING

The default handling for all errors is to stop processing, make the resource stable if possible and notify
the user (see section2.7.3). The error conditions which require a non-default response are:

Fault Response

Resource Framework cannot contact registry to keep
a producer registered.

Log the error and try again later.

Resource Framework finds that the registry has al-
ready unregistered the producer.

Log the error and re-register the producer’s tables.

Data error in tuple means that continuous con-
sumer’s SQL expression can’t be calculated.

Log the error and skip the tuple.

Network I/O error trying to stream tuples to a con-
tinuous consumer.

Log the error, close the connection, try again later.

Network (streaming) connection to continuous con-
sumer has closed prematurely.

Log the error and attempt to re-open the connection.

An error occurs during aclose operation. Log the error, but don’t return a fault.

3.4 EXTERNAL OBJECTS

3.4.1 CONFIGURATION PARAMETERS

• Location of related EGEE software (security and SQL libraries) and external software (Tomcat,
MySQL, HSQLDB and Log4j).

• URL of Producer Factory Service.

INFSO-RI-508833 DRAFT 21/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

• Location of security certificates/keys (for user-to-service and service-to-service authorization).

• Location of access control list (hosts permitted/not permitted to connect to Primary Producer Ser-
vice).

• Logging settings and location of log files (for reporting on status of Primary Producer Service).

• Default user name, password and JDBC connection string for database tuple storage in a Primary
Producer Resource. Both administrative (for creating/dropping databases) and non-administrative
(for other access) accounts are required.

• Maximum settings for Termination Interval for a Primary Producer Resource.

• Maximum settings for History and Latest Retention Periods.

• Maximum number of tuples that can be stored in the tuple-stores in a Primary Producer Resource.

4 SECONDARY PRODUCER

4.1 DESCRIPTION

4.1.1 SERVICE COMPONENTS

The Secondary Producer Service allows a user tore-publish rows, by running a query on a virtual table
and publishing the results back to the same table. Its value is in merging together rows from multiple
Primary Producers into a single place: if it has no predicate, that represents a copy of the entire virtual
table. There are three reasons why this can be useful:

• if its tuple-storage is a real database, it can act as an archiver for the virtual table;

• if it re-publishes more than one table, it can answer queries involving joins which could not be
distributed across multiple Primary Producers, because the tables are now all in one database;

• Secondary Producers can improve the scalability of the information system by reducing the load
on the Primary Producers.

Secondary Producers consume from Primary and Secondary Producers. The picture below shows the
principal components of a Secondary Producer.

Continuous
Queries

History
Queries

Latest
Queries

Latest
Tuple
Store

History
Tuple
Store

Tuple
StreamerSQL

Command
Processor

List of
Continuous
Consumers

Consumer
Service

Primary &
Secondary
Producers

tuples

tuples

startStreaming

execute

tuples

execute

C

H

L

INFSO-RI-508833 DRAFT 22/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

4.1.2 RESOURCE L IFECYCLE

The resource lifecycle of a Secondary Producer is the same as a Primary Producer except that it has to
manage (create, keep alive and close) the consumers it creates for each declared table.

4.1.3 REGISTRATION

As Primary Producer, except that a Secondary Producer is registered as are-publisher, and there is no
Latest Retention Period to set when declaring a table.

4.1.4 SUPPORTED QUERIES

As Primary Producer, except a Secondary Producer is not obliged to support continuous queries.

4.1.5 PUBLISHING , STORING AND DELETING TUPLES

As Primary Producer, except:

• There is noinsert operation; tuples come from a built-in consumer running a “SELECT * FROM
predicate” query. The mediator ensures that a Secondary Producer doesn’t try to answer its own
queries.

• A Secondary Producer respects the Latest Retention Period of any tuples it receives. It does not,
however, wait for tuples to expire when it is closing. This is because the Secondary Producer itself
must stop consuming immediately.

4.1.6 MESSAGES FROM CONSUMER SERVICE

As Primary Producer.

4.2 INTERFACE

The Secondary Producer service provides the following operations:

INFSO-RI-508833 DRAFT 23/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

createSecondaryProducer (FACTORY SERVICE INTERFACE) Creates a new Secondary Producer re-
source and registers it with the Resource Framework, with the specified termi-
nation interval;
• query type (latest and/or history), storage type (memory, file or database) and
handling for slow consumers are fixed at this point;

declareTable (USER INTERFACE) Registers this producer in the registry as a re-publisher
for a specified table, which must already exist in the schema;
• must declare a predicate to restrict the tuples it will publish (this is an SQL
WHERE clause which is limited (by the Registry mediator) to a union (AND)
of equality constraints on columns in the table); may be empty
• History Retention Period fixed at this point;
•Corresponding table is created in resource’s tuple-store; if this already exists,
its structure is checked and any existing tuples will be automatically available
for consumer queries until they expire;
• Creates and starts a continuous consumer running a “SELECT * WHERE
predicate” query on the specified table.

startStreaming (SYSTEM INTERFACE) Requests a producer to start streaming new tuples to
the specified consumer, for a given SQL SELECT query and a given table;
• consumer may also request existing contents of producer’s tuple store, newer
than a certain date/time, to be streamed first;

stopStreaming (SYSTEM INTERFACE) Requests a producer to stop streaming new tuples to
the specified consumer;

execute (SYSTEM INTERFACE) Requests a producer to execute a consumer’s SQL
SELECT query on the contents of the producer’s tuple store and return the
answer immediately;
• request will be either for latest or all (history) tuples;

showSignOfLife (USER INTERFACE) Updates the contact time for the resource: if it exceeds
its termination interval without any contact, the Resource Framework will un-
register and close it;
• the contact time is also updated following any operation exceptping

getHistoryRetentionPeriod (USER INTERFACE) Returns History Retention Period for specified table.
getEndpoint (USER INTERFACE) Returns URL for specified Secondary Producer re-

source.

getTerminationInterval (USER INTERFACE) Returns Termination Interval for specified Secondary
Producer resource.

setTerminationInterval (USER INTERFACE) Changes Termination Interval for specified Secondary
Producer resource and its consumer.

ping (USER INTERFACE) Checks whether the resource is still alive.
close (USER INTERFACE) Same asdestroy for a Secondary Producer.
destroy (USER INTERFACE) Destroys the Secondary Producer resource and its con-

sumer immediately; terminates any threads and frees up any operating system
resources associated with it.

4.3 ERROR HANDLING

The default handling for all errors is as in a Primary Producer, except for errors relating to its internal
consumer, which are handled as follows:

INFSO-RI-508833 DRAFT 24/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

Fault Response

Secondary Producer Service can’t connect to the
Consumer Service, for its own consumer (or any
error relating tosetTerminationInterval on the con-
sumer).

Log the error and try again later.

Secondary Producer Service finds its Consumer re-
source has been destroyed.

Log the error and re-create the Consumer.

4.4 EXTERNAL OBJECTS

4.4.1 CONFIGURATION PARAMETERS

As in Primary Producer except there is no setting relating to Latest Retention Period.

5 ON-DEMAND PRODUCER

5.1 DESCRIPTION

5.1.1 SERVICE COMPONENTS

The On-demand Producer Service allows a user-application to service one-time queries on a virtual table
in real time. There is no tuple storage and very little functionality in the service itself. Instead, it hands
off all queries to a user-application that is expected to process the query and return the resulting tuples.

5.1.2 RESOURCE L IFECYCLE

The resource life-cycle of an On-demand Producer is exactly the same as the other producer types,
although there are no query-type and storage-type options to set when the resource is created. The
On-demand Producer resource stores the connection details of the user-application which handles any
queries directed to it.

