
EGEE

R-GMA User Guide for Java Programmers

Document identifier: EGEE-JRA1-TEC-503617

Date: September 4, 2006

Activity: JRA1: Middleware Engineering and
Integration (UK Cluster)

Document status: FINAL

Document link: https://edms.cern.ch/document/503617/

Abstract: This document provides the Java programmer with the information necessary to get started with
R-GMA.

INFSO-RI-508833 PUBLIC 1/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

Document Change Log

Issue Date Comment Author
1.0 31 March 2005 First release JRA1-UK
1.1 18 April 2006 First release, first revision JRA1-UK

Document Change Record

Item Reason for Change
Updated consumer example To avoid hanging on isExecuting()
Added explanation to allowed SQL on duplicate columnsNeeded to support chunking.
Added resilient consumer and producer examples To aid users

Copyright c©Members of the EGEE Collaboration. 2004. See http://eu-egee.org/partners for de-
tails on the copyright holders.

EGEE (“Enabling Grids for E-science in Europe”) is a project funded by the European Union. For
more information on the project, its partners and contributors please see http://www.eu-egee.org.

You are permitted to copy and distribute verbatim copies of this document containing this copy-
right notice, but modifying this document is not allowed. You are permitted to copy this document
in whole or in part into other documents if you attach the following reference to the copied ele-
ments: “Copyright c©2004. Members of the EGEE Collaboration. http://www.eu-egee.org”

The information contained in this document represents the views of EGEE as of the date they are
published. EGEE does not guarantee that any information contained herein is error-free, or up to
date.

EGEE MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY PUBLISHING
THIS DOCUMENT.

INFSO-RI-508833 PUBLIC 2/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

CONTENTS

1 INTRODUCTION 6

1.1 PURPOSE AND STRUCTURE OF THIS DOCUMENT. 6

1.2 R-GMA ARCHITECTURE. 6

1.2.1 VIRTUAL DATABASE . 6

1.2.2 WEB SERVICES. 7

1.2.3 PRODUCERS . 7

1.2.4 CONSUMERS. 7

1.2.5 RETENTION PERIODS. 8

1.2.6 RESOURCE FRAMEWORK AND THE TERMINATION INTERVAL. 8

2 GETTING STARTED WITH R-GMA 9

2.1 PREREQUISITES . 9

2.2 SETTING UP FOR USAGE. 9

2.3 SIMPLE INTERACTION USING THE COMMAND LINE TOOL 10

2.4 SIMPLE PRODUCING AND CONSUMING INFO WITH THE COMMAND LINE
TOOL .11

3 R-GMA INSTALLATION 12

3.1 INSTALLED COMPONENTS. 12

3.2 CHECK YOUR INSTALLATION . 12

3.3 SECURITY .13

4 PRIMARY PRODUCERS 13

4.1 TERMINATION INTERVAL . 13

4.2 PRODUCER PROPERTIES. 13

4.3 PRIMARY PRODUCER EXAMPLES. 14

4.3.1 SIMPLE PRIMARY PRODUCER EXAMPLE. 14

4.3.2 RUNNING THE EXAMPLE. 15

4.3.3 RESILIENT PRIMARY PRODUCER EXAMPLE. 16

5 CONSUMING INFORMATION 18

5.1 TYPES OF QUERY .18

5.2 CONSUMER EXAMPLES. 18

5.2.1 SIMPLE CONSUMER EXAMPLE. 18

5.2.2 CONSUMING CONTINUOUS PLUS OLD INFORMATION. 19

5.2.3 ONE-OFF QUERIES. 20

5.2.4 CONSUMER EXTRACTING INFORMATION FROM RESULT SET. 20

5.2.5 RESILIENT CONSUMER EXAMPLE. 20

INFSO-RI-508833 PUBLIC 3/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

6 REPUBLISHING VIA SECONDARY PRODUCERS 22

6.1 SECONDARY PRODUCER EXAMPLES. 22

6.1.1 SIMPLE SECONDARY PRODUCER EXAMPLE. 22

6.1.2 SHUTDOWN THREAD FOR SECONDARY PRODUCER. 24

6.1.3 AVOIDING A PERMANENT CONNECTION TO A SECONDARY PRODUCER25

7 THE RGMA COMMAND LINE TOOL 26

7.1 INTRODUCTION .26

7.1.1 STARTING THE R-GMA COMMAND LINE TOOL 26

7.1.2 ENTERING COMMANDS . 26

7.2 COMMANDS. .27

7.2.1 GENERAL COMMANDS. 27

7.2.2 QUERYING DATA. 27

7.2.3 INSERTING DATA . 27

7.2.4 SECONDARY PRODUCERS. 28

7.2.5 INFORMATION COMMANDS . 28

7.2.6 DIRECTED QUERIES. 29

8 USING THE WEB TO BROWSE R-GMA INFORMATION 29

8.1 SECURITY .29

9 ADMINISTRATION 29

9.1 TABLE CREATION .29

9.2 RECOVERY FOLLOWING RESTART. 29

10 SQL 30

10.1 CREATING A DATABASE AS STORAGE FOR A PRODUCER. 30

10.2 EXAMPLES OF SQL QUERIES. 30

10.3 SUPPORTED SQL. .31

11 ADVICE ON USING R-GMA 31

11.1 GENERAL ADVICE .31

11.2 PRIMARY PRODUCERS . 32

11.3 SECONDARY PRODUCERS. 32

11.4 CONSUMERS .32

12 RELEASE NOTES FROM A USER PERSPECTIVE 33

12.1 OVERVIEW .33

12.2 NEW FEATURES .33

12.3 DEPRECATED FEATURES. 34

12.4 FEATURES WITHDRAWN . 35

INFSO-RI-508833 PUBLIC 4/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

13 KNOWN PROBLEMS AND CAVEATS 35

13.1 FUNCTIONALITY NOT YET IMPLEMENTED . 35

13.2 OTHER KNOWN ISSUES. 35

13.3 REPORTING BUGS AND GETTING HELP. 36

INFSO-RI-508833 PUBLIC 5/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

1 INTRODUCTION

1.1 PURPOSE AND STRUCTURE OF THIS DOCUMENT

This document is intended to get people started with R-GMA. It is one of a set, with each member
customised for a different programming language.

After this introduction there are sections explaining what should be done to ensure that R-GMA is cor-
rectly installed, how to publish information via a “Primary Producer”, how to get information back via
a “Consumer”, how to set-up a “Secondary Producer” and how to use the command line and web based
tools.

The APIs (in C, C++, Java and Python) are all described in detail in the documentation linked fromhttp://
hepunx.rl.ac.uk/egee/jra1-uk/glite-r1.5/ . In addition the documentation is all distributed with the software
and may be found as$RGMA_HOME/share/doc/<module>/manual.pdf, where “module” identifies the
document. Look at the directory$RGMA_HOME/share/doc to see the naming scheme.

Some brief release notes from a user’s perspective may be found in section12which is useful to anyone
who is familiar with the previous version of R-GMA.

To understand more detail of what R-GMA is meant to do, you may choose to read the specification[1].
However we do not expect the average user to need the specification document.

This document contains a number of code examples. You can find a copy of these in the directory:
$RGMA_HOME/share/doc/rgma-base/examples wherever R-GMA has been installed.

1.2 R-GMA A RCHITECTURE

1.2.1 VIRTUAL DATABASE

R-GMA is an implementation of the Grid Monitoring Architecture (GMA) proposed by the Global Grid
Forum (GGF), which models the information infrastructure of a Grid as a set ofConsumers(who request
information),Producers(who provide information) and a singleRegistry(which mediates the commu-
nication between Producers and Consumers). R-GMA imposes a standard query language (a subset of
SQL) on this model – so Producers publishtuples(database rows) with an SQL insert statement and Con-
sumers query them using SQL select statements. R-GMA also ensures that all tuples carry atime-stamp,
so that monitoring systems (which require time-sequenced data) are inherently supported.

Table 1, Producer P1 details

Table 2, Producer P2 details

Table 2, Producer P3 details

Table 3, Producer P2 details

Table 3, Producer P4 details

Table 2, Producer P1 details
Table 1, Column defs

Table 2, Column defs

Table 3, Column defs

C1

P1

P2

P3

C2Consumer Consumer

Primary Producer On−demand Producer

Secondary Producer

Registry

Table 2

Schema tuples
virtual tables

INFSO-RI-508833 PUBLIC 6/37

http://hepunx.rl.ac.uk/egee/jra1-uk/glite-r1.5/
http://hepunx.rl.ac.uk/egee/jra1-uk/glite-r1.5/

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

R-GMA presents the information resources of a Virtual Organisation (VO)1 as a singlevirtual database
containing a set ofvirtual tables. As the picture above shows, a single2 schema contains the name and
structure (column names, types and settings) of each virtual table in the system. A single registry contains
a list, for each table, of Producers who have offered topublish(provide data for) rows for the table. A
Consumer runs an SQL query against a table, and the registry selects the best Producers to answer the
query in a process calledmediation. The Consumer then contacts each Producer directly, combines the
information, and returns a set of tuples. The mediation process is hidden from the user. Note that there
is no central repository holding the contents of the virtual table; it is in this sense, that the database is
virtual.

1.2.2 WEB SERVICES

R-GMA will conform to the Web Services Architecture [4]. The version currently released uses servlet
technology to run the services rather than WSDL-defined Web Services. When web services are intro-
duced the APIs will be unchanged. Each service has a well defined set ofoperationsthat it can carry
out, as specified in a machine-readable XML document conforming to the Web Services Description
Language (WSDL [5]). All operations are requested by applications through an exchange of messages
with the service. We provide APIs to offer a convenient way to interact with the services.

1.2.3 PRODUCERS

There are three classes of Producer:Primary, SecondaryandOn-demand. Each is created by a user
application and returns tuples in response to queries from other user applications. The main difference is
in where the tuples come from.

For a Primary Producer, user’s code periodically inserts tuples which are then stored internally by the
Producer. The Producer answers Consumer queries from this storage. The Secondary Producer service
also answers queries from its internal storage, but it populates this storage itself by running its own
query against the virtual table: the user code only sets the process running; the tuples come from other
Producers. In the On-demand Producer, there is no internal storage; data is provided by the user code
in direct response to a query forwarded on to it by the Producer service. No examples of the use of the
On-demand Producer are included in this document.

Each virtual table has akey column (or group of columns) declared in the schema. Each tuple also
carries atime-stamp, added by the Primary Producer when the tuple is first published into the system,
which, together with the key columns, is similar to a primary key for the table. Tuples with the same key,
but different values for the time-stamp, can also be thought of as different versions of the same tuple.
R-GMA works consistently in UTC3.

1.2.4 CONSUMERS

Each Consumer represents a single SQL SELECT query on the virtual database. The request is initiated
by user code, but theConsumer servicecarries out all of the work on its behalf. The query is first passed
to the Registry to identify which Producers, for each virtual table in the query, must be contacted to
answer it. This process is calledmediation. The query is then passed by the Consumer service to each
relevant Producer, to obtain the answer tuples directly.

1Currently all VOs share the one namespace.
2Although there is only one logical schema and registry pair per VO, identical replicas wil be made for scalability and

robustness. This is discussed in detail later. Currently this is not implemented.
3UTC refers to Coordinated Universal Time, which used to be known as GMT.

INFSO-RI-508833 PUBLIC 7/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

There are four types of query:continuous, latest, history andstatic. The first three types (continuous,
latest and history) can optionally take aTimeIntervalparameter.

A continuous query (which can only act on a single table) causes all new tuples matching the query to
be automatically streamed to the Consumer when they are inserted to the virtual table by a Producer. If a
TimeInterval parameter is specified, all existing tuples newer than (now- TimeInterval) will additionally
be returned when the query is first started.

A latest query is evaluated on that set of tuples, which for each table and key have the greatest time-
stamp value and that have not exceeded their Latest Retention Period. In addition, if a TimeInterval is
specified, only tuples that are newer than (now- TimeInterval) will be used. Whether or not you specify
a time interval, the query will never use tuples that have exceeded their Latest Retention Period. The
LatestRetention Period is described in1.2.5.

A history query is evaluated over all available versions of tuples. The set can also be restricted by
specifying aTimeInterval.

A static query is handled by an On-demand Producer like a normal one-off database query. There are no
time-stamps or retention periods associated with static queries.

1.2.5 RETENTION PERIODS

To allow Primary and Secondary Producers to periodically purge “old” tuples, and to give a precise
meaning to the “current state” for a latest query,retention periodsare used.

The LatestRetentionPerioddefines how old a tuple can be before it should no longer be considered to
be the latest. This time interval is added to thetime-stampand inserted into each tuple published by a
Primary Producer, and remains there when a tuple is re-published by a Secondary Producer. In addition,
Primary and Secondary Producers declare aHistoryRetentionPeriodfor each table to which they are
publishing tuples.

Primary and Secondary Producers therefore have two logical tuple-stores, one supporting latest-queries
and the other supporting continuous and history queries. Producers undertake to retain themost recent
version of any tuple which has not exceeded its LatestRetentionPeriod, andall versions of any tuple
which have not exceeded the HistoryRetentionPeriod.

Primary and Secondary Producers all support continuous queries, however they may not support history
and latest queries.

The HistoryRetentionPeriod may be longer or shorter than the LatestRetentionPeriod. The HistoryRe-
tentionPeriod is a (per-table) property of the producer, whereas the LatestRetentionPeriod is a property
of the tuple.

1.2.6 RESOURCE FRAMEWORK AND THE TERMINATION INTERVAL

Each instance of a Producer or Consumer in a running R-GMA system exists as aresourceon a server.
A resource contains the private data or threads associated with that particular instance (such as the tuple-
storage and tuple-streamer in a Primary Producer), and it is created by an R-GMA service, when a user
sends a “create” request. It resides on the server with the service, and is given an identifier which is
passed back to the client. The client then includes the resource identifier with all subsequent requests
relating to that instance (the API takes care of this). A resource is normally destroyed at the explicit
request of the user, but in order to protect itself from an accumulation of redundant resources, an R-
GMA service requires the user to specify a termination interval (in a restricted range) when it creates
the resource. We plan to remove this from user control. To allow for easy migration the termination
interval should be set to one hour. If the service doesn’t hear from the user for any period exceeding the

INFSO-RI-508833 PUBLIC 8/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

termination interval, the resource is destroyed. This is the concept ofsoft-state registration. It puts the
onus on the user to keep the resource alive, by making periodic contact with the service, but any contact
will do. A showSignOfLifecall is provided which does nothing but establish this periodic contact. The
registry protects itself in the same way, against Producers and Consumers which register then disappear,
so a periodic keep-registered message has also to be sent to the registry, by the Consumer and Producer
services (this is hidden from the user).

2 GETTING STARTED WITH R-GMA

Here we present one of the simplest forms of interaction with R-GMA, where no coding is required,
looking at information already in the tables and adding some very simple information using the command
line tool. More information on the command line tool is in section7 of this document, and in the
command line tool document, available from the JRA1-UK web pagehttp://hepunx.rl.ac.uk/egee/jra1-uk/
glite-r1.5/ To carry out the simplest form of interaction, publishing and consuming information using the
chosen language, see sections4 and5.

2.1 PREREQUISITES

In order to do anything in the EGEE grid, a user will need to

1. Obtain a Certificate from one of the Certificate Authorities in the EGEE PMA (seehttp://www.
eugridpma.org/)

2. Register with a Virtual Organisation.

3. Obtain an account on a user interface machine.

Note that at present, it is possible to interact with R-GMA without being a member of a virtual organ-
isation, as there is no authorization in R-GMA, but you will still need a certificate for authentication
purposes.

2.2 SETTING UP FOR USAGE

You need to set up a few environment variables in order to use R-GMA client applications. On a gLite
User Interface machine, these are defined for you by theglite setenv.sh bash script. If you have not
already done so, run this script by typing:

bash

followed by:

. /etc/glite/profile.d/glite_setenv.sh

at the shell’s command prompt. If this is not found, try executing theglite-env.sh script, whose
location depends on the installation. For example, enter:

. /afs/cern.ch/project/egee/jra1/prototype/ui/glite-env.sh

INFSO-RI-508833 PUBLIC 9/37

http://hepunx.rl.ac.uk/egee/jra1-uk/glite-r1.5/
http://hepunx.rl.ac.uk/egee/jra1-uk/glite-r1.5/
http://www.eugridpma.org/
http://www.eugridpma.org/

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

If this doesn’t work either, see your system administrator.

You can now generate a grid proxy (for authentication) by typing:

grid-proxy-init

Note thatvoms-proxy-init can be used instead:grid-proxy-init will work until authorization is
added to R-GMA after whichvoms-proxy-init must be used. Either way, this will generate a proxy
file based on your uid and write it to/tmp. Check this file is present, owned by you and read/writable by
you, by typing:

ls -l /tmp/x509*

You also need to tell R-GMA where to find the proxy file by defining theX509 USER PROXY environment
variable. Theglite setenv.sh script may have done this for you, but if not, type:

export X509_USER_PROXY=/tmp/x509up_uxxxxx

where xxxxx is replaced by your Unix uid.

To check the setup, type:

rgma-client-check

This should produce something like:

*** Running R-GMA client tests on lxplus063.cern.ch ***

Checking C API: Success
Checking C++ API: Success
Checking CommandLine API: Success
Checking Python API: Success
Checking Java API: Success

*** R-GMA client test successful ***

If not, see section3 on installation or ask your system administrator for help.

2.3 SIMPLE INTERACTION USING THE COMMAND LINE TOOL

Enter:

rgma

This starts a mini shell and subsequent commands are typed into this. (Note that when using some
commands table and column names are case sensitive, so it is best to assume everything is case sensitive.)

show tables

INFSO-RI-508833 PUBLIC 10/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

This should list the tables currently available. It is simple to show the column definitions in a table, try
for example:

describe GlueSite

To see the sites enter:

select * from GlueSite

To see the services available enter:

select * from GlueService

To see the status of the various services enter:

select * from GlueServiceStatus

To see the values for specific fields enter

select Name,Description from GlueSite

To get a list of valid commands enter

help

To find out about the select command enter

help select

To exit the rgma command line interface enter:

exit

Note that you may also use ‘q’ or CTRL D to exit

2.4 SIMPLE PRODUCING AND CONSUMING INFO WITH THE COMMAND LINE TOOL

This shows how to place very simple information into one table, making it remain for at least 10 minutes
and examining it. We use the pre-defineduserTable which is available for people to use for tests. Enter
the following to place the information into the table:

rgma
show tables
describe userTable
set producer latest
set producer LRP 10 minutes
insert into userTable values (’JoeBloggs’, ’Hello’, 1.23, 4)

Note that the values should be of the same type and column order as those in the table. Enter the following
to read the data back from the table:

INFSO-RI-508833 PUBLIC 11/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

select * from userTable

You might see entries from other users who are also using this table. To select only your own entries you
could change the query to:

select * from userTable where userId=’JoeBloggs’

To exit the rgma command line interface enter:

exit

Some more examples are available within the command line tool by entering:

rgma
help examples

For more information on the R-GMA command line tool see section7.