5.1.3 REGISTRATION

On-demand Producers are declared (declareStaticTable) in the Registry like any other producer, so the
mediator can find them. There are, however, no tuple retention periods to set.

5.1.4 SUPPORTED QUERIES

On-demand Producers only support static queries.

5.1.5 PUBLISHING TUPLES

On-demand Producers have no tuple-storage: tuples are only returned by the user-application in response
to a specific query. The query is run synchronously by the service: it expects the user-application to be
listening on the URL/port specified when the On-demand Producer was created. It writes the query to
the port using the specified protocol (to be decided: probably http(s) or raw tcp depending on security
implications), and expects an immediate reply. Returned tuples must be in the form of an XML ResultSet,
defined as follows (where * indicates repetition):

INFSO-RI-508833 DRAFT 25/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

<?xml version = ‘1.0’ encoding = ‘UTF-8’ standalone = ‘no’>

<XMLResultSet>

<rowMetaData>

<colMetaData>column-name</colMetaData>*

</rowMetaData>

<row>

<col>column-value</col>*

</row>*

<RGMAWarning>

<message>message</message>

</RGMAWarning>

</XMLResultSet>

The service does not add R-GMA time-stamps or retention periods to the tuples. For this reason, Sec-
ondary Producers never consumer from On-demand Producers.

5.1.6 CONSUMER SERVICE MESSAGES

Consumer Services send anexecute message to request an On-demand Producer to run a static query.
Results are returned immediately. R-GMA places no restrictions on the subset of SQL (or data types)
supported by an On-demand Producer.

5.2 INTERFACE

The On-demand Producer service provides the following operations:

INFSO-RI-508833 DRAFT 26/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

createOnDemandProducer (FACTORY SERVICE INTERFACE) Creates a new On-demand Producer re-
source and registers it with the Resource Framework, with the specified termi-
nation interval;
• On-demand Producers only support static queries and have no tuple storage;
• The user must specify contact details (URL/port/protocol) for a user-
application that will answer any SQL queries directed to the producer.

declareStaticTable (USER INTERFACE) Registers this producer in the registry as a publisher for
a specified table, which must already exist in the schema;
• must declare a predicate to restrict the tuples it will publish (this is an SQL
WHERE clause which is limited (by the Registry mediator) to a union (AND)
of equality constraints on columns in the table); may be empty;

execute (SYSTEM INTERFACE) Requests a producer to forward a consumer’s SQL
SELECT query for processing by the producer-application and return the an-
swer immediately;

showSignOfLife (USER INTERFACE) Updates the contact time for the resource: if it exceeds
its termination interval without any contact, the Resource Framework will un-
register and close it;
• the contact time is also updated following any operation exceptping;

getEndpoint (USER INTERFACE) Returns URL for specified On-demand Producer re-
source.

getTerminationInterval (USER INTERFACE) Returns Termination Interval for specified resource.
setTerminationInterval (USER INTERFACE) Changes Termination Interval for specified resource.
ping (USER INTERFACE) Checks whether the resource is still alive.
close (USER INTERFACE) Same asdestroy in an On-demand Producer.
destroy (USER INTERFACE) Destroys the On-demand Producer resource immedi-

ately; terminates any threads and frees up any operating system resources as-
sociated with it.

5.3 ERROR HANDLING

The default handling for all errors is to stop processing, make the resource stable if possible and notify
the user (see section2.7.3). The error conditions which require a non-default response are:

Fault Response

Resource Framework cannot contact registry to keep
a producer registered.

Log the error and try again later.

Resource Framework finds that the registry has al-
ready unregistered the producer.

Log the error and re-register the producer’s tables.

5.4 EXTERNAL OBJECTS

5.4.1 CONFIGURATION PARAMETERS

As Primary Producer except there are no parameters related to tuple storage and tuple retention periods.

INFSO-RI-508833 DRAFT 27/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

6 CONSUMER

6.1 DESCRIPTION

6.1.1 SERVICE COMPONENTS

The Consumer Service allows a user to run an SQL query on one or more virtual tables in the R-GMA
schema. It runs the queries on the user’s behalf, contacting all of the producers necessary to answer the
query. The results are collected into an internal tuple-store, from which the user can subsequently retrieve
them. A continuous consumer also has atuple-receiver to allow tuples to bepushed asynchronously into
its tuple-store, by the producers.

6.1.2 RESOURCE L IFECYCLE

A new Consumer Resource is created when a user calls the Consumer Factory Service’screateConsumer
operation. The resource holds the private data and threads for a single consumer instance. Each con-
sumer represents a single query which is specified as an SQL SELECT statement by the user, when the
consumer is created.

Each Consumer resource has a Termination Interval that is a time interval within which the user must
make contact with the consumer service, in order to keep the resource alive and maintain its entry (if
any) in the registry. The Termination Interval is set by the user when the resource is created (the service
imposes a maximum value) and can be subsequently changed by callingsetTerminationInterval. The
user should callshowSignOfLife perodically to keep the consumer alive.

The resource is destroyed after the user sends aclose or destroy request, or the resource exceeds its
termination interval without any contact from the user.

6.1.3 MEDIATION AND QUERY PLANNING

Most consumers allow the R-GMA Registry Service to identify appropriate producers to answer their
query in a process calledmediation (see7.1.4). This is the whole purpose of the R-GMA registry, and
allows R-GMA to ensure that a query is answered completely and correctly. However a consumer may
choose to by-pass the mediation process by providing a list of producers itself. A mediated query is called
a global query, and an un-mediated query is called adirect query. In either case, if there are alternative
sets of producers capable of answering the query, the Consumer Service must choose the “best” one
according to some criteria. This is calledquery planning and the criteria used are implementation-
dependent. In the standard implementation, Secondary Producers are preferred, if available, and the one
with the fastest response to aping operation will be selected.

The user can request the consumer to run a global query against more than one VO, by providing a list
when the consumer is created. In that case, the consumer contacts the registries for each VO during the
mediation process. Duplicate producers are then removed from the resulting list (they will have the same
URL and resource ID in each registry).Some aspects of this process (e.g. how to ensure the resulting
list of producers will give a correct and complete answer) are still not worked out.

6.1.4 QUERY TYPES

There are four types of query:continuous, latest, history andstatic. The first three types (continuous,
latest and history) can optionally take aTimeInterval parameter.

The mediator can determine the set of query types that a particular producer supports from its entry in
the registry.

INFSO-RI-508833 DRAFT 28/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

A continuous query causes all new tuples matching the query to be auomatically streamed to the con-
sumer when they are inserted to the virtual table. If a TimeInterval parameter is specified, all existing
tuples newer than (now - TimeInterval) will additionally be returned when the query is first started, al-
though each producer only undertakes to store old tuples in its history store up to its History Retention
Period for that table. The mediator will try to ensure the producer(s) it picks can cover the time interval,
and warn if it can’t.

A latest query returns the latest version of all tuples matching the query that have not exceeded their
Latest Retention Period. In addition, if a TimeInterval is specified, only tuples that are newer than (now -
TimeInterval) will be returned. Whether or not you specify a time interval, you wil never get tuples that
have exceeded their Latest Retention Period.

A history query returns all available versions of tuples matching the query. A producer only undertakes to
retain old versions of tuples up to its History Retention Period for the table. If a TimeInterval parameter
is specified, only tuples that are newer than (now - TimeInterval) will be returned. The mediator will try
to ensure the producer(s) it picks can cover the whole time interval, and warn if it can’t.