3 R-GMA INSTALLATION

Though this is a user guide, it is worth understanding some aspects of the installation.

3.1 INSTALLED COMPONENTS

Clients communicate with an R-GMA server. For operations using a producer or a consumer this is the
local R-GMA server on the site, however some operations of the command line tool contact a registry
and/or the schema. A client installation needs to be configured to know its local R-GMA site server,
the set of servers running a registry and the server running a schema. Each R-GMA server has the
ability to run all services, but most servers only run the producer and consumer services. An R-GMA
installation is defined by its schema and registries and sites shouldnot configure an additional registry
except with the agreement of those having planning authority for that grid. A number of secondary
producers, republishing to a database, will normally be set up to answer latest and history queries over
aggregated information. An R-GMA server can also be configured to run the browser service to offer
web access to R-GMA.

3.2 CHECK YOUR INSTALLATION

You should check your installation by typing “rgma-client-check”. If it returns with an OK message
then the system is probably installed correctly, if not you have some kind of problem and you should
either check the installation as described in the installation guide linked fromhttp://hepunx.rl.ac.uk/egee/
jra1-uk/glite-r1.5/ , or ask your sysadmin to install the system correctly.4

The file$RGMA HOME/etc/rgma/rgma.conf must contain the URLs of the R-GMA services you want
the API to connect to: the standard R-GMA installation creates this for you. If you need to use an HTTP
proxy server, set the environment variablehttp proxy to contain the URL (including port number) of
the proxy server.

4This test checks that all the four APIs are installed. If you have not installed all of them then you should expect it to report
a different number.

INFSO-RI-508833 PUBLIC 12/37

http://hepunx.rl.ac.uk/egee/jra1-uk/glite-r1.5/
http://hepunx.rl.ac.uk/egee/jra1-uk/glite-r1.5/

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

3.3 SECURITY

R-GMA client applications require a suitable grid certificate or proxy to access secure R-GMA services
(onhttps://...:8443/R-GMA). The location of the security credentials can be specified in one of two
ways:

1. Setting environment variableX509_USER_PROXY to the location of a grid proxy certificate file (e.g.
/tmp/x509upu00000).

2. Setting environment variableTRUSTFILE to the location of a security properties file. An exam-
ple is installed at $RGMAHOME/etc/rgma/ClientAuthentication.props. This should contain a
setting for either agridProxyFile (as above) orsslCertFile/sslKey/sslKeyPasswd combina-
tion. You should make your own copy of this file.

Note that Java clients will need to pass in one of these environment variables to the JVM explicitly using
the-D option.

Since R-GMA authentication is mutual, your system administrator will also need to install the Certificate
Authority files for the CA that signs the server certificate of any server you wish to use, on your machine.
These are normally located in /etc/grid-security/certificates.

4 PRIMARY PRODUCERS

4.1 TERMINATION INTERVAL

Each Primary Producer resource has a Termination Interval as described in1.2.6, that is a time interval
within which the user must make contact with the producer service, in order to keep the resource alive
and maintain its table entries in the registry. The Termination Interval is set by the user when the resource
is created, however this option will probably be removed from control in the future. For now please set
it to one hour. If the producer’s publication interval (the interval between calls toinsert) is greater than
the Termination Interval, then the user should callshowSignOfLife periodically to keep it alive.

If the user sends aclose request the Primary Producer will continue to be available to Consumers until
all tuples are older than theHistoryRetentionPeriodbut will no longer be contactable from the user API.
If the termination interval is exceeded, the resource behaves as though it had received aclose request.

The resource is destroyed immediately when the user issues an explicitdestroy request.

The user should make allowance for the variable time it will take for any messages to reach the service
and be processed. This extra time should be short as the system has been designed with the expectation
that clients will contact local services. Even then, the user should always be aware that a resource he
was using may have timed out when he next tries to contact it. Various recommendations on timing are
provided in the “Advice on using R-GMA” section11of this guide.

4.2 PRODUCER PROPERTIES

All producers support continuous queries, but you may also specify in the producer properties that you
want the producer to also support history and/or latest queries.

The tuple-storage maintained by Primary and Secondary Producers can either be in memory or in a real
database table. You should choose, as part of the producer properties, whichever is the most appropriate.
Memory gives the best performance, wheras an RDBMS gives the best performance for complex queries

INFSO-RI-508833 PUBLIC 13/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

- especially those requiring joins5. A common pattern is to use a memory based producer as the primary
one and then to use a more resilient secondary producer by storing in an RDBMS. This is the example
we consider here.

4.3 PRIMARY PRODUCER EXAMPLES

Here we show an example of a piece of code and how to run it.

4.3.1 SIMPLE PRIMARY PRODUCER EXAMPLE

0 import org.glite.rgma.PrimaryProducer;
1 import org.glite.rgma.ProducerFactory;
2 import org.glite.rgma.ProducerProperties;
3 import org.glite.rgma.RGMAException;
4 import org.glite.rgma.RemoteException;
5 import org.glite.rgma.Storage;
6 import org.glite.rgma.TimeInterval;
7 import org.glite.rgma.Units;
8 import org.glite.rgma.UnknownResourceException;
9 import org.glite.rgma.stubs.ProducerFactoryStub;

10 public class PrimaryProducerExample {
11 public static void main(String[] args) {
12 if (args.length != 1) {
13 System.err.println("Usage: java PrimaryProducerExample <userId>");
14 System.exit(1);
15 }

16 try {
17 ProducerFactory factory = new ProducerFactoryStub();
18 TimeInterval ti = new TimeInterval(60, Units.MINUTES);
19 ProducerProperties props = new ProducerProperties(Storage.MEMORY, 0);
20 PrimaryProducer pp = factory.createPrimaryProducer(ti, props);

21 String predicate = "WHERE userId = ’" + args[0] + "’";
22 TimeInterval historyRP = new TimeInterval(60, Units.MINUTES);
23 TimeInterval latestRP = new TimeInterval(60, Units.MINUTES);
24 pp.declareTable("userTable", predicate, historyRP, latestRP);

25 String insert = "INSERT INTO userTable (userId, aString, aReal, anInt)" +
26 " VALUES (’" + args[0] + "’, ’Java producer’, 3.1415926, 42)";
27 pp.insert(insert);

28 pp.close();
29 } catch (RemoteException e) {
30 System.err.println("Failed to contact PrimaryProducer service.");
31 e.printStackTrace(System.err);
32 System.exit(1);
33 } catch (UnknownResourceException e) {
34 System.err.println("Failed to contact PrimaryProducer resource.");
35 e.printStackTrace(System.err);
36 System.exit(1);
37 } catch (RGMAException e) {

5Currently only RDBMS storage supports join operations

INFSO-RI-508833 PUBLIC 14/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

38 System.err.println("R-GMA application error in PrimaryProducer.");
39 e.printStackTrace(System.err);
40 System.exit(1);
41 }
42 }
43 }

Lines 0–9 are the various necessary import statements for the R-GMA java classes.

Line 17 instantiates a ProducerFactory object which can be used to create Producers.
The ProducerFactory type is generated using the ProducerFactoryStub, which allows different imple-
mentations of the producer factory to be plugged in.

Line 18 defines a 60 minute time interval which is used as the termination interval for this producer. This
is the time after which the connection to the producer will close if the service does not hear from the
user. This is in line with the recommendations in section11giving advice on how to use R-GMA.

Line 19 Creates a ProducerProperties object. The first argument in the constructor of the ProducerProp-
erties is the storage object, which is is simply set toStorage.MEMORY. The second argument is the type
of queries the producer supports, which allows the user to specific that the Producer supports history or
latest queries. In this case it is set to 0 to indicate that it supports neither history nor latest queries.

Line 20 The Primary Producer is created with the termination interval and ProducerProperties created
above.

Line 21–24 declare the intention to publish to the table called “userTable”. The call takes the table name,
the predicate and a pair of retention periods. A producer is able to publish to more than one table.

Lines 25–27 create a SQL insert statement and use it as the argument of a call to insert on the producer.

Line 28 closes the primary producer.

Lines 29–41 are the “catches” at the end of the try clause. The RemoteException indicates that the remote
service did not respond. If the service is unable to locate the resource an UnknownResourceException is
thrown. The RGMAException is to indicate RGMA errors.

4.3.2 RUNNING THE EXAMPLE

The CLASSPATH for the example needs to contain the following JAR files:

$RGMA_HOME/share/java/glite-rgma-api-java.jar
$RGMA_HOME/share/java/glite-rgma-stubs-servlet-java.jar
$RGMA_HOME/share/java/glite-security-trustmanager.jar
$RGMA_HOME/share/java/glite-security-util-java.jar
$RGMA_HOME/externals/share/java/bcprov-jdk14-122.jar
$RGMA_HOME/externals/share/java/log4j.jar

where $RGMAHOME is usually /opt/glite (the same as $GLITELOCATION). The first two JAR files
contain the R-GMA API and transport mechanism (http), the next three contain the security mechanism
and the last one is for logging.

To compile the example enter

javac -classpath $CLASSPATH PrimaryProducerExample

To run the example with a Grid proxy certificate, you need to enter:

java -DRGMA_HOME=$RGMA_HOME -DX509_USER_PROXY=$X509_USER_PROXY \
PrimaryProducerExample <userId>

INFSO-RI-508833 PUBLIC 15/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

or to run it with a trust file, you need to enter:

java -DRGMA_HOME=$RGMA_HOME -DTRUSTFILE=$TRUSTFILE \
PrimaryProducerExample <userId>

<userId> is the value of the userId column in table userTable.

4.3.3 RESILIENT PRIMARY PRODUCER EXAMPLE

This example illustrates how to write a resilient producer according to the recommendations in section
11. The Primary Producer publishes information periodically every 30 seconds. If there is a network
problem or the buffer is full it retries after one minute, if the producer resource no longer exists a new
one is created.

0 import org.glite.rgma.PrimaryProducer;
1 import org.glite.rgma.ProducerFactory;
2 import org.glite.rgma.ProducerProperties;
3 import org.glite.rgma.RGMABufferFullException;
4 import org.glite.rgma.RGMAUserException;
5 import org.glite.rgma.RGMAException;
6 import org.glite.rgma.RemoteException;
7 import org.glite.rgma.Storage;
8 import org.glite.rgma.TimeInterval;
9 import org.glite.rgma.Units;
10 import org.glite.rgma.UnknownResourceException;
11 import org.glite.rgma.stubs.ProducerFactoryStub;

12 public class ResilientPrimaryProducer {
13 public static void main(String[] args) {
14 if (args.length != 1) {
15 System.err.println("Usage: java ResilientPrimaryProducer <userId>");
16 System.exit(1);
17 }

18 ProducerFactory factory = new ProducerFactoryStub();
19 PrimaryProducer producer = null;
20 int data = 0;
21 String predicate = "WHERE userId = ’" + args[0] + "’";
22 ProducerProperties props = new ProducerProperties(Storage.MEMORY, 0);
23 TimeInterval terminationInterval = new TimeInterval(60, Units.MINUTES);
24 TimeInterval historyRP = new TimeInterval(50, Units.MINUTES);
25 TimeInterval latestRP = new TimeInterval(25, Units.MINUTES);
26 String insert = null;

27 boolean producerCreated = false;
28 boolean tableDeclared = false;

29 while(true) {
30 try {
31 while(!producerCreated){
32 producer = factory.createPrimaryProducer(terminationInterval, props);
33 producerCreated = true;
34 }

35 while(!tableDeclared){
36 producer.declareTable("userTable", predicate, historyRP, latestRP);

INFSO-RI-508833 PUBLIC 16/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

37 tableDeclared = true;
38 }

39 while(true) {
40 insert = "INSERT INTO userTable " +
41 "(userId, aString, aReal, anInt) VALUES " +
42 "(’" + args[0] + "’, ’’, 0.0, " + data + ")";
43 producer.insert(insert);
44 System.out.println(insert);
45 data++;
46 try {Thread.sleep(30 * 1000);} catch(InterruptedException ie) {}
47 }
48 } catch (UnknownResourceException e) {
49 System.err.println("Producer has died - will try to create a new one");
50 producerCreated = false;
51 tableDeclared = false;
52 } catch (RemoteException e) {
53 System.err.println("Failed to contact R-GMA server: " + e.getMessage() +
54 " - will retry in 60s");
55 try {Thread.sleep(60 * 1000);} catch (InterruptedException ie) {}
56 } catch (RGMABufferFullException e) {
57 System.err.println("Producer buffer is full - will retry insert in 60s");
58 try {Thread.sleep(60 * 1000);} catch (InterruptedException ie) {}
59 } catch (RGMAUserException e) {
60 System.err.println("WARNING: Invalid tuple: " + insert + "(" +
61 e.getMessage() + ")");
62 } catch (RGMAException e) {
63 System.err.println("Unexpected R-GMA error - exiting");
64 e.printStackTrace(System.err);
65 if (producer != null) try {producer.close();} catch (Exception ex) {}
66 System.exit(1);
67 }
68 }
69 }
70 }

Lines 0–11 are the various necessary import statements for the R-GMA java classes.

Line 20 initialises the data value that is going to be inserted into each tuple.

Lines 21–26 set up the producer properties.

Lines 27–28 set up initial states for the producer and table

Line 29 loops forever.

Lines 30–34 create a new Primary Producer. This is only done on the first time through the loop or if the
producer needs to be recreated following a failure.

Lines 35–38 declare the userTable. This is only done on the first time through the loop or if the table
needs to be declared following a failure.

Lines 39–47 loops forever - each iteration will insert a new tuple. Our simple example tuples just contain
the userId and the current value of thedata variable that gets incremented on each successful iteration
of the loop.

Lines 48–51 an UnkownResourceException is a result of the client contacting the server and finding that
the producer resource no longer exists. Hence an UnkownResourceException will result in the producer
being recreated.

Lines 52–55 a RemoteException is a result of the client being unable to contact the server, possibly due
to network problems. Wait for a minute before retrying the operation.

INFSO-RI-508833 PUBLIC 17/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

Lines 56–58 a RGMABufferFullException is caused by the tuple buffer on the server temporarily being
full. Wait for a minute before retrying the operation.

Lines 59–61 a RGMAUserException is caused when there is an error with the inserted tuple. A warning
is printed and the code continues.

Lines 62–67 other R-GMA exceptions will cause the program to exit. Before exiting an attempt is made
to close the producer.

5 CONSUMING INFORMATION

5.1 TYPES OF QUERY

There are four types of query:continuous, latest, history andstatic (the latter are only supported by
On-demand Producers). The set of queries that a particular producer supports is recorded in the registry.
All query types except static can take an optional time interval parameter.

A continuous query causes all new tuples that match the query, to be streamed into the consumer’s tuple-
storage, as soon as they are inserted into the virtual table by the producers. Streaming continues until
the consumer requests it to stop. If a time interval is specified, the consumer will additionally receive
any tuples which are already in the virtual table when the query starts, and which are no older than the
time interval. There is no guarantee that tuples are time-ordered. All Primary and Secondary producers
support continuous queries. On-demand producers do not.

Latest and history queries areone-timequeries: they execute on the current contents of the virtual table,
then terminate. In a history-query, all versions of any matching tuples are returned; in a latest-query,
only those representing the “current state” (see1.2.4) are returned. In both cases, a time interval may be
specified with the query, to limit the age of the tuples returned. Primary and Secondary Producers may
optionally support one-time queries. On-demand producer do not.

5.2 CONSUMER EXAMPLES

This provides examples of code you might use or adapt.

5.2.1 SIMPLE CONSUMER EXAMPLE

0 import org.glite.rgma.Consumer;
1 import org.glite.rgma.ConsumerFactory;
2 import org.glite.rgma.QueryProperties;
3 import org.glite.rgma.RGMAException;
4 import org.glite.rgma.RemoteException;
5 import org.glite.rgma.ResultSet;
6 import org.glite.rgma.TimeInterval;
7 import org.glite.rgma.Units;
8 import org.glite.rgma.UnknownResourceException;
9 import org.glite.rgma.stubs.ConsumerFactoryStub;

10 public class ConsumerExample {
11 public static void main(String[] args) {

12 try {
13 ConsumerFactory factory = new ConsumerFactoryStub();

14 TimeInterval ti = new TimeInterval(60, Units.MINUTES);

INFSO-RI-508833 PUBLIC 18/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

15 Consumer c = factory.createConsumer(ti,
16 "SELECT * FROM userTable",
17 QueryProperties.CONTINUOUS);

18 c.start(new TimeInterval(5, Units.MINUTES));

19 ResultSet rs = null;
20 do {
21 try {
22 Thread.sleep(5 * 1000);
23 } catch (InterruptedException e) {}

24 rs = c.pop(2000);
25 System.out.println(rs);
26 } while (!rs.endOfResults());

27 } catch (RemoteException e) {
28 System.err.println("Failed to contact Consumer service.");
29 e.printStackTrace(System.err);
30 System.exit(1);
31 } catch (UnknownResourceException e) {
32 System.err.println("Failed to contact Consumer resource.");
33 e.printStackTrace(System.err);
34 System.exit(1);
35 } catch (RGMAException e) {
36 System.err.println("R-GMA application error in Consumer.");
37 e.printStackTrace(System.err);
38 System.exit(1);
39 }
40 }
41 }

Lines 0–9 are the import statements necessary to use the Java R-GMA classes.

Line 13 instantiates a ConsumerFactory object which can be used to create Consumers. The Consumer-
Factory type is generated using the ConsumerFactoryStub, which allows different implementations of
the consumer factory to be plugged in.

Lines 14–17 create a consumer with a termination interval of 60 minutes and a continuous query of
SELECT * FROM userTable. In this case we have a simple continuous query which will start with the
next tuple published. However, it is possible to specify how far back in time to start, see example in
section5.2.2. Note that it is recommended to set the termination interval to 60 mins (see section11)

Line 18 start the query running for no more than 5 minutes. In fact, as this is a continuous query it should
not complete in less than the specified time.

Lines 19–26 loop until the consumer is no longer executing, but each time sleeps for five seconds and
processes any available data.

Line 24 Pops up to 2000 tuples at once, this can be set as large or small as the user thinks appropriate on
their system.

Lines 27–38 catch the various exceptions which may occur.