A static query is handled by an On-demand Producer like a normal one-off database query. There are no
time-stamps or retention periods associated with static queries.

All R-GMA queries must be valid SQL SELECT statements (See chapter10). Continuous queries are
restricted tosimple queries, as defined in10.1.1. Latest, history and and static queries can be more
complex (see10.1.2).

6.1.5 STREAMING

Continuous consumers require a mechanism to allow producers to push tuples asychronously into their
tuple storage. Thistuple-receiver consists of some kind of implementation-dependent server listening
on a specific port (see2.11.1). For efficiency reasons, streaming goes through a raw TCP socket, rather
than the Web Services interface. See chapter9 for the security implications of this. Tuples are written
to the streaming port by producers (format to be decided, but probably as ResultSets), preceded by the
resource ID, as a 32-bit (network byte ordered) integer, to the streaming port, without acknowledgement.
The tuple-receiver is allowed to block (just by not reading from the streaming port) when its tuple-buffer
is full - the size of the buffer is a site-configurable parameter. Producers are expected to retry later, but
see section3.1.5for the handling of slow consumers.

6.1.6 REGISTRATION

Continuous consumers are registered along with their query details, when they are created. This allows
the registry to notify continuous consumers (usingaddProducer andremoveProducer when new produc-
ers should be added to (or removed from) the set of producers from which they are streaming. It is up
to the consumer to send astartStreaming message directly to a new producer about which it has been
notified.

6.1.7 STARTING AND STOPPING QUERIES

Users run queries by creating a new consumer and callingstart. The query is run on the user’s behalf
by the consumer service, and the user can check its progress by callingisExecuting. When tuples are
available in the consumer’s tuple-store, the user can callpop or popAll to retrieve them; both return an
empty set if the tuple-store is empty (the user can also callcount to see how many tuples are in the
tuple-store). If the user wants to abort a query, they can callabort, followed by isExecuting to check
when it has stopped. The user can subsequently callpop to retrieve any tuples from the consumer’s

INFSO-RI-508833 DRAFT 29/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

tuple-store, but they may only get a partial result. A query can be safely re-started after a call toabort,
but the consumer’s tuple-store is cleared each time a query re-starts.

6.2 INTERFACE

The Consumer service provides the following operations:

INFSO-RI-508833 DRAFT 30/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

createConsumer (USER INTERFACE) Creates a new Consumer Resource and registers it with
the Resource Framework, with the specified termination interval;
• query string, query type and time interval (if appropriate) are fixed at this
point; see10.1for limitations on the query;
• Countinuous consumers are registered with the registry.
• User also specifies which VO’s they wish to query: this controls which reg-
istries are contacted.

start (USER INTERFACE) Starts query:
• contacts mediator to identify producers which can answer the query, if none
are supplied by the user, then decides the best ones to contact;
• sends “execute” (for latest/history queries) or “startStreaming” (for continu-
ous queries) to the selected producers;
• producer services push selected tuples into Consumer’s internal tuple stor-
age;
• user must specify a time interval after which the query will be automatically
aborted;
• returns immediately;

isExecuting (USER INTERFACE) Checks whether a query is still executing.
abort (USER INTERFACE) Terminates query processing. Continuous consumers

send astopStreaming message to any producers from which they are stream-
ing. Consumers canpop partial results, but tuple-store is cleared if query is
re-started.

hasAborted (USER INTERFACE) Checks if consumer has aborted (for any reason, includ-
ing query time-out).

count (USER INTERFACE) Returns the number of tuples available in the con-
sumer’s tuple-store (note that this may not be the complete result for the query).

pop (USER INTERFACE) Retrieves tuples from the consumer’s tuple-store;
• always pops complete tuples;
• user specify maximum number of tuples to be returned with each call;
• quietly returns nothing if no tuples available (does not throw an exception);

popAll (USER INTERFACE) Aspop, but returns entire contents of tuple-store: user-
application is assumed to be able to cope with the amount of data returned.

addProducer (SYSTEM INTERFACE) Sent by registry to notify a running continuous con-
sumer about a new producer from which it should stream tuples. Consumer is
expected to send astartStreaming message directly to the producer.

removeProducer (SYSTEM INTERFACE) Sent by registry to notify a running continuous con-
sumer that a producer from which it is streaming tuples has been unregistered.
Consumer should abandon any attempts to contact it (but should not send a
stopStreaming message).

showSignOfLife (USER INTERFACE) Updates the contact time for the resource: if it exceeds
its termination interval without any contact, the Resource Framework will un-
register and close it;
• the contact time is also updated following any operation exceptping

getEndpoint (USER INTERFACE) Returns URL for specified consumer resource.
getTerminationInterval (USER INTERFACE) Returns Termination Interval for specified consumer re-

source.
setTerminationInterval (USER INTERFACE) Changes Termination Interval for specified consumer

resource.
ping (USER INTERFACE) Checks whether the consumer resource is still alive.
close (USER INTERFACE) Schedules the consumer resource for destruction; sends

a stopStreaming message to all relevant producers.
destroy (USER INTERFACE) Destroys the Consumer resource immediately; termi-

nates any threads and frees up any operating system resources associated with
it.

INFSO-RI-508833 DRAFT 31/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

6.3 ERROR HANDLING

The default handling for all errors is to stop processing, make the resource stable if possible and notify
the user (see section2.7.3). The error conditions which require a non-default response are:

Fault Response

Resource Framework cannot contact registry to keep
a consumer registered.

Log the error and try again later.

Resource Framework finds that the registry has al-
ready unregistered the consumer.

Log the error and re-register the consumer.

Consumer Service can’t connect to Producer Service
to sendstartStreaming or stopStreaming message.

Log the error and try again later.

Consumer Service’s attempt to sendstartStreaming
or execute message to a producer fails for any other
reason.

Log the error, generate another query-plan (without
this producer) and try again.

Consumer service (tuple-receiver) gets I/O error
reading tuples from streaming port.

Log the error and try again later.

Data error in tuple read from streaming port. Log the error and skip the tuple.
No data available forpop or popAll. Return an empty set.
Abort called for query which is no longer executing.Do nothing.
An error occurs during aclose operation. Log the error, but don’t return a fault.

6.4 EXTERNAL OBJECTS

6.4.1 CONFIGURATION PARAMETERS

• Location of related EGEE software (security and SQL libraries) and external software (Tomcat,
Log4j).

• URL of Consumer Factory Service.

• Location of security certificates/keys (for user-to-service and service-to-service authorization).

• Location of access control list (hosts permitted/not permitted to connect to Consumer Service).

• Logging settings and location of log files (for reporting on status of Consumer Service).

• Maximum setting for TerminationInterval for a Consumer Resource.

• Maximum numbers of tuple that can be stored in the tuple-store in a Consumer Resource.

• Default setting for user-specified timeout period for a running query.

• URL and port number for streaming.

7 REGISTRY

7.1 DESCRIPTION

7.1.1 SERVICE COMPONENTS

The registry provides the resource discovery mechanism for R-GMA: it allows producers to announce
their ability to publish rows to a virtual table, and it allows consumers (via the mediator) to find producers

INFSO-RI-508833 DRAFT 32/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

which can answer their queries. The registry is essentially a database table which contains a list, for each
virtual table in the schema, of publishers who are publishing tuples to that table. The details for each
publisher include where to find it (URL/Resource ID), the query types it supports, whether or not it’s a
re-publisher, and its predicate (SQL WHERE clause specifying the subset of the table it publishes for).