5.2.2 CONSUMING CONTINUOUS PLUS OLD INFORMATION

In order to consume information that is already in the database, but up to ten minutes old replace lines
15 to 17 with the following

0 Consumer c = factory.createConsumer(60, Units.MINUTES,

INFSO-RI-508833 PUBLIC 19/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

1 "SELECT * FROM userTable",
2 QueryProperties.getContinuous(10, Units.MINUTES));

Lines 0-2 Instantiates a consumer factory with a termination interval of 60 minutes, which carries out
a continuous query requesting old information going back in time for at least 10 minutes. The time
associated with the continuous indicates that data at least 10 minutes old should be returned as well as
new data.

5.2.3 ONE-OFF QUERIES

For one-off queries, either history or latest, it is preferable to check to see if the query aborted. This can
be achieved by looking to see ifc.hasAborted() is true after either kind of consumer loop.

This can be the result of hitting the timeout (5 minutes in the above case) or making an explicitc.abort()
call. Note that continuous queriesonlystop by one of these means so there is no point in checking in that
case.

5.2.4 CONSUMER EXTRACTING INFORMATION FROM RESULT SET

If you wish to extract the specific fields from the ResultSet, and handle them separately this can be done
by replacing lines 28-29 in the above example with the following loop

0 ResultSet result;

1 while (result.next()) {
2 String user = result.getString("userId");
3 String aString = result.getString("aString");
4 float aReal = result.getFloat("aReal");
5 int anInt = result.getInt("anInt");
6 String tstamp = result.getString("MeasurementTime");

7 System.out.println("Read: userID = " + user + ", aString = " + aString);
8 System.out.println("aReal = " + aReal + " , anInt = " + anInt +
9 ", Timestamp = " + tstamp);
10 }

Line 0 instantiates a ResultSet object, for holding the results

Lines 1-10 loop while there is still information in the ResultSet result

Lines 2-6 extracts from the ResultSet, using the ResultSet methods for extracting strings, floats and
integers.

Lines 7-9 writes out the information extracted

5.2.5 RESILIENT CONSUMER EXAMPLE

This example illustrates how to write a resilient consumer according to the recommendations in section
11. The consumer retrieves information periodically every five seconds. If there is a network problem it
retries after one minutes, if the consumer resource no longer exists a new one is created.

0 import org.glite.rgma.Consumer;
1 import org.glite.rgma.ConsumerFactory;
2 import org.glite.rgma.QueryProperties;
3 import org.glite.rgma.RGMAException;
4 import org.glite.rgma.RemoteException;
5 import org.glite.rgma.ResultSet;

INFSO-RI-508833 PUBLIC 20/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

6 import org.glite.rgma.TimeInterval;
7 import org.glite.rgma.Units;
8 import org.glite.rgma.UnknownResourceException;
9 import org.glite.rgma.stubs.ConsumerFactoryStub;

10 public class ResilientConsumer {
11 public static void main(String[] args) {

12 Consumer consumer = null;
13 ConsumerFactory factory = new ConsumerFactoryStub();
14 TimeInterval terminationInterval = new TimeInterval(60, Units.MINUTES);
15 TimeInterval oldData = new TimeInterval(30, Units.SECONDS);
16 String select = "SELECT * FROM userTable";

17 boolean consumerCreated = false;
18 boolean consumerStarted = false;
19 boolean endOfResults = false;

20 while (true) {
21 try {
22 while (!consumerCreated) {
23 QueryProperties queryProps = QueryProperties.getContinuous(oldData);
24 consumer = factory.createConsumer(terminationInterval, select,
25 queryProps);
26 consumerCreated = true;
27 }

28 while (!consumerStarted) {
29 consumer.start(new TimeInterval(365, Units.DAYS));
30 consumerStarted = true;
31 }

32 while (!endOfResults) {
33 try {Thread.sleep(5 * 1000);} catch (InterruptedException ie) {}
34 ResultSet rs = consumer.pop(2000);
35 if (rs.next()) {
36 System.out.println(rs);
37 }
38 if (rs.getWarning() != null) {
39 System.out.println("WARNING: " + rs.getWarning().getMessage());
40 }
41 endOfResults = rs.endOfResults();
42 }

43 if (consumer != null) try {consumer.close();} catch (Exception ex) {}

44 consumerCreated = false;
45 consumerStarted = false;
46 endOfResults = false;
47 } catch (UnknownResourceException e) {
48 System.err.println("Consumer has died - will try to create a new one");
49 consumerCreated = false;
50 consumerStarted = false;
51 endOfResults = false;
52 } catch (RemoteException e) {
53 System.err.println("Failed to contact R-GMA server: " + e.getMessage() +
54 " - will retry in 60s\n");
55 try {Thread.sleep(60 * 1000);} catch (InterruptedException ie) {}

INFSO-RI-508833 PUBLIC 21/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

56 } catch (RGMAException e) {
57 System.err.println("Unexpected R-GMA error - exiting");
58 if (consumer != null) try {consumer.close();} catch (Exception ex) {}
59 e.printStackTrace(System.err);
60 System.exit(1);
61 }
62 }
63 }
64 }

Lines 0–9 are the import statements necessary to use the Java R-GMA classes.

Lines 12–16 set up the consumer properties. This uses a continuous plus old information query (5.2.2)
so that if the consumer is restarted data should not be lost. N.B. It is possible that this may cause the
some tuples to be retrieved a second time if the consumer restarts.

Lines 17–19 set up initial states for the consumer and resultset

Line 20 loops forever.

Lines 21–26 create a new consumer. This is only done on the first time through the loop or if the
consumer needs to be recreated following a failure.

Lines 27–30 start the consumer. This is only done on the first time through the loop or if the consumer
needs restarting following a failure.

Lines 31–41 loops for a year - each iteration will retrieve data and check for warnings. See the Consumers
section in11 for further explaination about the pop and sleep.

Lines 42 after a year of looping close the consumer.

Lines 43–45 reset the states for the consumer and resultset so that a new consumer will be recreated by
the main loop.

Lines 46–50 an UnkownResourceException is a result of the client contacting the server and finding
that the consumer resource no longer exists. Hence an UnkownResourceException will result in the
consumer being recreated.

Lines 51–53 a RemoteException is a result of the client being unable to contact the server, possibly due
to network problems. Wait for a minute before retrying the operation.

Lines 54–59 other R-GMA exceptions will cause the program to exit. Before exiting an attempt is made
to close the consumer.

6 REPUBLISHING VIA SECONDARY PRODUCERS

As explained in section1.2.3, a Secondary Producer populates its internal storage by running a query
and the user code only sets the process running. This is demonstrated by the code in the examples below.
Note that as this example stores information in the database, unlike the primary producer and simple
consumer above, this example cannot be used without editing to specify your own local database.

6.1 SECONDARY PRODUCER EXAMPLES

6.1.1 SIMPLE SECONDARY PRODUCER EXAMPLE

0 import org.glite.rgma.ProducerFactory;
1 import org.glite.rgma.ProducerProperties;
2 import org.glite.rgma.RGMAException;
3 import org.glite.rgma.RemoteException;

INFSO-RI-508833 PUBLIC 22/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

4 import org.glite.rgma.SecondaryProducer;
5 import org.glite.rgma.Storage;
6 import org.glite.rgma.TimeInterval;
7 import org.glite.rgma.Units;
8 import org.glite.rgma.UnknownResourceException;
9 import org.glite.rgma.stubs.ProducerFactoryStub;

10 public class SecondaryProducerExample {
11 public static void main(String[] args) {
12 try {
13 ProducerFactory factory = new ProducerFactoryStub();

14 String slocation = "jdbc:mysql://localhost:3306/somedatabase";
15 Storage storage = Storage.getDatabase(slocation, "fred", "bloggs");
16 ProducerProperties props = new ProducerProperties(storage,
17 ProducerProperties.LATEST);
18 TimeInterval ti = new TimeInterval(60, Units.MINUTES);
19 SecondaryProducer sp = factory.createSecondaryProducer(ti, props);

20 TimeInterval historyRP = new TimeInterval(2, Units.HOURS);
21 sp.declareTable("userTable", "", historyRP);

22 while (true) {
23 sp.showSignOfLife();

24 try {
25 Thread.sleep(55 * 60 * 1000);
26 } catch (InterruptedException e) {}
27 }
28 } catch (RemoteException e) {
29 System.err.println("Failed to contact SecondaryProducer service.");
30 e.printStackTrace(System.err);
31 System.exit(1);
32 } catch (UnknownResourceException e) {
33 System.err.println("Failed to contact SecondaryProducer resource.");
34 e.printStackTrace(System.err);
35 System.exit(1);
36 } catch (RGMAException e) {
37 System.err.println("R-GMA application error in SecondaryProducer.");
38 e.printStackTrace(System.err);
39 System.exit(1);
40 }
41 }
42 }

Lines 0–9 are the R-GMA import statements.

Line 13 instantiates a ProducerFactory object which can be used to create Producers. The Producer-
Factory type is generated using the ProducerFactoryStub, which allows different implementations of the
producer factory to be plugged in.

Lines 14-15 define the Storage object in the database. It is the user’s responsibility to ensure that the
specified database exists, as explained in10.1. These 2 lines need to be edited to match the database
created.

Lines 16-17 define the producer properties (in this case adding support for Latest queries to the support
which is always present for continuous queries).

Line 18 creates a time interval of 60 minutes, for use as a termination interval.

INFSO-RI-508833 PUBLIC 23/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

Line 19 Calls thecreateSecondaryProducer. The first parameter is the termination interval, the second
is the other producer properties defined

Line 21 declares a table that the secondary producer will deal with (it includes the table name and pred-
icate). The predicate is an empty string meaning that this secondary producer will collect and republish
the whole table. The history retention period is set to two hours. This means that tuples will be available
until they are 2 hours old - these tuples will be made available to both continuous and history queries.
In addition tuples will be available for latest queries. The latest retention period is a property of the
individual tuple as defined at the primary producer.

Lines 22–28 keep the secondary producer alive. On line 19 it was given a termination interval of 60
minutes so here we must issue ashowSignOfLife call slightly more often. In this case the sleep is for
55 minutes. It is possible that theshowSignOfLife call may fail if it is unable to contact the service, or
the service is unable to locate the remote resource. In this case the loop will be exited.

Lines 29–41 catch the exceptions.

Notice that if the secondary producer does fail it could be an hour before the program detects this and
exits, so you need to set the retention period and sleep parameter according to your needs. For recom-
mendations see section11.

6.1.2 SHUTDOWN THREAD FOR SECONDARY PRODUCER

In order to respond correctly to the process being stopped, a shutdown thread can be added.

0 // Preamble...

1 public static void main(String[] args) {
2 SecondaryProducer sp = factory.createSecondaryProducer(...);
3 Runtime.getRuntime().addShutdownHook(new ShutdownThread(sp));

4 // Rest of code...
5 }

6 class ShutdownThread extends Thread {
7 private SecondaryProducer m_secondaryProducer;

8 public ShutdownThread(SecondaryProducer sp) {
9 m_secondaryProducer = sp;
10 }

11 public void run() {
12 try {
13 m_secondaryProducer.destroy();
14 } catch (Exception e) {
15 System.err.println("Error trying to destroy SecondaryProducer " +
16 "on shutdown.");
17 e.printStackTrace(System.err);
18 }
19 }
20 }

This code extract should show the ideas. Immediately after creation of the secondary producer at line 2,
the runtime system is asked toaddShutDownHook to deal with it.

Lines 6–19 are the shutdown thread. The run method (line 11) is called as the JVM terminates.

If you don’t provide this protection the secondary producer will continue to function until the termination
interval has expired.

INFSO-RI-508833 PUBLIC 24/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

6.1.3 AVOIDING A PERMANENT CONNECTION TO A SECONDARY PRODUCER

If you don’t want to keep the process running continuously you could leave the secondary producer
running after disconnecting from the API and then periodically run a job which reconnects. To do this,
replace lines 22–28 of the Secondary Pronduce Example by:

System.out.println(sp.getResourceEndpoint());

This writes the information about the resource endpoint (the URL and resourceId) to stdout. It is assumed
that you will capture this output. You then need to run at least every 55 minutes the following code:

0 import org.glite.rgma.ProducerFactory;
1 import org.glite.rgma.RGMAException;
2 import org.glite.rgma.RemoteException;
3 import org.glite.rgma.ResourceEndpoint;
4 import org.glite.rgma.SecondaryProducer;
5 import org.glite.rgma.UnknownResourceException;
6 import org.glite.rgma.stubs.ProducerFactoryStub;

7 public class SecondaryProducerReconnect {
8 public static void main(String[] args) {

9 if (args.length != 2) {
10 System.err.println("Usage: java SecondaryProducerReconnect " +
11 "<url> <resourceId>");
12 System.exit(1);
13 }

14 ProducerFactory factory = new ProducerFactoryStub();

15 try {

16 String url = args[0];
17 int resourceId = Integer.parseInt(args[1]);
18 ResourceEndpoint rep = new ResourceEndpoint(url, resourceId);

19 SecondaryProducer sp = factory.reconnectSecondaryProducer(rep);
20 sp.showSignOfLife();

21 } catch (RemoteException e) {
22 System.err.println("Failed to contact SecondaryProducer service.");
23 e.printStackTrace(System.err);
24 System.exit(1);
25 } catch (UnknownResourceException e) {
26 System.err.println("Failed to contact SecondaryProducer resource.");
27 e.printStackTrace(System.err);
28 System.exit(1);
29 } catch (RGMAException e) {
30 System.err.println("R-GMA application error in SecondaryProducer.");
31 e.printStackTrace(System.err);
32 System.exit(1);
33 }
34 }
35 }

Lines 0–6 are the R-GMA import statements.

INFSO-RI-508833 PUBLIC 25/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

Lines 9–13 check that two arguments have been specified. These are the URL and resourceId output by
the first program.

Lines 14 creates a ProducerFactory object.

Lines 16–20 set up the ResourceEndpoint and pass it to the factory to get back a SecondaryProducer
object. This is followed by a call toshowSignOfLife to tell the service to keep the remote resource
alive.

7 THE RGMA COMMAND LINE TOOL

7.1 INTRODUCTION

The R-GMA command line tool offers simple command-based access to the R-GMA virtual database.
The interface is intended to be similar to the command-line tools supplied with databases, e.g. MySQL.

A complete description of the command line tool is available in the users manual linked from the R-GMA
documentation web page:http://hepunx.rl.ac.uk/egee/jra1-uk/glite-r1.5/ .

7.1.1 STARTING THE R-GMA COMMAND LINE TOOL

To start the R-GMA command line tool, run the commandrgma.

On startup you should receive the following message:

Welcome to the R-GMA virtual database for Virtual Organisations.
==

Your local R-GMA server is:

https://yourlocal.server.machine:8443/R-GMA

You are connected to the following R-GMA Registry services:

https://amachine.somehwhere:8443/R-GMA/RegistryServlet

You are connected to the following R-GMA Schema service:

https://amachine.somewhere:8443/R-GMA/SchemaServlet

Type "help" for a list of commands.

rgma>

7.1.2 ENTERING COMMANDS

Commands are entered by typing at thergma>prompt and hitting “enter” to execute the command. A
history of commands executed can be accessed using the Up and Down arrow keys. Commands can be
entered in lower or upper case (but not a mixture of both).

Command autocompletion is supported – hit the “Tab” key when you have partly entered a command
and it will either be completed automatically or a list of matching alternatives will be displayed.

INFSO-RI-508833 PUBLIC 26/37

http://hepunx.rl.ac.uk/egee/jra1-uk/glite-r1.5/

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

7.2 COMMANDS

7.2.1 GENERAL COMMANDS

help Displays general help information
help <command> Displays help for a specific command
exit Exit the R-GMA command line
quit Same as “exit”

7.2.2 QUERYING DATA

Querying data uses the standard SQLSELECT statement, e.g.

rgma> SELECT * FROM ServiceStatus

The type of query can be changed using theSET QUERY command:

rgma> SET QUERY LATEST
rgma> SET QUERY CONTINUOUS

The maximum age of tuples to return can also be controlled using theSET MAXAGE command which
takes a value and a time unit (seconds, minutes, hours, days - default is seconds).

rgma> SET MAXAGE 2 minutes
rgma> SET MAXAGE 120

If a maximum age is specified for a continuous query, the query will initially return a history of matching
tuples up to the specified maximum age. It will then return new tuples as they are inserted.6

To disable the maximum age, set it tonone:

rgma> SET MAXAGE none

The query timeout controls how long the query will execute for before exiting automatically.

rgma> SET TIMEOUT 3 minutes
rgma> SET TIMEOUT 180

7.2.3 INSERTING DATA

The SQL INSERT statement may be used to add data to the system:

rgma> INSERT INTO Table (col1, col2, col3, col4) VALUES (’a’, ’b’, ’c’, ’d’)

Data is inserted into the system using a Producer component. All producers can answer continuous
queries, but ability to answer latest and history queries is optional and is changed using theSET PRODUCER
command7:

6Currently the use of maxage with a continuous query is not fully implemented. If any value is specified for maxage, the
query will initially return a history of all matching tuples that have not expired.

7Primary and Secondary producers able to answer latest and history queries have not yet been implemented

INFSO-RI-508833 PUBLIC 27/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

rgma> SET PRODUCER latest
rgma> SET PRODUCER latest history
rgma> SET PRODUCER continuous

The default setting is for a producer that only answers continuous queries.

A producer may have a predicate associated with it describing the subset of a table it provides. For
example, if a table userTable has the columnuserId which for your producer will always have the value
me, you can express this restriction using:

rgma> SET PRODUCER PREDICATE userTable WHERE userId = ’me’

To remove the predicate use:

rgma> SET PRODUCER PREDICATE <table name> none

For a producer that can answer latest and/or history queries, the latest and history retention periods can
be controlled using:

rgma> SET PRODUCER latestretentionperiod 30 minutes
rgma> SET PRODUCER historyretentionperiod 2 hours

7.2.4 SECONDARY PRODUCERS

A Secondary producer does not insert new data to the system, but collects data from individual Producers
and makes it available via its own Producer component.

To instruct the secondary producer to consume from the tableMyTable, use the following command:

rgma> SECONDARYPRODUCER MyTable

Like the producer, the secondary producer may be configured to answer latest and/or history queries, e.g.

rgma> SET SECONDARYPRODUCER latest

If the secondary producer can answer history queries, it has an associated history retention period, as for
a producer. This is controlled in the same way:

rgma> SET SECONDARYPRODUCER historyretentionperiod 1 day

7.2.5 INFORMATION COMMANDS

To show a list of all R-GMA producers that produce the tableMyTable:

rgma> SHOW PRODUCERS OF MyTable

To show a list of all table names:

rgma> SHOW TABLES

To show information about a tableMyTable:

rgma> DESCRIBE MyTable

INFSO-RI-508833 PUBLIC 28/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

7.2.6 DIRECTED QUERIES

Normally a component of R-GMA called themediatorselects which Producers are contacted to answer
a query. For debugging purposes it may be useful to specify a particular Producer to use instead. This is
called adirected queryand can be specified with theUSE PRODUCER command:

rgma> USE PRODUCER <url> <resource id>

All future SELECTqueries will be directed to this Producer. Only one producer may be specified. The
<url>and<resource id> should correspond to a valid Producer that can answer the type of queries
you put to it or no results will be returned. TheSHOW PRODUCERS command displays urls and resource
IDs of registered Producers.