The registry also contains a list of continuous consumers that want to be notified when a producer starts
or stops publishing to a particular table.

Each producer and consumer entry in the registry carries a termination time after which the producer or
consumer will be unregistered by the Registry Service, if there is no further contact. It is the responsibil-
ity of the Resource Framework to keep registered, all resources which it is managing.

7.1.2 RESOURCE L IFECYCLE

The Registry Service creates a separate Registry resource for each VO which wants to run a registry on
its server. Registry resources are identified by VO. They are not registered with the Resource Framework,
and do not time out. Registries are started up and shut down manually, through the Administration API.

7.1.3 REPLICATION

Although there is only one logical registry per VO, replicas can be made for resilience. Each replica
is a Registry Resource. The Registry API has a list of locations of replicas and will use the closest
working one, initially, and switch to an alternative if that one fails. Registry replicas act independently,
but periodically synchronize themselves each other. This means that replicas can become inconsistent
for a time, and R-GMA services must tolerate a registry informing them about producer and consumer
resources which no longer exist, or failing to inform them about ones about which it does not yet know.

7.1.4 MEDIATION

The job of the Registry Mediator is to find a set of producers capable of answering a consumer’s query,
and meeting any additional constraints imposed by the consumer. In some instances, a query must be
sent to several producers in order to obtain a complete answer. The mediator therefore returns a set of
plans. Each plan consists of a group of producers which, as a set, can answer the query in full. The plan
may also, in future, include some logic to deal with producers that can only partially answer the query
(i.e. only some columns). The job of selecting the best plan to use is left to the consumer. The consumer
invokes the mediator through thegetProducersForQuery operation.

The producer-selection algorithm underlying the mediation process is explained in [5]. For the first
release of R-GMA, it will works as shown below, wheresimple and complex queries are defined in
chapter10.

Continuous
(simple)

Return Primary Producers which publish to the table in the query and which
have a compatible predicate. Do not return Secondary Producers.

One-time
(simple)

Return all producers (of any kind) which publish to the table in the query
and which support the query type and have a compatible predicate. Omit any
Secondary Producers which have predicates. Any Primary Producers go into
one plan, any Secondary Producers go into separate plans for each of them.

One-time
(complex)

Get all producers (of any kind) which publish to allof the tables in the query
and which support the query type and have nopredicate. Split up Primary and
Secondary producers as above.

It is assumed, by the mediator, that Primary Producers in the same VO do not overlap, i.e. they do not
publish the same keys (although this cannot be enforced). As a consequence, if there is no Secondary

INFSO-RI-508833 DRAFT 33/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

Producer available for a particular query,all Primary Producers must be contacted, as a set, in order to
obtain a complete reply.

In certain situations, the mediator may not be able to return a set of producers which are capable of
providing a complete reply for a particular query. Two examples are where Primary Producers with
matching predicates exist, but don’t support the required (latest/history) query type, or where the user
specifies a time interval (for old tuples) which no producer can cover. In these situations, the mediator
returns a warning to the Consumer Service, and the Consumer Service is expected to forward it on to the
user, with any tuples.

7.2 INTERFACE

The Registry service provides the following operations.

createRegistry (ADMINISTRATION INTERFACE) Creates a new Registry Resource for the
specified VO.
• Connects the resource to the corresponding registry database.

addReplica (SYSTEM INTERFACE) Requests a registry to synchronize itself with up-
dates from the calling one.

registerProducerTable (SYSTEM INTERFACE) Registers a particular producer as a publisher for a
particular table. The publisher’s details (URL, Resource ID, query type, re-
publisher flag, termination interval and predicate) are recorded in the registry
database.
• Any relevant consumers registered to the table, are sent anaddProducer mes-
sage.

registerContinuousConsumer(SYSTEM INTERFACE) Registers a continuous consumer’s interest in a par-
ticular table. The consumer’s details (URL, Resource ID, query string and
termination interval) are recorded in the registry database.

getProducersForQuery (SYSTEM INTERFACE) Returns (mediated) list ofall producers able to an-
swer a given query. Producers are split into plans, with each plans able to pro-
vide a complete and correct answer to the query, and meeting all constraints.
The job of selecting the best plans is left to the caller.

unregisterProducer (SYSTEM INTERFACE) Removes all producer’s entries from the registry.
• Sends aremoveProducer message to all relevant consumers.

unregisterProducerTable (SYSTEM INTERFACE) Removes a producer’s entry for a specified table,
from the registry.
• Sends aremoveProducer message to all relevant consumers.

unregisterConsumer (SYSTEM INTERFACE) Removes consumer’s entry from registry.

getPredicate (SYSTEM INTERFACE) Returns predicate for given producer and given table
(as SQL WHERE string).

getProducerConnections (ADMINISTRATION INTERFACE) Returns list of all producers, with their
details, for use by the Browser application.

updateContactTime (SYSTEM INTERFACE) Informs registry that producer or consumer resource
is still alive.

getEndpoint (SYSTEM INTERFACE) Returns URL for specified registry resource.
ping (SYSTEM INTERFACE) Checks whether the resource is still alive.
destroy (SYSTEM INTERFACE) Destroys the registry resource (the registry database

is closed, but not destroyed).

INFSO-RI-508833 DRAFT 34/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

7.3 ERROR HANDLING

The default handling for all errors is to stop processing, make the resource stable if possible and notify
the user (see section2.7.3). The error conditions which require a non-default response are:

Fault Response

Duplicate entry found foraddConsumer or addPro-
ducer.

Log the error and replace the old entry with the new
one.

Error trying to send anaddProducer message to a
consumer service.

Don’t want to fail anaddProducerTable because of
this. If it’s a connection failure, retry later. If the
consumer resource no longer exists, remove it from
the registry. In all cases, log the error, but carry on.

Error synchronizing with another registry replica. Log the error and retry later.

7.4 EXTERNAL OBJECTS

7.4.1 CONFIGURATION PARAMETERS

• Location of related EGEE software (security and SQL libraries) and external software (Tomcat,
MySQL and log4j).

• URL of Registry Factory Service.

• Location of security certificates/keys (for user-to-service and service-to-service authorization).

• Location of access control list (hosts permitted/not permitted to connect to Registry Service).

• Logging settings and location of log files (for reporting on status of Registry Service).

• List of URL’s of replica schemas, for each VO.

• User name, password and JDBC connection string, for the Registry database, for each VO.

• Replication interval, for each VO.

7.4.2 REGISTRY DATABASE

The Registry Database contains two primary tables, the PRODUCERS table and the CONSUMERS
table. All read and write access to this database comes through the Registry API.

The PRODUCERS table containsfor each table in the Schema, the details of each Producer Resource
which publishes rows to it (connection details, termination time, producer class (primary/secondary),
producer type (latest/history) and predicate (subset of rows published by this producer)).

The CONSUMERS table containsfor each table in the Schema, the details of each consumer which is
running a continuous query against the table (connection details, termination time, consumer type, and
predicate (subset of rows published by this producer)).

Exact details will depend on the system design and will be documented in a Database Specification
document on completion of the design work.

INFSO-RI-508833 DRAFT 35/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

8 SCHEMA

8.1 DESCRIPTION

8.1.1 SERVICE COMPONENTS

The schema contains the names and definitions of all of the virtual tables in a VO’s virtual database. It
also contains the VO’s authorization rules for each table. It is implemented as a database.

The schema is managed through the Administration API. Special privileges are required to modify the
schema. Tables can only be dropped when there are no producers publishing to them. Dropping tables
therefore needs careful co-ordination with the Registry and is a more privileged operation than creating
tables, because it must force any remaining producers to be unregistered.

8.1.2 RESOURCE L IFECYCLE

The Schema Service creates a separate Schema resource for each VO which wants to run a schema on
its server. Schema resources are identified by VO. They are not registered with the Resource Framework
and do not time out. Schemas are started up and shut down manually, through the Administration API.

8.1.3 REPLICATION

Although there is only one logical schema per VO, identical replicas can be made for resilience. Each
replica is a Schema Resource. The Schema API has a list of locations of replicas and will use the closest
working one. Replicas can service look-ups independently, but unlike the registry, modifications to the
schema must carefully co-ordinated, as follows:

createTable it must not be possible to create two tables with the same name and differ-
ent column definitions, so schema replicas cannot create tables independently.
Nevertheless, we don’t want to hold up table creation un-necessarily, so it is
acceptable for some replicas not to know about new tables straightaway. The
replication design must take account of this (probably by using a master-slave
architecture).

dropTable must be co-ordinated with all registryreplicas to ensure that no producers are
registered for the table, and none re-register, until the operation is complete

table authorization changes must be propagated to all schema replicas immediately.

8.1.4 CREATING TABLES

Users pass an SQL CREATE TABLE statement to the schema to create a new virtual table. The table
definition must conform to the following rules.

table name Anything permitted by SQL92 Entry Level standard
table attributes table must have a primary key (as one or more columns)
column names Anything permitted by SQL92 Entry Level standard
column types see section10.2.1
column attributes primary key and time-stamp columns, and no others, must be NOT NULL
metadata every tuple must have R-GMA tuple meta-data columns addded - see sec-

tion 3.1.5

INFSO-RI-508833 DRAFT 36/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

Producer Services may re-map R-GMA table names, column names and column types to alternatives
supported by their underlying tuple-store database, provided no information is lost and the process is
hidden from the user.

8.2 INTERFACE

The Schema service provides the following operations:

createSchema (ADMINISTATION INTERFACE) Creates a new schema instance for a par-
ticular VO and registers it with the Resource Framework.
Connects to existing schema database for that VO (using the supplied database
connection parameters).

createTable (AMINISTRATION INTERFACE) Creates a new virtual table in the schema.
Supported column data types are specified in section10.2.1.
• Table authorization parameters specified at this point.

dropTable (ADMINISTRATION INTERFACE) Removes a virtual table from the
schema.

getAllTables (SYSTEM INTERFACE) Returns a list of names of all virtual tables in the
schema.

getTableDescription (SYSTEM INTERFACE) Returns name, type and attributes of all columns in
a specified table.

getEndpoint (SYSTEM INTERFACE) Returns URL for specified schema resource.
ping (SYSTEM INTERFACE) Checks whether the schema is still alive.
destroy (SYSTEM INTERFACE) Destroys the schema resource (the schema database

is closed, but not destroyed).

To be completed: additional operations are likely to be required for schema replication, and for table
authorization.

8.3 ERROR HANDLING

The default handling for all errors is to stop processing, make the resource stable if possible and notify
the user (see section 2.7.3). There are no error conditions which require a non-default response.

8.4 EXTERNAL OBJECTS

8.4.1 CONFIGURATION PARAMETERS

• Location of related EGEE software (security and SQL libraries) and external software (Tomcat,
MySQL and log4j).

• URL of Schema Factory Service.

• Location of security certificates/keys (for user-to-service and service-to-service authorization).

• Location of access control list (hosts permitted/not permitted to connect to Schema Service).

• Logging settings and location of log files (for reporting on status of Schema Service).

• List of URLs of replica schemas, for each VO.

• User name, password and JDBC connection string, for the Schema database, for each VO.

INFSO-RI-508833 DRAFT 37/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

• Replication interval, for each VO.

8.4.2 SCHEMA DATABASE

The Schema Database contains two primary tables, the PRODUCERTABLES table and the TABLECOLUMNS
table. All read and write access to this database comes through the Schema API. The PRODUCERTA-
BLES table contains a list of all of the virtual tables in the VO. The TABLECOLUMNS table contains
for each table, the name, type and attributes of each column in the table. Exact details will depend on
the system design and will be documented in a Database Specification document on completion of the
design work.

9 SECURITY

This Chapter is provisional. Please do not (yet) base design work on it.

9.1 REQUIREMENTS

The security requirements for EGEE are still being defined by JRA3. The security issues discussed here
are just an attempt to provide a framework for treating the security of R-GMA in a practical way. Much
has been written before: see [5] for a discussion of the DataGrid project’s work on security and [3] for a
view-based authorization scheme.

Security is concerned with real-world people requesting or controlling access to real-world resources.
We can identify four types of real-world users in R-GMA: consumer users (who request information),
producer users (who provide information), site administrators (who run R-GMA services) and virtual
organisations (who “own” the schema and registry). The real-world resources consist of theoperations
provided by the R-GMA services, and thedata held in, and flowing between, the services.

At a high level, the security requirements for each type of R-GMA user are as follows.

9.1.1 CONSUMER USERS

Consumer Users simply want to be able to run queries on the information systems of any VO to which
they belong. They should not be denied access to any resource (service, operation or data) to which
they have been granted access by the owner, and they should be able to rely on the provenance of any
results they receive. The security mechanisms of R-GMA should be as invisible as possible (in terms of
procedure and performance degradation) to a user with proper authority.

9.1.2 PRODUCER USERS

Producer Users want to be able to publish data to the information systems of one or more VOs. They
usually want to restrict read-access to only those users they personally authorize, and some will want to
authorize down to the sub-table (rows and columns) level. They want to be sure that the integrity of their
data, and sometimes the confidentiality, is preserved all the way from their application to the consumers
application. They also want to ensure that no-one else can impersonate them and publish data in their
name.

INFSO-RI-508833 DRAFT 38/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

9.1.3 SITE ADMINISTRATORS

Site Administrators want to control who creates R-GMA services on their systems and which services
are run (this is a local issue). They want to control who can connect to the services, and what operations
they can request. They don’t want unauthorized users to be able to compromise the quality of service
they provide to legitimate users, and they don’t want their systems to be used as a launch pad for attacks
on their users’ own systems. They will want to be able to know, down to the level of an individual, who
is accessing their services and what they are doing. They will want to be able to recover their systems
quickly following any attack.

9.1.4 VIRTUAL ORGANISATIONS

Virtual Organisations want to control who can add virtual tables to their schema and who can remove
them. They also want to control who can publish to their virtual database (i.e. add entries to the registry).
Producer Users, Consumer Users and Site Administrators may also trust Virtual Organisations to manage
some aspects of authorization on their behalf, such as granting access to services and data to specific
users, and possibly certifying services as trustworthy. In fact, this is one of the main reasons for forming
a Virtual Organisation, but with the caveat that ultimate control of access to a resource must always rest
with the owner of the resource.

9.2 SOLUTIONS

The solutions to most of these requirements involveauthentication, encryption andauthorization. These
are discussed in the next sections. We don’t provide an answer to denial-of-service here, as it is a
project-wide issue. Nevertheless, R-GMA is designed to make it hard for legitimate users to accidentally
disrupt the service provided to others, and this, together with authentication contols, may go some way
to preventing this kind of attack.

9.2.1 AUTHENTICATION

Mutual authentication (guaranteeing who is at each end of an exchange of messages) is fundamental to
R-GMA security. For the user, it guarantees that the service they have connected to is genuine. For
the service, it is the basis of the authorization process described later. The DataGrid project came up
with a mechanism (edg-java-security) for establishing mutual authentication based on digital certificates.
EGEE is expected to come up with a similar solution for this project, and it must support all of the lan-
guages (Java, C, C++ and Python) used by R-GMA. Services and users will all need to have certificates
acceptable to each other, so some means of creating and managing certificates must also be provided.