To revert back to using the Mediator to select producers, use the command:

rgma> USE MEDIATOR

8 USING THE WEB TO BROWSE R-GMA INFORMATION

The R-GMA browser can be used to:

• View definitions of available tables in the schema.

• View Producers that are publishing to a table.

• Pose a mediated query on a table.

• Pose a query to specific Producers of a table.

8.1 SECURITY

To access the R-GMA Browser when it is hosted on a secure (HTTPS) server, a suitable client certificate
needs to be imported into the Web Browser.

9 ADMINISTRATION

9.1 TABLE CREATION

The newcreateTable API method should now be used for adding tables to an R-GMA schema.

9.2 RECOVERY FOLLOWING RESTART

R-GMA instances (Web Service Resources) are always destroyed when the corresponding service restarts.
All calls to services in R-GMA (either from the user or another service) must therefore be prepared to
discover that a resource no longer exists, or is no longer registered in the registry, and to handle the error
gracefully. The use of time-outs (soft-state registration) on the registry and in the producer and consumer
services, ensures entries to non-existent resources are automatically removed within a reasonable length
of time.

Those R-GMA services which use permanent storage (registry service, schema service and primary and
secondary producers with user-specified tuple stores) do have some degree of resilience, because new

INFSO-RI-508833 PUBLIC 29/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

resources can connect to existing storage, provided the storage itself is recoverable. In the case of a
producer’s file or database tuple-store, existing tuples will be automatically available, and will remain in
the store until they exceed their retention period, in the usual way.

10 SQL

10.1 CREATING A DATABASE AS STORAGE FOR A PRODUCER

To create the database in the examples (somedatabase with user/password of fred/bloggs) you will need
sufficient privileges to be able to create a database. You (or your sysadmin) should connect to the DBMS
with the commandmysql e.g. by entering:-

mysql -u root -p

and enter:

CREATE DATABASE somedatabase;
GRANT ALL PRIVILEGES ON somedatabase.* TO fred@localhost IDENTIFIED BY ’bloggs’;
GRANT ALL PRIVILEGES ON somedatabase.* TO fred@"%" IDENTIFIED BY ’bloggs’;

The first line creates the database. The other two lines create user/password combinations if they do not
already exist and give “fred”, logged in from any machine, full privileges on “somedatabase”

10.2 EXAMPLES OF SQL QUERIES

There are many good SQL tutorials on the web[3, 2]. Here are listed a few simple examples of working
queries.

To list all rows in a table calledGlueSite:

SELECT * FROM GlueSite

To list selected information about all sites in this table:

SELECT SysAdminContact, UserSupportContact FROM GlueSite

To list the names of all sites in this table in the Northern Hemisphere:

SELECT Name FROM GlueSite WHERE Latitude > 0

To list the endpoints and types of services in this table hosted by sites in the Northern Hemisphere:

SELECT Endpoint, Type FROM GlueSite, GlueService WHERE GlueSite.UniqueId = GlueService.GlueSite_UniqueId AND Latitude > 0

INFSO-RI-508833 PUBLIC 30/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

10.3 SUPPORTED SQL

SQL SELECT statements are restricted by 3 components: the R-GMA SQL Parser, limitations on con-
tinuous queries, and limitations imposed by external components.

Currently the only external component which limits the SQL is the MySQL RDBMS when it is used by
a producer for managing storage. As R-GMA is ported to other RDBMS systems in the future, users
will be obliged to use only that dialect of SQL which is common to those RDBMSs able to participate in
answering a query.

Continuous queries must be of a form which can be evaluated on each tuple in isolation.

Finally the R-GMA SQL parser accepts SQL92 entry level SELECT statements except as listed below:

• Trailing decimal points in a number – e.g. 123.

• The keywordsAS andESCAPE.

• NestedSELECT statement after keywordSOME.

• The keywordHAVING after a table name orWHERE clause.

• ”,” used afterCOUNT(*) – e.g.SELECT COUNT(*),SUM(NUMKEY) FROM UPUNIQ

• Lack of space between elements in expression.

• Column names in quotes.

• Expressions with 2 column name elements insideMAX(), SUM(), andAVG().

• Every column name in aSELECT must be unique. This also implies that queries of the fromSELECT
* FROM A,B are also not allowed as the * would include the R-GMA system columns twice in the
join. In the unlikely event that you need two columns in a join with the same name but with a
different meaning, the R-GMA team can propose a work-around.

11 ADVICE ON USING R-GMA

This section contains various recommendations, many of which relate to timing, to help the user make the
best use of R-GMA. The aim is to ensure the most reliable throughput of tuples and reduce unnecessary
load on the servers

11.1 GENERAL ADVICE

• All R-GMA calls raise exceptions - they must all be caught and handled for reliable use.

• If you try to contact a producer or consumer and the server returns aUnkownResourceException
exception the resource no longer exists so you must recreate the producer or comsumer.

• If the server cannot be contacted aRemoteException exception is returned. Wait for a period of
one minute and retry the operation and repeat every minute.

• The termination interval should be set to 60 minutes for all producers and consumers. In future, it
will probably not be possible for the user to set this parameter.

• Remember to close consumers and producers when you have finished with them. Otherwise they
will only be closed, at best, an hour later when the termination interval has passed.

INFSO-RI-508833 PUBLIC 31/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

• Always list the columns in INSERTs and SELECTs to provide some protection from schema
changes.

11.2 PRIMARY PRODUCERS

• Set the Latest Retention Period for tuples (indeclareTable) to match the life-time for which you
think the tuple should be considered to be ”latest” information. Typically this will be a little greater
than the publication interval.

• The primary producer service has a buffer which can fill up. If this happens, the server returns
anRMGABufferFull exception. On receipt of this exception, the user should wait for one minute
before trying to insert the tuple(s) again.

• If data are not being published at least every half an hour create a Primary Producer when it is
needed rather than keep it alive. If data are published at less than half hour intervals it is better to
keep the producer running.

• In general, it is not necessary to sendshowSignOfLife messages, and we recommend that you do
not send them, becauseinsert messages will keep a producer resource alive. If a problem should
occur you can always create a new producer.

• Set the History Retention Period (HRP) to hold at least the last measurement so that a new Sec-
ondary Producer can pick up the latest data. It should not normally be significantly longer than
this. If you do make it long you may run out of memory on the service (if using memory storage).
In this case you have a problem - if you just leave it, or close it, then it will continue to occupy
memory until the HRP expires. The only way to clean it up is todestroy it. For this reason
HRPs for primary producers should normally be short: between 10 and 60 minutes. If the rate of
publishing data is very high it may be necessary to have a shorter HRP, however this will lead to
some tuples being lost if a Secondary Producer fails.

11.3 SECONDARY PRODUCERS

• Call showSignOfLife for a Secondary Producer to keep it alive. The interval should be 5 minutes
less than the shortest History Retention Period (HRP) of the contributing Primary Producers. This
way if a Secondary Producer dies it can be restarted without loss of data. If the shortest HRP is
more than 60 minutes then theshowSignOfLife should be sent every 55 minutes (i.e 5 minutes
less than the termination interval).

• The HRP can be set to be large with database storage, however with memory consider how much
space will be taken up by the tuples.

• gLite 1.4 includes a flexy archiver which will do most of the work for you.

11.4 CONSUMERS

• You may get better performance and will reduce the load on the server by introducing a delay
between successive calls topop. This allows time for the consumer’s buffer to fill up a bit rather
than getting back very few tuples (or none at all) each time. Smart code would adjust the polling
rate to be as low as possible to keep up with the data. A simpler algorithm would be to wait for 5
seconds after anypop which returns no tuples; otherwise not include a delay.

• Do not useshowSignOfLife but rely on thepop calls to keep it alive.

INFSO-RI-508833 PUBLIC 32/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

12 RELEASE NOTES FROM A USER PERSPECTIVE

This section describes the changes that a user will see when going from gLite 1.4 to 1.5.

12.1 OVERVIEW

This release of R-GMA in gLite 1.5 fixes more than 40 bugs. Our most serious bug number 8099:
”Archivers are Inconsistent” has not been fixed completely but this release should show much better
behaviour.

The version is finally free of the old EDG API layer. The APIs communicate directly with the services
and are no longer interdependent. One consequence of this is much improved error messages.

APIs and services must be matched for the transition from 1.4 to 1.5 - so a site should upgrade in one go.

For C we provide a 1.4 compatibility library so that code linked against a shareable library will still work.
This was not feasible for the C++, so C++ application code must be recompiled. An extra compiler switch
is needed for both C and C++ compilation.

Error handling is much improved. You can now expect to receive a clear error message if there is a
problem. If you don’t - please submit a bug. There are three new exception types:

• RGMASecurityException

• RGMAUserException

• RGMABufferFullException

We are now checking that published data are consistent with the schema. Previously a primary producer
would accept almost anything, but then a secondary producer might modify the fields - e.g. truncating
strings or it could just reject the tuple. Now we make the check when you try to insert the data into
R-GMA this allows us to reject the tuple at source and inform the guilty party.