Authentication is carried out each time a connection is established between two R-GMA components
(users or services). Since R-GMA services provide a small number of relatively complex operations, it
may be an acceptable overhead to create a new connection (and thus authenticate) before each operation.
Otherwise, it will be necessary to keep a secure connection open until it is no longer needed.

9.2.2 ENCRYPTION

Data in R-GMA exists on user systems, in services, and in the transfers between them. Details of what
kinds of data require securing and where data is held in R-GMA, are given later in this chapter.

R-GMA provides the option of using an encrypted transport protocol (HTTPS) for all network transfers
using the Web Services interfaces. The user can choose to use an unsecure protocol, but R-GMA cannot
be considered to be secure if this is done in any part of an installation. Those R-GMA network transfers

INFSO-RI-508833 DRAFT 39/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

that don’t go through the Web Services interface (tuple-streaming and On-demand Producer queries)
have special provisions to make them secure (see later in this chapter).

R-GMA does not encrypt data held within its services. If users consider their data to be too sensitive to
trust R-GMA’s internal security, then they may wish to encrypt the data themselves, before it leaves their
system. R-GMA permits this, provided that the encrypted version of data can be stored in the standard
data types supported by R-GMA. However there are some limitations on the querying of encrypted data
in R-GMA (see section10.2.1).

9.2.3 AUTHORIZATION

Authorization (controlling who can do what) is the final piece of the security puzzle. Any chain of
authorization always starts with the owner of a resource, who either grants (or denies) access either
directly to the end user, or to an intermediary who is trusted by both parties. In R-GMA, the services are
the intermediaries, and there may be several R-GMA services involved in carrying out a single operation.

Authorization throughout R-GMA must be mutual. In one direction, this is easy to understand: autho-
rization to connect to a service, authorization to request an operation and authorization to read data, etc.
But users of services and readers of data must also trust the services they are using (and any intermedi-
aries) to enforce the rules. This authorization can be implicit: if you don’t trust a service, or any other
services it uses, don’t connect to it. But it it could be made explicit, e.g. by VOs providing certificates
to trusted services, and this could be used to automatically build a chain of mutually authorized services
between a resource provider and the end user. There is probably a strong link between this process and
the proposed ”quality of service” match-making enhancements to R-GMA.

Authorization is based on identity, and the basic unit of identity is adistinguished name (abbreviated to
DN). Identity is authenticated by the possession of the private key corresponding to a particular digital
certificate. It’s likely that a VO will want to base its authorization schemes around groups of users (users
in particulargroups or having particularroles). VOMS certificates (short-lived proxy certificates) wrap
a Grid certificate with additional VO credentials of Group, Role and Capabilities. R-GMA will need to
adopt whatever mechanism is implemented across EGEE middleware.

Authorization to run R-GMA services is an internal issue for site administrators, and it’s outside the scope
of R-GMA to allow or deny this. Authorizing users to connect to services, and authorizing the creation
of instances of producers, consumers, registries and schemas is also an issue for site administrators, but
this is managed by the services, and is therefore an R-GMA problem. Authorizing users to modify the
schema or registry is a VO issue, and authorizing users to access data itself (down to sub-table level) is a
data-provider issue (although they may trust a VO to handle it for them). We must provide solutions for
these too.

Since all of R-GMA’s capabilities are presented as Web Services operations, we can solve the authoriza-
tion problem by adding authorization steps to R-GMA at the following points:

• User connecting to a service.

• User requesting a service operation.

• User requesting access to specific data.

In addition, a user or service must decide whether or not to trust a service before connecting to it, and
this may require an authorization mechanism.

Each of these steps is covered later in this chapter.

INFSO-RI-508833 DRAFT 40/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

9.3 BOUNDARIES OF RESPONSIBILITY

R-GMA’s responsibility for data ends immediately at the user-end of the network transfer between its
services and the user. R-GMA ensures that the network transfer itself is secure, and the user is genuine,
by requiring the user code to authenticate itself, and by compelling it to use a secure transport protocol. In
addition, if the user chooses to use the API, then the API will require the R-GMA service to authenticate
itself to the user, proving it too is genuine. R-GMAis responsible for the security of data within its
services and travelling between them.

The API has no role in protecting the services from attack. However if the API has been installed
correctly, and the user has a valid certificate, the API will deal with the authentication process internally,
making the security mechanisms fairly transparent to the user.

9.4 R-GMA RESOURCE OWNERSHIP

The table below shows the owner of each of the resources that make up R-GMA. The owner of each
R-GMA resource is ultimately responsible for defining the security policy for it. The picture following
the table shows all of the interactions between the resources.

Site that is hosting the service. R-GMA Web Services (RS, SS, PPS, SPS, OPS, CS) and the op-
erations they provide.

R-GMA user who is publishing infor-
mation to R-GMA.

Producer Applications, Web Services Resources (PP, SP, OP,
PPR, SPR, OPR) and the data in them.

R-GMA user who is querying informa-
tion from R-GMA.

Consumer Applications and Web Services Resources (C, CR) and
the data in them.

Virtual Organisation. Administration Application, Registry and Schema Web Services
Resources (A, RR, SR) and the data in them.

INFSO-RI-508833 DRAFT 41/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

Consumer
Service

Secondary
Producer
Service

RS SS

Primary
Producer
Service

On−demand
Producer
Service

Primary
Producer
Resource

Secondary
Producer
Resource

On−demand
Producer
Resource

Consumer
Resource

Registry
Resource

Schema
Resource

Registry
Service

Schema
Service

A B

A B
Other I/O (see text)
(initiated by A)

Web Services Operation
(A invokes operation on B)

A

Administration
Application

PP

Primary
Producer
Application

SP

Secondary
Producer
Application

OP

On−demand
Producer
Application

C

Consumer
ApplicationSPS CS

RS SS

PPS

RS SS

OPS

RS SS

PPR

SPR

OPR

CR

RS SS

RR SR

Factory services are not shown (see text)

R−GMA System Components

9.5 SECURING DATA

9.5.1 WHAT DATA NEEDS SECURING ?

Data which may need to be secured in R-GMA consists of:

• Tuples (inserted by producers, stored by services, returned to consumers)

• Queries (query predicates can contain user data)

• Connection details (e.g. URLs, port numbers) of user-code and services

• User identification details (stored in the Schema for authorization)

• Database user names and passwords (for Registry/Schema/Tuple-stores)

9.5.2 WHERE IS IT HELD?

Data is held within R-GMA services, in the following places:

• The memory space of the AXIS Web Application running in the Tomcat servlet container.

INFSO-RI-508833 DRAFT 42/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

• Database management systems (registry, schema and producers which use database tuple-stores).
This includes data travelling over JDBC to the database, data in the database tables, and data in
the database transaction logs.

• Data files of producers using file-based tuple-stores.

• Service log files (Tomcat logs, R-GMA logs)

Data is also passed across networks between R-GMA users and services. All of the network transfers are
shown as arrows in the picture above.