In future R-GMA will support multiple Virtual Databases (VDBs). We imagine that a VO will ”own”
and administer more than one VDB. We had begun to introduce the framework for this but realised that
we had not done it in the best way. In future the VDB will simply be a prefix to the table name, currently
however, the prefix may not be specified. Users should start think about how they with to use the VDB
when it is introduced.

Thereconnect operation no longer sends ashowSignOfLife. This is an important change of semantics.
Typically if you reconnect, you will immediately use the service so you will be unaware of the change.

Finally, there used to be some non-advertised facilities for determining service status. We now offer
getProperty operations to find out what is happening. These are of limited interest to the normal user.
A setProperty call is also provided.

12.2 NEW FEATURES

• (LRP on insert) You can now specify a latest retention period for each tuple in the Primary Pro-
ducer’sinsert call, overriding the one specified indeclareTable. This is useful, for example,
for the R-GMA Service Tool as different LRPs are appropriate for data from different services
about which information is being published.

• (Logically named tuple stores) You can now access the database used by a Primary or Secondary
producer just by giving it a logical name: R-GMA will map it to a physical database for you. Two
new API callslistTupleStores anddropTupleStores are provided to manage them.

INFSO-RI-508833 PUBLIC 33/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

• (Tuple checking) Attempts to insert tuples that are inconsistent with the table definition in the
schema will now be rejected.

• (numSuccessfulOps) The Primary Producer’sinsertList call may fail after inserting a number
of tuples. You can now determine how far it got with the newnumSuccessfulOps field in the
RGMAException. It will contain the number of successfully inserted tuples.

• (endOfResults) A new method calledendOfResults has been added to the result set returned by
the Consumer’spop method to allow a much cleaner consumer loop to be constructed. A (Python)
example looks like this:

consumer.start(timeout)
while 1:

results = consumer.pop(1000)
for result in results:

print result

if results.endOfResults:
break

time.sleep(5)

The calls for the old looping constructsisExecuting andcount are deprecated.

• (Registry and Schema calls) Calls to access the Registry and Schema have been added to the APIs.
The most important new calls aregetAllProducersForTable on the Registry andcreateTable,
dropTable, getAllTables andgetTableDefinition on the Schema. The temporarycreate-table
command line utility has been withdrawn. Note that users should be very wary of callingdropTable
because table definitions are shared by everyone using the Schema.

See the next section for known limitations of the current R-GMA services.

12.3 DEPRECATED FEATURES

The following features are now deprecated:

• VO-names list increatePrimaryProducer, createSecondaryProducer andcreateOnDemandProducer.

• IgnoreSlowConsumers property increatePrimaryProducer andcreateSecondaryProducer:
the flag will be ignored and tuples dropped when the History Retention Period (HRP) is exceeded.

• FILE storage type increatePrimaryProducer andcreateSecondaryProducer: it was never
implemented so nobody should miss it.

• HTTP protocol in URI increateOnDemandProducer: this was unused.

• isExecuting andcount Consumer calls: use the newendOfResults call as described above.

INFSO-RI-508833 PUBLIC 34/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

12.4 FEATURES WITHDRAWN

• setTerminationInterval for all producers and consumers: this was deprecated in previous re-
leases.

• popAll on a consumer: this was deprecated in previous releases.

• setMetaData, setEndOfResults, addRow andsetWarning in the C++ API’s ResultSet class:
these were not deprecated previously, but should never have been made public.

13 KNOWN PROBLEMS AND CAVEATS

13.1 FUNCTIONALITY NOT YET IMPLEMENTED

Some API calls and options are not yet implemented by the R-GMA services. These are:

• LATEST or HISTORY producers with MEMORY storage.

• CONTINUOUS Secondary Producers.

• Combined LATEST and HISTORY producers.

• HISTORY and LATEST retention periods (functionality is approximated).

• Primary Producer getHistoryRetentionPeriod() method (functionality is approximated).

• Primary Producer getLatestRetentionPeriod() method (functionality is approximated).

• Secondary Producer getHistoryRetentionPeriod() method (functionality is approximated).

• The getVersion() method on all services.

• The following registry methods: createRegistry(), destroyRegistry().

• The following schema methods: createSchema(), destroySchema(), getTableIndex(), setAutho-
rizationRules(), getAuthorizationRules(), createIndex(), dropIndex(), createView(), dropView().

• The VDB name parameter on all registry and schema calls is currently ignored.

Schema replication is also not yet implemented.

13.2 OTHER KNOWN ISSUES

There are a number of other known bugs and limitations in the current release.

• Table and column names are currently case sensitive in R-GMA. To get consistent results always
respect case.

• Continuous queries are case sensitive but latest and history queries ignore case with a default
installation of MySQL.

• Only a subset of SQL92 is currently supported by R-GMA, and continuous queries are even more
restricted. Time functions in SQL should not be used.

INFSO-RI-508833 PUBLIC 35/37

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

• Some operations of the command line tool try to access the schema and registry directly rather
than just the local R-GMA server. This access may be blocked by a firewall.

• Use Java version 1.4.208 or later. There is a known issue with Java 1.4.2 running with the Scien-
tific Linux 3 SMP kernel on dual processor machines, where the Java Virtual Machine can crash
without warning. The problem does not seem to occur in RH7.3 or RHEL4.

• The Python API and the command line tool (that uses it) make a new connection to the server
for each API operation. When connecting to a secure server this adds a substantial overhead, so
multiple API calls (e.g. lots of inserts) will run slowly. The other three APIs are not affected.

• All VDBs share the same name space and information. Though the VDBName parameter is ig-
nored, users are recommended to set it to an empty (zero length) string. This will facilitate the
introduction of VDBs. Table names must not contain ”.” This will avoid confusion with VDB-
Names when they become active.

• If authentication is enabled, to use the R-GMA Browser you must load your certificate into the
web browser.

• When creating a table, integer columns must be specified as type INTEGER; the abbreviation INT
does not work.

13.3 REPORTING BUGS AND GETTING HELP

If you think you have found a bug, please use Savannah at:https://savannah.cern.ch/projects/jra1mdw/.
Check first to see if a bug report has already been submitted.

If you want to consult a human first, or if you have suggestions or need help using R-GMA please feel
free to send an email to:mailto:jra1-uk@physics.gla.ac.uk.

INFSO-RI-508833 PUBLIC 36/37

https://savannah.cern.ch/projects/jra1mdw/
mailto:jra1-uk@physics.gla.ac.uk

R-GMA USER GUIDE FOR JAVA
PROGRAMMERS

Doc. Identifier:
EGEE-JRA1-TEC-503617

Date: September 4, 2006

REFERENCES

[1] JRA1-UK. Information and Monitoring Service (R-GMA) System Specification. Technical Report
EDMS 490223, EGEE, 2004.

[2] Sql tutorial. http://www.w3schools.com/sql/default.asp.

[3] Sql92 tutorial. http://www.firstsql.com/tutor.htm.

[4] Web services architecture working group note. http://www.w3.org/TR/ws-arch/.

[5] Web services description language. http://www.w3.org/TR/wsdl/.

INFSO-RI-508833 PUBLIC 37/37

	1 Introduction
	1.1 Purpose and Structure of this Document
	1.2 R-GMA Architecture
	1.2.1 Virtual Database
	1.2.2 Web Services
	1.2.3 Producers
	1.2.4 Consumers
	1.2.5 Retention Periods
	1.2.6 Resource Framework and the Termination Interval

	2 Getting started with R-GMA
	2.1 Prerequisites
	2.2 Setting up for usage
	2.3 Simple interaction using the command line tool
	2.4 Simple producing and consuming info with the command line tool

	3 R-GMA Installation
	3.1 Installed components
	3.2 Check your installation
	3.3 Security

	4 Primary Producers
	4.1 Termination Interval
	4.2 Producer Properties
	4.3 Primary Producer Examples
	4.3.1 Simple Primary Producer Example
	4.3.2 Running the example
	4.3.3 Resilient Primary Producer Example

	5 Consuming Information
	5.1 Types of Query
	5.2 Consumer Examples
	5.2.1 Simple Consumer Example
	5.2.2 Consuming continuous plus old information
	5.2.3 One-off Queries
	5.2.4 Consumer extracting information from Result Set
	5.2.5 Resilient Consumer Example

	6 republishing via Secondary Producers
	6.1 Secondary Producer Examples
	6.1.1 Simple Secondary Producer Example
	6.1.2 Shutdown Thread for Secondary Producer
	6.1.3 Avoiding a permanent connection to a Secondary Producer

	7 The rgma command line tool
	7.1 Introduction
	7.1.1 Starting the R-GMA command line tool
	7.1.2 Entering commands

	7.2 Commands
	7.2.1 General commands
	7.2.2 Querying data
	7.2.3 Inserting data
	7.2.4 Secondary Producers
	7.2.5 Information commands
	7.2.6 Directed queries

	8 Using the web to browse R-GMA information
	8.1 Security

	9 Administration
	9.1 Table Creation
	9.2 Recovery following restart

	10 SQL
	10.1 Creating a Database as storage for a producer
	10.2 Examples of SQL queries
	10.3 Supported SQL

	11 Advice on using R-GMA
	11.1 General advice
	11.2 Primary Producers
	11.3 Secondary Producers
	11.4 Consumers

	12 Release notes from a User perspective
	12.1 Overview
	12.2 New features
	12.3 Deprecated features
	12.4 Features withdrawn

	13 Known problems and caveats
	13.1 Functionality not yet implemented
	13.2 Other known issues
	13.3 Reporting bugs and getting help