9.5.3 HOW IS IT SECURED?

to be completed

The security of data within services:How do we guard against attacks on R-GMA services that don’t
come through the Web Services interface (hacking into Tomcat, databases, files; security failures caused
by malfunctioning code)

The security of data in transit can be guaranteed by requiring mutual authentication of both parties
involved and using an encrypted transport protocol. All R-GMA Web Services operations can be con-
figured to require mutual authentication (for user-to-service and service-to-service connections) and to
use HTTPS (with SSL encryption). There are two types of transfer in R-GMA that don’t go through
the Web Services interface. These are the streaming of tuples from the Primary and Secondary Producer
Services to the Consumer Service, and the forwarding of a query from the On-demand Producer Service
to a user-application. The former is a one-way communication, the latter is a request/response.We still
need to decide how these are going to be made secure.

9.6 AUTHORIZING OPERATIONS

to be completed

All R-GMA operations need some level of authorization. The table below lists all of the operations
provided by R-GMA services, and the credentials required to access them. Each operation is also cross-
referenced to the interfaces in the diagram (where A-B corresponds to an arrow from A to B).

INFSO-RI-508833 DRAFT 43/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

Operation Interfaces Required Authorization
abort C-CS ConnectToService, etc (to be completed)
addProducer RS-CS
addReplica RS-RS
close PP-PPS, SP-SPS,

OP-OPS, C-CS
count C-CS
createConsumer SPS-CS
createOnDemandProducer OP-OPS
createPrimaryProducer PP-PPS
createRegistry A-RS
createSchema A-SS
createSecondaryProducer SP-SPS
createTable A-SS
declareStaticTable OP-OPS
declareTable PP-PPS, SP-SPS
destroy PP-PPS, SP-SPS,

OP-OPS, C-CS,
A-RS, A-SS

dropTable A-SS
execute CS-PPS, CS-SPS,

CS-OPS
getAllTables A-SS

INFSO-RI-508833 DRAFT 44/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

getEndpoint PP-PPS, SP-SPS,
OP-OPS, C-CS,
A-RS, A-SS

getHistoryRP PP-PPS, SP-SPS
getLatestRP PP-PPS
getPredicate PPS-RS
getProducerConnections A-RS
getProducersForQuery CS-RS
getTableDescription PPS-SS, SPS-SS,

OPS-SS, CS-SS,
RS-SS, A-SS

getTerminationInterval PS-PPS, SP-SPS,
OP-OPS, C-CS

hasAborted C-CS
insert PP-PPS
isExecuting C-CS
ping PP-PPS, SP-SPS,

OP-OPS, C-CS
and all services to
RS and SS

pop C-CS
popAll C-CS
registerContinuousConsumerCS-RS
registerProducerTable PPS-RS, SPS-RS,

OPS-RS
removeProducer RS-CS
setTerminationInterval PP-PPS, SP-SPS,

OP-OPS, C-CS
showSignOfLife PP-PPS, SP-SPS,

OP-OPS, C-CS
start C-CS
startStreaming CS-PPS, CS-SPS
stopStreaming CS-PPS, CS-SPS
unregisterConsumer CS-RS
unregisterProducer PPS-RS, SPS-RS,

OPS-RS
unregisterProducerTable PPS-RS, SPS-RS,

OPS-RS
updateContactTime PPS-RS, SPS-RS,

OPS-RS, CS-RS

9.7 IMPLEMENTING AUTHORIZATION

to be completed

9.7.1 SITE FILTERING

Controlling connection-access to services...

INFSO-RI-508833 DRAFT 45/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

9.7.2 SERVICE AUTHORIZATION (ACCESS TO OPERATIONS)

Delegation: chains of authorization; authorizing users to be users AND services to be services (“mutual
authorization”) - how to automate, e.g. by VO’s certifying services; link with QoS mechanism

9.7.3 TABLE AUTHORIZATION

Schema-based table authorization... A prototype view-based system (which works very much like grant-
ing users access to tables through views in a normal RDBMS) is described in reference [3]...

10 SQL IN R-GMA

The query language supported by R-GMA is a subset of SQL. Data is also inserted to R-GMA using
SQL statements, and SQL is used internally to manage Registry, Schema and Producer (tuple storage)
databases. This chapter sets down precisely how SQL is used in R-GMA.

10.1 CONSUMER QUERIES

R-GMA parses all consumer queries, regardless of type, for mediation and security purposes. The subset
of SQL understood by R-GMA is that defined by the SQL92 Entry Level standard. This ANSI standard
is a pre-requisite for database drivers to claim full JDBC compliance. All R-GMA queries must conform
to this standard, and they will be rejected by the parser if they do not.

The algorithm used by the mediator makes a distinction betweensimple andcomplex queries, as defined
below. Continuous queries must always be simple. Latest and history queries may be complex, and
any SQL command processor used by an R-GMA producer that supports latest or history queries, must
support complex queries. Static queries must also conform to the standard, but the user-application that
processes them in any particular On-demand Producer is not expected to implement the full standard
(this, of course, implies some co-operation between the creator and users of an On-demand Producer).

10.1.1 SIMPLE QUERIES

A simple query is defined by exclusion. It is an SQL SELECT statement conforming to the SQL92 Entry
Level standard,without the following:

• Joins: only one table is allowed

• DISTINCT, HAVING, GROUP BY, ORDER BY, UNION, INTERSECT, MINUS

• Aggregation operators such as AVG, MIN, MAX, COUNT, SUM

• Calculations, other than numerical ones involving only the operators: +, -, *, / and **

• WHERE clauses involving operators other than: =,>, <, >=, <=, and AND

10.1.2 COMPLEX QUERIES

A complex query is anything permitted by the SQL92 Entry Level standard. In the short term, R-GMA
will not support the following features:

to be completed

INFSO-RI-508833 DRAFT 46/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

10.2 CREATING TABLES

Virtual tables are created in R-GMA using the Schema Service’screateTable operation, as an SQL CRE-
ATE TABLE statement conforming to the following specification (which meets the SQL92 Entry Level
standard):

to be completed

10.2.1 DATA TYPES SUPPORTED

R-GMA supports the followng data types (as defined by the SQL92 Entry Level)

still to be agreed

INTEGER (signed integer, at least 32 bits)

BIGINT (signed integer, at least 64 bits)

REAL (floating point number, at least 32 bits)

DOUBLE (floating point number, at least 64 bits)

DATETIME (date as ISO8601 character string)

CHAR(n) (character string of fixed lengthn)

VARCHAR(n) (character string of variable length up ton)

Null values are represented by the (unquoted, case-insensitive) word NULL: empty strings arenot consid-
ered to be NULL values. Character strings are delimited by single or double quotes. If quote characters
are embedded in strings delimited by the same type of quote, then they must be duplicated (notescaped
with a backslash). Encrypted values are permitted only if the encrypted version can be stored in one of
the supported types. In queries, they can only be tested for equality of the encrypted versions (R-GMA
services do not unencrypt user data).

10.2.2 DATA TYPE CONVERSIONS

Data flows into and out of R-GMA as strings (INSERT and SELECT statements), but numerical val-
ues are converted to the appropriate type (by the JDBC drivers) in order to carry out calculations and
comparisons. The following table shows where type conversions may take place.

Input to Primary Producer Data is received from user as an SQL INSERT statement held in a text string.
Column types are read from the virtual table’s entry in the schema.
Values for columns with numerical types are stored in a column of the corre-
sponding type in the tuple-store, so they can be used in column expressions.
All other values are held as unquoted strings.
Null values are stored as database NULLs.

Input to Secondary Pro-
ducer

Data is copied unchanged from Primary Producer’s tuple-store to Secondary
Producer’s tuple-store.

Input to On-demand Pro-
ducer

Data is received from user code as an XMLResultSet, and is not changed.

INFSO-RI-508833 DRAFT 47/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

Output from Primary and
Secondary Producers

A new tuple is created according to the column expression in the user’s select
statement and returned in a ResultSet.
Column values are converted according to their type, as read from the schema.
Non-string values are converted back to a string representation (without
quotes).
Strings are enclosed in single quotes; embedded single quotes are preceded by
a backslash.
Null values are written as NULL (in upper case, and without quotes).

Output from On-demand
Producer

The XMLResultSet is converted to a ResultSet, without interpretation, and
returned to the user.

10.3 INSERTING DATA

Tuples are inserted to R-GMA by a Primary Producer in the form of an SQL INSERT statement, con-
forming to the following specification (which meets the SQL92 Entry Level standard):

to be completed

Tuples returned to the R-GMA On-demand Producer Service by its producer-application are in the form
an XML ResultSet, as defined in section5.1.5.

10.4 RETURNING DATA

Tuples are returned to users by the R-GMA Consumer Service in the form ofResultSets. The structure
of these is defined in the R-GMA Interface Specification document.

10.5 DATABASE MANAGEMENT

The following database management operations are used internally by R-GMA to create and maintain the
Registry and Schema databases, and the tuple-storage databases used by some Primary and Secondary
producers. All interaction between R-GMA and the databases goes via JDBC. It is intended that R-
GMA should be as independent as possible of the underlying database (although it will only be tested
with MySQL and HSQLDB initially). This means that database-specific SQL is avoided where JDBC
alternatives (e.g. for querying table metadata) are available. Care is also taken that the names given
to databases, tables and columns are acceptable to all SQL92 compliant database management systems.
The operations used are:

• Creating and dropping databases.

• Creating and dropping tables.

• Getting the names of all tables in a database.

• Getting the names, types and attributes of all columns in a table.

• Inserting and updating rows in a table.

• Selecting rows from a table (this includes left inner joins).

INFSO-RI-508833 DRAFT 48/49

R-GMA SYSTEM SPECIFICATION
Doc. Identifier:

EGEE-JRA1-TEC-490223

Date: September 4, 2006

REFERENCES

[1] Apache logging services project. http://logging.apache.org/.

[2] JRA1 Design Team. Egee middleware architecture. Technical Report EDMS 476451, EGEE, 2004.

[3] JRA1 Design Team. Middleware prototype working document. Technical Report EDMS 458972,
EGEE, 2004.

[4] Oasis web services resource framework tc. http://www.oasis-
open.org/committees/tchome.php?wgabbrev=wsrf.

[5] RAL. R-GMA security - principles, design, plans, status and caveats. Technical Report
http://hepunx.rl.ac.uk/egee/jra1-uk/docs/rgmasecurity.pdf, DataGrid, 2004.

[6] SOAP Primer. http://www.w3.org/TR/2003/REC-soap12-part0-20030624/.

[7] Web services architecture working group note. http://www.w3.org/TR/ws-arch/.

[8] Web services description language. http://www.w3.org/TR/wsdl/.

INFSO-RI-508833 DRAFT 49/49

	1 Introduction
	1.1 Purpose and Structure of this Document
	1.2 Application Area
	1.3 References
	1.4 Document Evolution Procedure
	1.5 Terminology

	2 Background
	2.1 Scope of this Specification
	2.2 R-GMA Architecture
	2.2.1 Virtual Database
	2.2.2 Primary Keys And Time-stamps
	2.2.3 Producers
	2.2.4 Consumers
	2.2.5 Retention Periods

	2.3 Web Services Architecture
	2.3.1 Overview
	2.3.2 Resource Framework
	2.3.3 Factory Services

	2.4 API
	2.4.1 User API
	2.4.2 System/Administration APIs

	2.5 Security Considerations
	2.6 Performance Considerations
	2.7 Fault Tolerance, Exception Handling and Recovery
	2.7.1 Replication
	2.7.2 Recovery following restart
	2.7.3 Error reporting

	2.8 Hardware/Software Considerations
	2.9 Standard Tools
	2.9.1 R-GMA Command Line
	2.9.2 Schema Browser

	2.10 Packaging and Installation
	2.11 External Dependencies
	2.11.1 Internet Port Numbers
	2.11.2 Time Synchronization
	2.11.3 Web Services Software
	2.11.4 Relational Database Management Systems
	2.11.5 Security Management Software
	2.11.6 Logging Software

	2.12 Service Specifications

	3 Primary Producer
	3.1 Description
	3.1.1 Service Components
	3.1.2 Resource Lifecycle
	3.1.3 Registration
	3.1.4 Supported Queries
	3.1.5 Publishing, Storing and Deleting Tuples
	3.1.6 Messages from Consumer Service

	3.2 Interface
	3.3 Error Handling
	3.4 External Objects
	3.4.1 Configuration Parameters

	4 Secondary Producer
	4.1 Description
	4.1.1 Service Components
	4.1.2 Resource Lifecycle
	4.1.3 Registration
	4.1.4 Supported Queries
	4.1.5 Publishing, Storing and Deleting Tuples
	4.1.6 Messages from Consumer Service

	4.2 Interface
	4.3 Error Handling
	4.4 External Objects
	4.4.1 Configuration Parameters

	5 On-demand Producer
	5.1 Description
	5.1.1 Service Components
	5.1.2 Resource Lifecycle
	5.1.3 Registration
	5.1.4 Supported Queries
	5.1.5 Publishing Tuples
	5.1.6 Consumer Service messages

	5.2 Interface
	5.3 Error Handling
	5.4 External Objects
	5.4.1 Configuration Parameters

	6 Consumer
	6.1 Description
	6.1.1 Service Components
	6.1.2 Resource Lifecycle
	6.1.3 Mediation and Query Planning
	6.1.4 Query Types
	6.1.5 Streaming
	6.1.6 Registration
	6.1.7 Starting and Stopping Queries

	6.2 Interface
	6.3 Error Handling
	6.4 External Objects
	6.4.1 Configuration Parameters

	7 Registry
	7.1 Description
	7.1.1 Service Components
	7.1.2 Resource Lifecycle
	7.1.3 Replication
	7.1.4 Mediation

	7.2 Interface
	7.3 Error Handling
	7.4 External Objects
	7.4.1 Configuration Parameters
	7.4.2 Registry Database

	8 Schema
	8.1 Description
	8.1.1 Service Components
	8.1.2 Resource Lifecycle
	8.1.3 Replication
	8.1.4 Creating Tables

	8.2 Interface
	8.3 Error Handling
	8.4 External Objects
	8.4.1 Configuration Parameters
	8.4.2 Schema Database

	9 Security
	9.1 Requirements
	9.1.1 Consumer Users
	9.1.2 Producer Users
	9.1.3 Site Administrators
	9.1.4 Virtual Organisations

	9.2 Solutions
	9.2.1 Authentication
	9.2.2 Encryption
	9.2.3 Authorization

	9.3 Boundaries of responsibility
	9.4 R-GMA resource ownership
	9.5 Securing Data
	9.5.1 What data needs securing?
	9.5.2 Where is it held?
	9.5.3 How is it secured?

	9.6 Authorizing Operations
	9.7 Implementing Authorization
	9.7.1 Site Filtering
	9.7.2 Service Authorization (access to operations)
	9.7.3 Table Authorization

	10 SQL In R-GMA
	10.1 Consumer Queries
	10.1.1 Simple Queries
	10.1.2 Complex Queries

	10.2 Creating Tables
	10.2.1 Data Types Supported
	10.2.2 Data Type Conversions

	10.3 Inserting Data
	10.4 Returning Data
	10.5 Database Management

